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Abstract

Chimeric RNAs have been believed to be solely produced by gene fusions resulting from 

chromosomal rearrangement, thus unique features of cancer. Detected chimeric RNAs have also 

been viewed as surrogates for the presence of gene fusions. However, more and more research has 

demonstrated that chimeric RNAs in general are not a hallmark of cancer, but rather widely 

present in non-cancerous cells and tissues. At the same time, they may be produced by other 

mechanisms other than chromosomal rearrangement. The field of non-canonical chimeric RNAs is 

still in its infancy, with many challenges ahead, including the lack of a unified terminology. 

However, we believe that these non-canonical chimeric RNAs will have significant impacts in 

cancer detection and treatment.

Introduction

The term “chimeric RNAs” is not foreign to the field of cancer research. Starting from the 

discovery of BCR-ABL fusion resulting from “Philadelphia Chromosome”[1], chimeric 

RNAs are known to be products of gene fusions and considered ideal biomarkers for cancer. 

With modern technologies, they are being uncovered at an unprecedented rate. Several large 

databases including Mitelman [2], ChimerDB [3], ChiTaRs [4], FusionDB [5], dbCRID [6], 

TICdb [7], ConjoinG [8], FusionCancer [9] and HYBRIDdb [10], have collected thousands 

or more chimeric RNAs (Table 1). However, as next generation sequencing becoming 

popular and additional chimeric RNAs being discovered, increasing evidence is mounting 

toward a realization that goes against two traditional dogmas: chimeric RNAs are strictly the 

result of gene fusions, and that chimeric RNAs are unique to cancer.

We now know that chimeric RNAs can be made at the RNA level by intergenic splicing, and 

that they are not specific to cancer. Despite these new and exciting discoveries, the field of 
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non-traditional chimeric RNA is still in its infancy. In addition, the discoveries of these new 

chimeric RNAs bring confusion to some current nomenclatures, and raise alarms for some 

traditional practices. In this communication, we try to clarify some of the terminology. We 

also reviewed the current knowledge about the mechanisms of chimeric RNA formation, and 

their categorizations, as well as discussed their implications in cancer diagnosis and 

treatment (Fig. 1).

Terminology

Firstly, there is a need to clarify some terminology. Although tens of thousands of chimeric 

RNAs are deposited into various databases, the way in which they are defined is unclear, 

partially due to the ill-defined “gene” and unclear mechanism of generation for the chimeric 

RNAs [11**]. Various names have been used, including: transcription mediated fusions [12], 

gene fusions [13], conjoined genes [8,14*], complex genes [15], co-transcribed genes [16], 

spanning genes [17], hybrid genes [10], and tandem chimerism [18]. We prefer the definition 

of “gene” as a nucleotide sequence in a DNA molecule that acts as a functional unit for the 

production of a protein, a structural RNA, or a catalytic or regulatory RNA molecule [19]. 

We then define “chimeric RNA” as a fusion transcript composed of exons, or fragments of 

exons from different genes.

We propose to differentiate “chimeric RNA” from the traditional term, “gene fusion”. Even 

though in the past, labs including our own had been using the two terms interchangeably, the 

term “gene fusion” tends to leave the impression of a fusion event happening at the DNA 

(gene) level. “Chimeric RNA” on the other hand can be a general term to describe fusion 

transcripts regardless of their mechanism of formation. In this regard, we consider the terms 

“chimeric RNA”, “chimeric transcript”, “fusion RNA”, and “fusion transcript” to be the 

same. Additionally, when it comes to referencing chimeric RNAs that are composed of 

exons from two adjacent genes transcribing in the same direction, many terms have also 

been used, including: transcription induced chimeras [12], tandem RNA chimeras [18,20], 

conjoined genes [8], and read-through fusions [21**,22]. However, these terms do not 

differentiate cis-splicing (precursor RNA transcribing through gene boundary and splicing 

together exons of neighboring genes) from trans-splicing events. In fact, trans-splicing may 

have a higher incidence rate with genes in close proximity to each other. To distinguish 

between the two, we prefer to use the term “cis-splicing of adjacent genes (cis-SAGe)” [23] 

or “gene read-through” for the first mechanism. Since “gene read-through” was originally 

used to describe protein translation processes that skip a stop codon, we propose to use the 

term cis-SAGe to avoid confusion. Recently Yuan et al., proposed to restrict the term 

“chimeric RNA” to those that are formed by separate RNA transcripts [11**]. By their 

definition, fusion RNAs from gene fusion or cis-SAGe should not be called “chimeric 

RNAs”. Even though this restriction holds some merit, it is not practical, and will cause 

more confusion, as it requires additional mechanistic insights, that are currently missing for 

the vast majority of fusion RNAs. Our definition is simple, as it relies only on the genome 

annotation, and requires no additional knowledge regarding how the fusion RNAs are 

formed.
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Generating Mechanism

Given the above definition, chimeric RNAs are known to be produced hitherto by three 

mechanisms (Fig. 2) [24]. The classic and well-studied mechanism is through gene fusions. 

Chromosomal rearrangements that include insertions, deletions, and translocations can result 

in cytogenetically distinct gene loci juxtaposed together. In the past, due to technical 

limitations, most gene fusions were discovered in haematological and childhood malignant 

tumors, including BCR-ABL resulting from t(9;22) in chronic myelogenous leukemia 

(CML) [1,25] and in acute lymphoblastic leukemia (ALL) [26] or acute myelogenous 

leukemia (AML) [27] ;TEL-AML1 (ALL with t(12 ; 21) [28], AML1-ETO (M2 AML with 

t(8 ; 21)) [29]; PAX3-FOXO1 (t(2;13) in alveolar rhabdomyosarcoma [30]. With modern 

high throughput technologies, recurrent gene fusions are uncovered in common epithelial 

cancers, such as TMPRSS2-ERG in prostate cancers [31], and BCAM-AKT2 in serous 

ovarian cancer [32**].

The other two mechanisms sometimes are grouped together as “intergenic splicing”. One is 

trans-splicing, in which exons from two separate RNA transcripts are spliced together. 

Trans-splicing is well documented in lower eukaryotes [33,34], while it was first observed in 
vitro using mammalian cell extracts [35–38], and then in vivo in higher eukaryotes, 

including humans [39–46**,47*]. The molecular mechanism of trans-splicing in vertebrates 

is still elusive. It likely involves multiple factors, including transcriptional and splicing 

machinery, in conjunction with some sequence specificity, and three-dimensional proximity 

(detail discussion see [48**]).

Another intergenic splicing mechanism is cis-SAGe, which involves same strand neighbor 

genes. Traditionally, such chimeric RNAs containing exons of neighboring genes have been 

considered rare in mammalian cells, but recent studies incorporating systematic in silico 
analysis and paired-end RNA-Seq have identified many potential cis-SAGe chimeric RNAs 

[49,50]. In a recent study involving the analysis of both prostate cancer and non-cancerous 

samples, over 300 chimeric RNA events were observed, of which 30%, were characterized 

as cis-SAGe chimeras [21]. Another study classified 76% of their candidates as deriving 

from adjacent genes [51*]. Intuitively, cis-SAGe requires an active transcription from the 5′ 
parental gene, a readthrough transcript across gene boundaries, and alternative splicing 

between exons of the two genes. Factors involved in any of the three steps are likely to 

contribute to the regulation of cis-SAGe. Take SLC45A3-ELK4 e1e2 form for example. It is 

a recurrent cis-SAGe fusion in prostate cancer. Insulator binding factor CTCF negatively 

correlates with the expression of the fusion RNA, and silencing CTCF resulted induction of 

the fusion [52*]. In addition, CTCF silencing combined with RNA-Seq indeed revealed 

additional cis-SAGe fusions [21]. However, it is not the only factor. Even though CTCF 

binding to the insulators can regulate the fusion expression in different culture conditions for 

the same cell line [52*], among different cell lines the expression of SLC45A3-ELK4 
correlates with the expression of the parental gene SLC45A3. In addition, forced RNA polII 

pausing by flavopiridol can induce the fusion RNA expression (unpublished). Recently, 

Vilborg et al. reported upregulation of ‘downstream of gene’-containing transcripts (DoG) 

under osmotic stress [53**]. It is thus likely that these same stresses may also enhance the 

level of cis-SAGe fusions.
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Yuan et al. discussed three options for categorizing cis-SAGe fusions: a variant of upstream 

gene, dubbed as gene A; or a variant of downstream gene, dubbed gene B; or a totally new 

gene, gene C [11**]. Among the three, they favor the last option. We disagree with such 

classification, and propose to still dub them as A-B. Many of the parental genes involved in 

cis-SAGe are genuine genes that have well annotated TSS, and polyadenylation and 

termination sites. Their expression patterns are not identical, and they may have distinctive 

functions. In the case of SLC45A3-ELK4, SLC45A3 encodes a solute carrier, which is 

expressed on cell membrane. It is almost exclusively expressed in prostate tissue. ELK4 
encodes an ETS family transcription factor, which is a nuclear protein. It is expressed in 

many tissues and cell types. Grouping the fusion into either of the parental gene variants, or 

calling it a new gene is not accurate, and will cause unnecessary confusion.

Categories

Chimeric RNAs could be classified into different categories by various criteria (Fig. 3). They 

can be grouped according to their generating mechanism as outlined above: gene fusion 

products, trans-splicing and cis-SAGe [48]. However, chimeric RNAs can also be sorted by 

other criteria. For instance, chimeras could be classified according to the chromosomal 

locations of their parental genes: parental genes located on different chromosomes 

(INTERCHR), neighboring genes transcribing the same strand (INTRACHR-SS-0GAP), 

and parental genes on the different strands of the same chromosome or with gaps in between 

(INTRACHR-OTHER) [21**]. Chimeras can be divided by the junction position relative to 

the exons of the parental genes, which include: both sides being known exon ends (E/E), one 

side being exon end, the other not (E/M or M/E); or both sides falling into the middle of 

exons (M/M) [46**]. Chimeras can also be grouped by their protein coding potentials: those 

in which the chimera’s coding sequence is in-frame with both parental genes (in-frame), 

those in which the reading frame of the downstream parental gene is different from the 

upstream parental genes (frame-shift), and those whose junction site falls outside of the open 

reading frame of either parental genes, or one or both parental genes are non-coding [46]. 

One note of caution is that the protein coding potential is only a prediction, which may not 

mirror how individual chimeric RNAs truly function. One example is the SLC45A3-ELK4 
e1e2 fusion. Even though it encodes the ELK4 protein, it functions as a long non-coding 

chimeric RNA (lnccRNA) [54**]. All the above mentioned and even more categorizations 

may be used according to the topics researchers are investigating.

Chimeric RNAs in Cancer Diagnosis and Treatment

Gene fusions and their fusion products (RNA and protein) have had major impacts in cancer 

diagnosis and treatment. The oncogenic fusion BCR-ABL1 resulted from the t(9,22) 

translocation loci, named the ‘ Philadelphia chromosome’, was the target of an effective 

cancer drug known as, Gleevec (Imantinib) [25,55]. Recent advances in high-throughput 

sequencing and computational capabilities, which provide single nuclear-base resolution and 

long single strand coverage, have enabled the systematic discovery of novel chimeric RNAs 

in solid cancers [21**,49,56**,57–59]. EML4-ALK was detected in non-small cell lung 

cancer, which was treated with ALK inhibitors to improve prognosis [60,61]. In prostate 

cancer, fusions with promoters of certain inducible, or highly expressed genes were 
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identified and characterized. The most well-know fusion is TMPRSS2-ERG, harbored by the 

majority of prostate cancers. In this fusion, the androgen-regulated TMPRSS2 promoter 

fuses to the coding region of ERG [62]. This fusion drives a unique transcriptional program, 

inducing DNA damage, invasion and metastasis [63*,64–67]. Wang et al., recently identified 

a series of peptides that interact specifically with the DNA binding domain of the ERG part 

of this fusion [63*]. This peptide inhibited ERG-mediated transcription, with reduced cell 

invasion, proliferation and tumor growth.

These textbook successes have led to great enthusiasm for using chimeric RNAs as 

biomarkers and drug targets, and at the same time three assumptions: 1, chimeric RNAs are 

solely produced by gene fusions at chromosomal level; 2, detecting chimeric RNA is 

equivalent of detecting gene fusions, and; 3, chimeric RNAs are unique to cancer cells.

However, increasing amounts of research has found that chimeric RNAs are also present in 

non-cancerous tissues and cells [44,45,68,69]. Some of them may also play important roles 

in normal physiology [46,70*]. In a recent survey of 117 RNA-Seq datasets covering 30 

different non-cancerous tissues and cells, 291 recurrent chimeric RNAs were found [46]. 

Our ongoing research with over 7,000 RNA-Seq datasets of 44 tissues have also yield a large 

number of chimeric RNAs, of which many were identified in more than ten samples 

(unpublished). Even though the vast majority have not been experimentally validated, let 

alone functionally studied, their presence has already posed a challenge to the traditional 

view that fusion RNAs are cancer-specific features. In the field of cancer researchers, one 

common practice is still associate fusion RNAs discovered by RNA-Seq in certain cancer 

cell lines and tissues being equivalent to gene fusions, as well as to immediately assign them 

the title of cancer biomarkers. This practice has resulted in an explosion in the number of 

entries deposit into the Mitelman Database of Chromosome Aberrations and Gene Fusions 

in Cancer (https://cgap.nci.nih.gov/Chromosomes/Mitelman) [2]. As of August 4th of 2017, 

10,841 “ gene fusions” are included. However, many were not validated to be product of 

gene fusion or being cancer specific. We would likely to raise the alarm against this practice. 

Chimeric RNAs are not a phenomenon unique to cancer, and they are not all the results of 

gene fusions. Therefore, extensive validations involving sufficient numbers of non-cancer 

control samples need to be conducted before assigning a chimeric RNA being a cancer 

marker [70*]. Similarly, more evidence is needed in order to claim that a chimeric RNA is a 

product of gene fusion.

On the other hand, chimeric RNAs generated by non-traditional gene fusions add another 

layer of transcriptional regulation, which can go awry in cancer. Therefore, they represent a 

new repertoire for cancer biomarkers and/or therapeutic targets. For instance, the CYCLIN 
D1-TROP2 chimeric RNA was found in multiple types of cancer, with no involvement of 

chromosomal rearrangement [71]. YPEL5-PPP1CB, was found in 28% of CLL samples with 

no evidence for a genomic fusion between YPEL5 and PPP1CB [72]. The SLC45A3-ELK4 
e1e2 form is an example of cis-SAGe fusion in the absence of corresponding fusions at the 

DNA level. Its level correlates with prostate cancer development, and yet the parental genes 

do not share that correlation [23,58]. In addition, Wen et al. identified seven fusions in acute 

myeloid leukemia with normal karyotyping [73]. These examples, and others, support that 

the abnormality of intergenically spliced chimeric RNAs may play an underappreciated role 
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in cancer biology. Whole exome or even whole genome sequencing will miss the discovery 

of this pool of potential biomarkers and/or drug targets that are produced abnormally at the 

RNA level.

Conclusions and Future Perspectives

We aim to clarify some discrepancies in nomenclature within the field of chimeric RNAs. 

Gene fusions and their corresponding chimeric RNAs have had major impacts on cancer 

diagnosis and treatment. We predicted that the non-traditional chimeric RNAs produced by 

trans-splicing, cis-SAGe, and possibly other unknown mechanisms will contribute to the 

discovery of new biomarkers and potential drugs. At the same time, we want to sound the 

alarm for some of the misconceptions and incorrect practices.

In the future, new sequencing technologies, especially full-length sequencing, and 

development of new software will facilitate the discovery of additional chimeric RNAs. One 

of the bottlenecks is the lack of a high throughput approach to study the functions of 

chimeric RNAs. Mechanisms of formation for the non-traditional chimeric RNAs, as well as 

their relationships with gene fusions are also burning questions that are begging for answers.
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Figure 1. Chimeric RNA centric view
Chimeric RNAs can be generated by gene fusion, trans-splicing, and cis-splicing between 

adjacent genes (cis-SAGe). They can function as chimeric proteins, long non-coding 

chimeric RNAs (lnccRNA), or affect parental gene expression. Traditionally, they have been 

thought to be specific to cancer. However, increasing numbers are being found in normal 

physiology.
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Figure 2. Three known generating mechanisms for chimeric RNAs
Exons are depicted as blocks, and introns are indicated by lines. (A) Chromosomal 

rearrangement including translocation, deletion, and inversion. Shown here is a case of 

translocation. Gene fragments from different genomic loci are juxtaposed together. (B) RNA 

trans-splicing. Two separate pre-mRNA transcripts are spliced together. (C) cis-splicing 

between adjacent genes. The transcription machinery reads through two neighboring genes, 

and the exons from the two genes are spliced together.
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Figure 3. Example of the landscape of chimeric RNAs
The data is from our analysis of over 7000 RNA-Seq samples covering 53 different tissues. 

(A) Chimeric RNAs can be grouped by different criteria. They can be grouped according to 

the location of parental genes, the fusion junction site relative to exons, and protein coding 

reading frames. (B) Chimeric RNAs may have different tissue distributions.
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Table 1

Different databases hosting chimeric RNAs/gene fusions.

Database Tumor Non-tumor Total entry Web link

Mitleman Yes No 10861 https://ulib.iupui.edu/databases/mitelman-database-chromosome-aberrations-and-gene-fusions-cancer

ChimerDB3.0 Yes No 33316 http://203.255.191.229:8080/chimerdbv31/mindex.cdb

ChiTaRs-3.1 Yes No 42000 http://chitars.md.biu.ac.il/

dbCRID Yes Yes 2643 http://dbcrid.biolead.org

TICdb Yes No 28171 http://www.unav.es/genetica/TICdb/

ConjoinGene Yes Yes 800 https://metasystems.riken.jp/conjoing/index

FusionCancer Yes No 11839 http://donglab.ecnu.edu.cn/databases/FusionCancer/index.html

HYBRIDdb Yes Yes 46492 http://www.primate.or.kr/hybriddb/

FusionDB Web link no longer active
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