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Abstract

Prevalence of obesity, an established risk factor for many cancers, has increased dramatically over 

the past 50 years in the United States and across the globe. Relative to normoweight cancer 

patients, obese cancer patients often have poorer prognoses, resistance to chemotherapies, and are 

more likely to develop distant metastases. Recent progress on elucidating the mechanisms 

underlying the obesity-cancer connection suggests that obesity exerts pleomorphic effects on 

pathways related to tumor development and progression, and thus there are multiple opportunities 

for primary prevention and treatment of obesity-related cancers. Obesity-associated alterations, 

including systemic metabolism, adipose inflammation, growth factor signaling and angiogenesis, 

are emerging as primary drivers of obesity-associated cancer development and progression. These 

obesity-associated host factors interact with the intrinsic molecular characteristics of cancer cells, 

facilitating several of the hallmarks of cancer. Each is considered in the context of potential 
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preventive and therapeutic strategies to reduce the burden of obesity-related cancers. Additionally, 

this review focuses on emerging mechanisms behind the obesity-cancer link as well as relevant 

dietary interventions, including calorie restriction, intermittent fasting, low-fat diet, and ketogenic 

diet, that are being implemented in preclinical and clinical trials, with the ultimate goal of 

reducing incidence and progression of obesity-related cancers.
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Introduction

Over the past half century in the United States the prevalence of obesity, defined as body 

mass index (BMI) of 30 kg/m2 or greater, has tripled with nearly 40% of adults and 20% of 

children burdened by the disease.1 Not only epidemic to the United states, more than 600 

million adults are obese worldwide with and additional 2.1 billion are considered 

overweight.2 Increasing prevalence of obesity signifies a major public health problem as 

obesity increases risk of several chronic diseases and comorbidities including type II 

diabetes (T2DM), cardiovascular disease (CVD), hypertension, chronic inflammation and, as 

discussed in this review, many types of cancer.3

As illustrated in Figure 1, and based on the recent report from the International Agency for 

Research on Cancer, risk of 13 distinct cancer types is increased with excess body fatness: 

breast (in postmenopausal women), ovarian, liver, gallbladder, kidney, colon, pancreatic, 

gastric, esophageal, endometrial, thyroid, multiple myeloma, and meningioma.4 Overall, an 

estimated 13% of incident cases worldwide, and approximately 20% of incident cases in 

Europe and North America, are attributable to obesity.5 Aside from higher risk of developing 

cancer, obese individuals are more likely to have reduced response to anticancer therapies,6 

and obesity is implicated in approximately 20% of all cancer-related mortalities.7 This 

includes prostate cancer, for which obesity increases progression but not incidence.8 Here, 

we discuss (with a focus on developing mechanism-based intervention strategies) 

mechanisms through which obesity affects normal tissue homeostasis and cancer 

development and/or progression, including alterations in systemic metabolism, growth factor 

signaling, inflammation and angiogenesis.

Methods

A traditional literature review was performed to describe the multiple mechanisms 

underlying the obesity-cancer link, as well as dietary interventions targeting those 

mechanisms for primary cancer prevention and treatment. Searches were completed using 

PubMed and Google Scholar. A variety of key words were searched including obesity, 

metabolic reprogramming, secretome, cell signaling, inflammation, adipose, angiogenesis, 

cancer prevention, cancer treatment, calorie restriction, intermittent fasting, low fat diet and 

ketogenic diet.
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Obesity-Associated Systemic Alterations Impact the Hallmarks of Cancer

Hanahan and Weinberg identified essential biological capabilities acquired by all cancer 

cells during the multistep development of tumors in their classic article titled “The 

Hallmarks of Cancer”9 first published in 2000 and updated in their 2011 “Hallmarks of 

Cancer: the Next Generation.”10 These essential aberrations of cancer cells are sustaining 

proliferative signaling, insensitivity to anti-growth signals, resisting cell death, enabling 

replicative immortality, inducing angiogenesis, and activating processes related to invasions 

and metastasis. Conceptual progress in the decade between these two articles led to 

identification of additional hallmarks: deregulation of cellular energy metabolism, evading 

immune destruction, tumor-promoting inflammation and genomic instability. Extensive 

research on the obesity-cancer link supports the concept of obesity-associated systemic 

alterations, including 1) obesity-associated metabolic reprograming, 2) dysregulation of 

growth factor signaling, 3) adipose tissue inflammation and 4) induction of angiogenesis, 

facilitating several hallmarks of cancer.11

Obesity-Associated Metabolic Reprogramming—Metabolic reprogramming has 

long been known as a feature of cancer cells since the ‘Warburg effect,’ whereby cancer 

cells readily utilize glycolysis under normoxic conditions, was first described in 1924.12 

Increased attention in the last two decades has led to inclusion of metabolic reprogramming 

as a true hallmark of cancer cells.10 Cancer cells can alter their metabolism including 

glycolytic, mitochondrial, and anapleurotic pathways to adapt to changing environments13,14 

and progress to more aggressive disease.15–18 Many of these pathways converge on the 

tricarboxylic acid(TCA) cycle, with β-oxidation of fatty acids generating acetyl-CoA, 

glutaminolysis producing α-ketoglutarate and pyruvate being converted to oxaloacetate.13 

Selective pressure to proliferate in cancer cells drives these intermediates to be shuttled from 

the mitochondria and utilized as precursors for synthetic pathways including lipid, 

nucleotide and amino acid synthesis, rather than ATP production via the electron transport 

chain.13,19 As a result, cancer cells may become more reliant on glucose for ATP generation, 

and amino acids and fatty acids for TCA intermediates. Overnutrition increases provisions 

of - glucose and fat, all of which can feed into this metabolic reprogramming to fuel cancer 

cell proliferation. Moreover, glycolysis has been shown to be enhanced in cancer cells in the 

context of obesity.20,21 In addition, obesity is often associated with metabolic syndrome and 

diabetes,22,23 conditions characterized by hyperglycemia and/or hypertriglyceridemia,24 

providing ample circulating nutrients to a developing tumor, even between feeding periods.
25 Both elevated serum glucose and triglyceride26,27 levels have been associated with 

increased cancer risk.

In many cancers autophagy forms part of metabolic reprogramming. Autophagy. the process 

in which cells digest and recycle their cellular contents during low nutrient availability, can 

provide cancer cells with lipids, amino acids and nucleotides needed for proliferation.28 

Recent studies have shown high dependence on autophagy for tumor microenvironment cells 

that adopt senescence-associated secretory phenotype, which supports neighboring cancer 

cells through provision of digested contents, growth factors and inflammatory factors.29,30 

Obesity has been shown to induce autophagy, particularly in adipocytes.31–33 Inhibition of 

autophagy combined with calorie restriction has been shown to reduce tumor growth.34
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These obesity-associated metabolic adaptations facilitate the development of cancer 

hallmarks including insensitivity to anti-growth signals, resistance to cell death, and 
deregulation of cellular energetics.11 Interactions between cancer cell energetics and 

systemic metabolism highlight novel therapeutic strategies and interventions, particularly in 

obese individuals, as cancer cells may be more sensitive to metabolic perturbation, having 

already committed to a metabolic reprogram.

Dysregulation of Growth Factor Signaling—As depicted in Figure 2, obesity and 

metabolic syndrome are associated with aberrations in insulin signaling, growth factor 

signaling, and glucose metabolism.35 One growth factor implicated in cancer risk and 

progression is insulin-like growth factor (IGF)-1. Produced primarily following growth 

hormone stimulation in the liver, IGF-1 functions as a regulator of growth and 

developmental processes.36 IGF binding proteins bind circulating IGF-1 and limit its 

bioavailability to bind to its receptor and initiate downstream signals promoting growth 

and/or survival.37 Hyperglycemia and hyperinsulinemia, hallmarks of metabolic syndrome, 

increase IGF-1 production and bioavailability. Hyperglycemia suppresses IGF-1 binding 

protein synthesis and hyperinsulinemia promotes expression of growth hormone receptor 

and subsequent IGF-1 synthesis.35 Growth and survival functions of IGF-1 give it the 

potential to impact many hallmarks of cancer, including sustained proliferative signaling, 
insensitivity to anti-growth signals, induction of angiogenesis and metastatic potential.38 As 

a result, elevated IGF-1 is established as a risk factor for multiple cancer types including 

breast, prostate, lung and colorectal.37,39

In response to elevated blood glucose levels, pancreatic β-cells release insulin, a peptide 

hormone that stimulates peripheral uptake of glucose, glucose metabolism, and energy 

storage pathways. IGF-1 receptor and insulin receptor stimulate the same downstream 

activation of phosphoinositide 3-kinase (PI3K)/Akt pathway (Figure 2), a pathway 

frequently altered in epithelial cancers.40 In response to these growth factors and nutrient 

availability, PI3K/Akt produces lipid messengers that initiate Akt signaling,40 activating 

mammalian target of rapamycin (mTOR)-associated signaling cascade which promotes cell 

growth, proliferation and survival.41 Oncogenic signals or loss of tumor suppressors can also 

activate mTOR signaling, while low nutrient conditions activate AMP-activated protein 

kinase (AMPK), an energy responsive pathway that inhibits mTOR.42 Obesity-induced 

activation of mTOR can contribute to several hallmarks of cancer including: sustained 
proliferative signaling, insensitivity to anti-growth signals, induction of angiogenesis, and 
activation of processes related to invasion and metastasis.43 In preclinical models, blocking 

mTOR signaling with drugs such as rapamycin (mTOR inhibitor)44–46 and metformin 

(AMPK activator),46–48 block tumor-enhancing effects associated with the obese phenotype.
49 Interestingly, rapamycin has exhibited anti-inflammatory attributes, attenuating 

inflammation as well as tumor promotion, suggesting crosstalk between mTOR-related 

growth and survival signals and inflammatory signals.50

Adipose Tissue Inflammation—Mammals, including humans, have 2 major fat depots: 

subcutaneous and visceral (intra-abdominal). These adipose depots contain white adipose 

tissue (WAT) that stores energy in the form of triacylglycerol and brown adipose tissue 
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(BAT) that dissipates energy by burning fatty acids to generate heat. WAT and BAT have 

important differences in their morphology, metabolism and transcriptional profiles. White 

adipocytes have few mitochondria, low oxidative rate, and contain an unilocular lipid droplet 

comprised primarily of triacylglycerol, while brown adipocytes have a high number of 

mitochondria (hence the darker appearance), high rate of fatty acid and glucose uptake and 

oxidation, and possess multilocular lipid droplets.51 Moreover, the secretome of white 

versus brown adipocytes differs markedly (Figure 3); the former is characterized by 

secretion of leptin, resistin, PAI-1, inflammatory cytokines, and FFA, while the latter is 

characterized by secretion of bone morphogenetic proteins, lactate (which induces 

uncoupling proteins), retinaldehyde, triiodothyonine (T3) and other factors associated with 

response to cold stress and/or increased energy expenditure.51 Brown adipocytes also 

produce adiponectin (but not leptin) and fibroblast growth factor-21, which can be anti-

inflammatory and insulin sensitizing.51 WAT contains a number of stromal cells including 

pre-adipocytes, vascular cells, fibroblasts and a host of immune cells such as adipose tissue 

macrophages.52 Obesity increases WAT mass which drives chronic inflammation through 

altered adipokine and hormone signaling, generation of crown-like structures, and adipose 

remodeling and ectopic lipid infiltration to other tissues, as described below. Adipose tissue 

derived inflammation results in the secretion of a variety of signaling molecules and 

activation of gene expression programs that facilitate several of the hallmarks of cancer 

including sustained proliferative signaling, activation of programs related to invasion and 
metastasis, induction of angiogenesis, promotion of genome instability, and evasion of 
immune destruction.11

1. Altered Adipose Secretome: Leptin, an energy-responsive peptide hormone produced by 

adipocytes, is positively correlated with adiposity. Through signaling to the hypothalamus, 

leptin decreases hunger cues, food intake and weight gain.53 Leptin release from adipocytes 

is stimulated by a variety of factors including insulin, TNFα, glucocorticoids, and estrogen.
53 In obesity, leptin is overproduced by adipocytes, reducing hypothalamic sensitivity to the 

signal.54 Circulating leptin binds to receptors in central nervous system and peripheral 

tissues, regulating processes including energy homeostasis, cytokine production, immune 

function, and carcinogenesis.53,55 The leptin receptor OB-R, classified as a class I cytokine 

receptor, gives leptin the ability to activate signal transducer and activator of transcription 

(STAT) family transcription factors, resulting in initiation of STAT-induced transcription 

programs for proliferation, cell growth and survival, migration and differentiation.56 

Deregulation of STATs activity is often observed in cancer.57

Adiponectin, another peptide hormone secreted from adipocytes, functions as an energy 

sensor that promotes energy intake and insulin sensitivity,58 opposing the functions of leptin. 

Although the most abundant hormone secreted from the WAT,59 adiponectin levels are 

negatively correlated with adiposity and release is stimulated during energy deficit.60 

Adiponectin opposes obesity-associated metabolic alterations through regulating glucose 

metabolism, increasing insulin sensitivity and fatty acid oxidation, and reducing IGF-1 

signaling through activation of AMPK.61 Adiponectin also attenuates inflammation through 

inhibition of nuclear factor kappa-light-chain-enhancer of B cells (NF-κB), which reduces 

expression of proinflammatory cytokines while increasing expression of anti-inflammatory 
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cytokines.62 Due to the anticancer functions of adiponectin, adiponectin agonists are 

emerging as possible chemotherapeutic agents, particularly for obesity-related cancers.63 

While individually these adipokines have established associations with cancer risk, the leptin 

to adiponectin ratio is increasingly considered a more sensitive measure in evaluating cancer 

risk.64

Sex hormones, including estrogen, androgens and progestogens, regulate a variety of growth 

and developmental processes including weight homeostasis.65 Although the ovaries and 

testes are the major sites for sex hormone production, adipose tissue can significantly impact 

synthesis as adipose tissue expresses sex-steroid-metabolizing enzymes, including 

aromatase, which convert androgens into estrogens.65 Excess adipose tissue becomes a 

major site of estrogen production in obesity.66 In postmenopausal women, BMI is positively 

correlated with estrone, estradiol, and free estradiol.67 Elevation of estrogens is also detected 

in obese men;68,69 however, testosterone levels are significantly reduced.70 Circulating 

estrogens bind to one of two estrogen receptors (ER), ERα or ERβ. Once bound, receptors 

dimerize and translocate to the nucleus and bind to DNA or other transcription factors, 

influencing gene expression profiles that regulate growth, proliferation and differentiation.71 

In the context of cancer, the two receptors have differing roles. ERα is mitogenic and an 

established target in treatment of estrogen receptor-positive breast cancer, while ERβ is 

suggested to be tumor suppressive.72 Obesity and postmenopausal status increase risk of 

ER-positive breast cancers compared with ER-negative breast cancer.73 Due to the positive 

association between obesity, circulating estrogen and risk of ER-positive breast cancer, 

aromatase inhibitors and ER antagonist tamoxifen are effective treatment therapies.74 In 

addition to breast cancer,67,68,75 elevated estrogen levels are associated with increased risk 

of ovarian76 and endometrial cancers.77 In prostate cancer, sex hormone levels are associated 

with disease progression, not disease risk.78 Low levels of circulating testosterone correlates 

with aggressive disease progression.79 Moreover, sex hormones have been implicated in risk 

and/or progression of colorectal and lung cancers.80

2. Crown-Like Structures: Obesity drives subclinical inflammation in visceral and 

subcutaneous WAT, characterized by crown-like structures, or rings of activated 

macrophages surrounding engorged or necrotic adipocytes. This adipocyte-macrophage 

interaction results in a proinflammatory secretome from both cell types, activating the 

cellular transcription factor NF-kB, increasing levels of cytokines and other inflammatory 

factors, and triggering inflammation.81

3. Adipose Remodeling and Lipid Infiltration in Other Tissues: During low nutrient 

availability or increased energy needs, glucagon secretion stimulates lipolysis of adipocytes, 

releasing FFA into the blood stream.82 Circulating FFA can then be utilized by peripheral 

tissues, providing substrate for β-oxidation and serving as intermediates for energy 

production through TCA cycle and oxidative phosphorylation. Conversely, overnutrition 

remodels existing adipose tissue, expanding adipocyte number and size, and altering 

adipokine secretion, FFA flux, and adipocyte death.83 In response, adipose stromal cells 

modify their functions to promote clearance of necrotic adipocytes and generation of new 

adipocytes and vasculature. Chronic overnutrition or obesity-induced tissue remodeling, 
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results in sustained, low-grade inflammation and metabolic alterations.83 As stated above, 

cancer cells adapt to changing energy needs for proliferation through metabolic 

reprogramming, increasing anaerobic metabolism and shunting TCA cycle intermediates to 

synthetic pathways.10,84 Production of daughter cells demands increased levels of FFA for 

formation of lipid bilayers, thus excess WAT promotes proliferation of tumor cells through 

provision of circulating FFA85,86

When WAT depots reach capacity, excess lipids are deposited in organs such as the muscle, 

liver or pancreas, further complicating metabolism.87 Ectopic lipid intermediates exert 

lipotoxic effects, impairing cellular organelle functions, releasing inflammatory cytokines, 

and fostering development of insulin resistance.88 Consequently, individuals can develop 

muscle dysfunction and hepatic and pancreatic steatosis, all of which have been positively 

correlated with insulin resistance and impaired lipid metabolism.87

Nonalcoholic fatty liver disease, diagnosed as >5–10% liver fat content by weight in the 

absence of alcohol use or other liver disease, encompasses a variety of liver diseases 

including simple steatosis, nonalcoholic steatohepatitis (NASH) and cirrhosis.89 One of the 

most common chronic diseases,90–92 nonalcoholic fatty liver disease is present in 65–85% of 

obese patients89,93 with rapidly rising incidence among adults and children.91,94 Excess lipid 

accumulation in the liver, induces production of reactive oxygen species, activation of pro-

inflammatory programs, and endoplasmic reticular stress, impairing function of cellular 

organelles and potentially inducing hepatic cell death.95 Additionally, accumulation of lipids 

and pro-inflammatory cytokines promotes activation of intracellular kinases, leading to 

impaired insulin signaling and development of insulin resistance.96 While simple steatosis is 

benign, NASH is more detrimental, characterized by liver injury, inflammation and/or 

fibrosis. NASH can further result in the development of cirrhosis, liver failure, and 

hepatocellular carcinoma.97

Ectopic deposition of adipocytes in the pancreas is hypothesized to be a mechanism behind 

obesity-associated pancreatic dysfunction.98,99 Infiltrating fat in the pancreas has been 

associated with increased BMI, visceral WAT mass, insulin resistance and pancreatic 

exocrine dysfunction.98–101 These endocrine alterations further complicate the complex 

metabolic and inflammatory perturbations characterized in obesity and metabolic syndrome 

and can trigger the development of pancreatic steatosis, pancreatitis and/or nonalcoholic 

fatty pancreatic disease, all established risk factors for pancreatic cancer.100,101

Induction of Angiogenesis—As adipose tissue depots expand in obesity, the existing 

vasculature must expand to meet demand. This outgrowth of new blood vessels is termed 

angiogenesis. Key mediators of this process include VEGF and PAI-1. VEGF, a potent 

angiogenic factor that is produced by adipocytes and tumor cells, acts on endothelial cells 

stimulating mitogenic and vascular permeability-enhancing activities.102 Obesity is 

associated with increased circulating VEGF, and elevated VEGF correlates with poor 

prognosis for many obesity-related cancers.103 PAI-1, another angiogenic factor produced by 

adipocytes, endothelial cells, and stromal cells in visceral WAT,104 is frequently elevated in 

obese subjects. Increased circulating PAI-1 is associated with increased risk of other chronic 

diseases including CVD, T2DM and a number of cancers.104 While interaction of 
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angiogenic factors with proximal endothelial cells induce formation of local blood vessels, 

providing a route for oxygen and nutrient delivery and waste removal, these factors can also 

interact with peripheral tissues, facilitating angiogenesis, and potentially promoting 

progression at tumor sites. These newly formed blood vessels could provide primary tumor 

mass with oxygen and nutrients to sustain proliferation and survival as well as a route for 

metastasis to distant sites. PAI-1 functionally inhibits plasminogen activators, thus regulating 

extracellular matrix integrity.105 Extracellular matrix remodeling is a key feature of invasive 

disease, and integral in the development of metastatic lesions.106 Due to the antitumorigenic 

potential of factors that modulate angiogenesis, targeted drugs have been developed. 

However, caution should be advised in administration of anti-angiogenic treatments in obese 

patients, as these drugs can induce hypoxia in primary tumors, potentially encouraging 

metastasis, already a concern in the obese population.106

Elevation of these factors may also impact efficacy of treatment regimens, as excess 

circulating VEGF in obese patients contributes to reduced efficacy of anti-VEGF therapies 

(e.g. bevacizumab) compared with non-obese ovarian cancer patients.107

Emerging Mechanisms Linking Obesity and Cancer—Emerging research suggests 

other mechanisms including circadian rhythm108 and the microbiome109,110 influence the 

obesity-cancer link. Often referred to as the “body clock,” circadian rhythm regulates 

multiple physiological processes including secretion of key metabolic hormones leptin, 

adiponectin and insulin.111 Circadian rhythm has been linked to metabolic homeostasis, 

particularly lipogenic and adipogenic pathways, as well as cell cycle regulation. 

Consequently, disrupted circadian rhythm can lead to metabolic disorders, such as obesity,
112 and increase cancer risk and progression.108,112 Preclinical models describe circadian 

rhythm as energy responsive. Consumption of a high fat diet results in disruption of the 

circadian rhythm, while dietary restriction and fasting can reset the circadian clock and 

improve metabolic health.111

Gut microbiome, or the community of commensal, symbiotic and pathogenic 

microorganisms that inhabit an individual’s gut, influences a number of chronic diseases 

including obesity. Obesity changes composition113 and diversity114 of the microbiota, 

shifting towards populations with enhanced ability to harvest dietary energy. These 

alterations have been linked to elevated systemic inflammation.115 Broad spectrum 

antibiotics, which alter microbiota composition, can completely prevent systemic 

inflammation resultant from high-fat diet feeding.116 Through this influence on obesity-

induced inflammation, microbiota may contribute to the obesity-cancer link. While both of 

these fields are in their infancy, their existence highlights additional mechanisms that must 

be delineated to effectively understand and target the obesity-cancer link.

Dietary Interventions Targeting Obesity-Induced Alterations for Primary Cancer Prevention 
and Therapy

Given the multifaceted role of obesity in promoting a protumorigenic microenvironment that 

facilitates tumor development and progression, interventions are urgently needed to break 

the obesity-cancer link. To date, the only weight loss intervention in obese people 
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consistently associated with reduced cancer risk is bariatric surgery.117 In light of the 

expense and complications inherent in surgical weight loss approaches, current efforts are 

focusing on reducing adiposity through dietary interventions. To achieve reductions in 

weight and adiposity these interventions have aimed to 1) promote negative energy balance 

through reduced energy intake via either calorie restriction (CR) or intermittent fasting (IF) 

or 2) modulate macronutrient distributions via implementation of low-fat diet (LFD) or a 

high-fat, ketogenic diet (KD). Preclinical and some clinical studies suggest that these 

interventions can favorably and inversely modulate cancer risk biomarkers, as discussed 

below. Modulation of these biomarkers could result in downstream reductions in growth 

factor signaling, inflammation, and angiogenesis, attenuating cancer risk and progression 

(Figure 4).

Calorie Restriction—Calorie restriction (CR), defined as reduction of dietary energy 

intake without malnutrition, is broadly effective dietary intervention that significantly 

decreases adiposity. Preclinical models demonstrate 30% CR, compared with ad libitum-fed 

control, ameliorates risk factors and delays onset of cancer through metabolic alterations 

fostering increased insulin sensitivity and decreased serum glucose, serum triglycerides, 

growth factor signaling, inflammation, oxidative stress and angiogenesis.118–122 These 

metabolic changes translate into significantly decreased cancer incidence in murine models.
123 Due to long latency of cancer in humans, the literature does not have data linking CR 

directly with cancer incidence in humans. However, randomized control trials implementing 

long-term 20% CR in overweight human subjects have confirmed reduced adiposity, 

improved glucose homeostasis, increased adiponectin, and reduced leptin and inflammatory 

markers TNFα and C-reactive protein.124,125 Substantial weight loss of >10% may be 

necessary to consistently observe these benefits.126–128

Limited clinical studies exist on CR during cancer treatment. Direct application of CR in 

cancer patients is complicated by high rates of weight loss associated with cancer cachexia, 

a condition in which tumor-derived signals degrade muscle and adipose tissue. A recent trial 

combining CR and physical activity suggests presurgical weight loss is safe and feasible in 

prostate cancer patients.129 Moreover, preliminary clinical trials suggest that application of 

CR in combination with chemotherapy and/or radiation has potential to reduce risk 

biomarkers and increase responsiveness to treatment.130,131

Intermittent Fasting—Preclinical and clinical studies have begun to explore 

implementation of intermittent fasting (IF), which may be easier for most people to adopt 

and may have beneficial metabolic effects relative to chronic CR. Human trials most often 

study one of three IF regimens: alternate day fasting, alternate day energy restriction (~75%) 

or 2 consecutive days of 65% energy restriction, the latter often referred to as intermittent 

calorie restriction.132 Periods of IF stimulate reduced insulin and increased glucagon, 

resulting in increased lipolysis and fatty acid oxidation to provide alternate substrates for 

energy production. These metabolic alterations are accompanied by reductions in several 

cancer-related risk factors including reduced serum glucose, insulin resistance, 

inflammation, and circulating IGF-1.133 The impact of IF on angiogenesis in the context of 

cancer remains unexplored in currently published research. Preclinical studies with IF 
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consistently exhibit a cancer preventative effect with reduced rates of tumor growth for 

multiple cancer types including lymphoma,134 breast, lung, ovarian, hepatic, and pancreatic.
133,135,136 To our knowledge there is no published data on IF and cancer incidence in human 

subjects, although there are reports of favorable effects of IF in overweight humans, 

including improved adipokine ratios and reduced growth factor signaling and inflammatory 

markers,136,137 suggesting the reported preclinical anticancer effects of IF may be 

translatable to humans.

One IF regimen being examined as primary prevention strategy for breast cancer is the 5:2 

diet which involves 5 days/week of a healthy diet, such as the Mediterranean diet, with two 

consecutive days of a low calorie, low carbohydrate diet. The Mediterranean diet is 

primarily a plant-based diet high in fruits, vegetables, whole grains, legumes and nuts. 

Compared to North American dietary patterns, the Mediterranean diet has been associated 

with better control of body weight, reduction of cancer risk biomarkers and decreased cancer 

incidence.138–142 The diet results in favorable modulation of inflammation, oxidative stress, 

and growth factor signaling. Combining a Mediterranean diet with 2 days of a very low 

calorie, low carbohydrate diet for one month in 24 obese women at high risk for breast 

cancer induced changes in breast tissue gene expression and metabolites associated with 

reduced risk of breast cancer.143

Regarding the effects of IF on cancer prognosis, a study by Safdie, et al suggests IF during 

cancer therapy may decrease adverse effects of chemotherapy. Ten cancer patients of varying 

cancer types (four breast, two prostate, one ovarian, one uterine, one small cell carcinoma of 

the lung, and one esophageal adenocarcinoma) voluntarily fasted prior to (48–140 hours) or 

following (5–56 hours) chemotherapy treatment. Compared with non-restricted control 

subjects, fasting reduced chemotherapy-induced side effects including fatigue, weakness and 

gastrointestinal side effects while exhibiting the same chemotherapy-induced reduction in 

tumor volume or biomarkers.144 Following this ground breaking study, others have 

implemented IF in small scale clinical trials including de Groot, S., et al., 2015, where short 

term IF among stage II/III breast cancer patients was well tolerated, reduced signs of 

hematological toxicity and stimulated faster recovery from DNA damage in normal host 

peripheral blood mononuclear cells.145 Limited preclinical findings suggest that IF may 

selectively protect healthy cells and make cancer cells more vulnerable to chemotherapeutic 

agents, reducing side-effects and increasing drug efficacy.133 More research is needed to 

confirm these findings and identify underlying mechanisms.

Low-fat Diet—Numerous clinical studies have examined the effects of low-fat diet (LFD) 

interventions on cancer risk. Clinical trials with risk biomarker end points demonstrate that 

adherence to LFD over a two-year period resulted in normalization of glucose metabolism 

and reduction in growth factor signaling as well as favorable modulation of adipokine levels.
146 In the Women’s Health Initiative clinical trial, nearly 50,000 postmenopausal women 

were followed for an average of 8.1 years after random assignment to a LFD with high fruit, 

vegetable, and grain intake or a comparison group. Analyses of this study have indicated that 

a LFD does not decrease risk of invasive cancer.147,148 Further separated by cancer type, no 

decrease in invasive breast,149 colorectal,150 endometrial,147 or melanoma151 cancer risk 

was observed, but the diet intervention did decrease ovarian cancer risk.147 Other 
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randomized clinical trials have also demonstrated that LFD intake does not reduce breast 

cancer risk152 or adenoma recurrence,153,154 though a 35% decrease in the odds ratio was 

observed for “super compliers” in the latter trial.155

Researchers have also examined the impact of a LFD on cancer outcomes in several clinical 

trials, including the Women’s Health Initiative trial, which found a reduction in breast cancer 

mortality in the diet intervention group,156 but no decrease in total cancer mortality.148 The 

Women’s Intervention Nutrition Study further demonstrated that LFD significantly increases 

relapse-free survival in early-stage breast cancer patients, with greater effects seen in 

subjects with estrogen receptor negative tumors.157 However, the Women’s Healthy Eating 

and Living trial, which also enrolled early stage breast cancer patients, found no reduction in 

breast cancer recurrence or mortality with LFD,158 unless the analysis was limited to 

subjects without post-treatment hot flashes.159 Others have examined the effects of short-

term low-fat dietary interventions on biomarkers in prostate cancer patients, pre-radical 

prostatectomy. A low-fat, fish oil-supplemented diet decreased prostate cancer cell 

proliferation, though fish oil may be the primary mediator of this effect.160 In support of this 

hypothesis, proliferation rates were also significantly reduced in men on a flaxseed-

supplemented diet, but not in those that followed a LFD without flaxseed.161

High-fat, Ketogenic Diet—Ketogenic diet (KD) is a very-low carbohydrate diet with 

high fat and moderate protein composition. Low carbohydrate consumption reduces 

available glucose, a cancer cell’s preferred energy source, and increases catabolism of 

proteins and fats to provide gluconeogenic glucose and ketones. With prolonged 

consumption of KD, glycogen stores reach critical levels and the body is no longer able to 

oxidize fats to glucose via gluconeogenesis. This results in a shift to increased ketone 

production and physiological ketosis. Ketosis is not to be confused with ketoacidosis that is 

seen with diabetes mellitus. In ketosis there is less accumulation of ketones, as they are 

being used efficiently by the brain and body as an energy source, and individuals do not 

experience the adverse side effects associated with ketoacidosis.162 Ketosis from KD has 

been shown to favorably modulates many cancer risk biomarkers including serum glucose, 

triglycerides, IGF-1, leptin, adiponectin, inflammatory markers, and angiogenic factors.
163–167 Preclinical studies suggest that KD can attenuate these markers without a reduction 

in caloric intake; however, weight loss may be needed.168,169 KD may induce weight loss 

via several interrelated mechanisms, including: reduced appetite due to high protein intake, 

which can induce higher satiety, and high ketones, known to modulate appetite-regulating 

hormones; reduced caloric intake due to satiety; reduced lipogenesis and increased lipolysis; 

greater metabolic efficiency; and increased metabolic cost of gluconeogenesis and 

ketogenesis.162.

Beneficial effects of the ketogenic diet have long been established for epilepsy and T2DM; 

emerging is its role in primary cancer prevention and adjuvant treatment.162 Early preclinical 

studies found KD reduced tumor burden and cachexia in a mouse model of colon cancer.170 

Further preclinical models have confirmed these findings and extended benefits of decreased 

tumor growth and increased survival to other cancer types including malignant glioma, 

gastric and prostate cancers.171 To date results from clinical trials focused on 

implementation of KD in primary cancer prevention and treatment have been limited, and 
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ongoing clinical trials are beginning to address this gap in the literature with KD as adjuvant 

therapy in glioblastoma, pancreatic, head and neck, lung, and breast cancer patients.172 It is 

important to also consider potential adverse effects of KD. Select preclinical studies have 

found long-term KD to cause dyslipidemia, hepatic steatosis and glucose intolerance.173 

More research is needed to evaluate the safety and efficacy of ketogenic diets as primary 

cancer prevention and adjuvant treatment interventions.

Summary and Conclusions

A strong link between obesity and cancer risk and/or poor prognosis has been established in 

the epidemiological and preclinical literature. Several of the Hallmarks of Cancer are 

impacted by obesity-associated systemic alterations including obesity-associated metabolic 

reprogramming, dysregulated growth factor signaling, adipose tissue inflammation, and 

induction of angiogenesis. Establishment of this obesity-cancer link has spurred extensive 

research focused on implementation of different dietary interventions to attain weight loss, 

attenuate risk biomarkers, and prevent obesity-associated cancers. Preclinical and early 

clinical work on putative anticancer dietary interventions, including CR, IF, LFD and KD, 

are being evaluated, some showing promise in reducing cancer risk. Ongoing clinical trials 

are also evaluating utilization of these dietary interventions as adjuvant therapy (Table 1). 

Limited evidence from these trials suggests that CR, IF, and KD may improve response 

and/or reduce side effects of therapy. Future studies will need to focus on the safety and 

added benefit, beyond that of current therapies, and consider the potential of the dietary 

interventions to sensitize patients and improve therapeutic response to lower doses 

chemotherapy or radiation therapy.
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AMPK AMP kinase

BMI body mass index

BAT brown adipose tissue

CR calorie restriction

CVD cardiovascular disease

ER estrogen receptor

FFA free fatty acids

IGF-1 insulin-like growth factor-1
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IL interleukin

IF intermittent fasting

KD ketogenic diet

LFD low-fat diet

MCP-1 monocyte chemo-attractant protein-1

mTOR mammalian target of rapamycin

NASH non-alcoholic steatohepatitis

NFκB nuclear factor kappa-light-chain-enhancer of B cells

PAI-1 plasminogen activator inhibitor-1

PI3K phospatidylinositol-3 kinase

PPAR peroxisome proliferator-activated receptor

STAT signal transducer and activator of transcription

TCA tricarboxylic acid

TNF-α tumor necrosis factor-α

T2DM type II Diabetes

VEGF vascular endothelial growth factor

WAT white adipose tissue
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Research Snapshot

Research Question

What are the mechanisms through which obesity increases cancer risk and progression? 

Does implementation of dietary interventions attenuate obesity-associated cancer risk 

factors?

Key Findings

A traditional literature review revealed that obesity-associated metabolic perturbations 

are emerging as major drivers of obesity-related cancer including alterations in growth 

factor signaling, inflammation and angiogenesis. Preclinical evidence suggests that 

dietary interventions such as calorie restriction, intermittent fasting, and ketogenic diet 

have the potential to reverse some of these obesity-associated alterations; however, more 

clinical data is needed to confirm translation to human subjects.
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Figure 1. 
Obesity is associated with increased risk of developing and dying from the following 

cancers: breast (in postmenopausal women), ovarian, liver, gallbladder, kidney (renal cell), 

colon, pancreatic, gastric, esophageal (adenocarcinoma), endometrial, thyroid, multiple 

myeloma, and meningioma. In addition, obesity is associated with progression (but not 

incidence) of prostate cancer.
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Figure 2. 
Expansion of adipose tissue depots characteristic of obesity results in many metabolic 

disturbances including altered systemic metabolism and increased growth factor, 

inflammatory and angiogenic signaling. These obesity-associated perturbations foster a 

microenvironment favorable for tumorigenesis, facilitating many of the hallmarks of cancer 

and increasing disease risk and progression.
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Figure 3. 
The human body contains two types of adipocytes: white adipocytes (which have a 

unilocular lipid droplet) and brown adipocytes (which have many small lipid droplets). 

When engorged with triglyceride, white adipocytes secrete a number of factors that promote 

growth factor signaling and inflammation including leptin, resistin, insulin-like growth 

factor (IGF)-1, free fatty acids, tumor necrosis factor (TNF)-α and interleukin (IL)-6. 

Additionally, they reduce production of anti-inflammatory adiponectin. Brown adipocytes 

secrete several factors involved in thermogenesis, decreased inflammation, normalized 

insulin sensitivity and/or increased energy expenditure such as adiponectin, bone 

morphogenetic proteins, neuregulin-4, lactate, triiodothyronine (T3), retinaldehyde, and 

fibroblast growth factor (FGF)-21.
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Figure 4. 
Reductions in adiposity and weight attained from dietary interventions including caloric 

restriction (CR), intermittent fasting (IF), low-fat diet (LFD) and ketogenic diet (KD), have 

been shown to reduce adiposity and inversely modulate many of the same cancer risk 

biomarkers that are impacted by obesity and excess adiposity. Obesity-associated systemic 

alterations are reduced through these dietary interventions resulting in decreased circulating 

glucose, growth factor signaling, inflammation, and angiogenesis, attenuating cancer risk 

and progression. Metabolic alterations of CR and IF interventions have been associated with 

reduced cancer risk and progression. KD has not been linked to cancer risk in humans; 

however, it has been demonstrated that adherence to KD reduces cancer risk and progression 

in preclinical studies. Evidenced is mixed concerning implementation of a LFD, exhibiting 

little to no reduction in cancer risk and progression.
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