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Abstract

Increasing evidence has pointed to that dysregulation of the endo-lysosomal system is an early 

cellular phenotype of pathogenesis for Alzheimer’s disease (AD). Rab5, a small GTPase, plays a 

critical role in mediating these processes. Abnormal overactivation of Rab5 has been observed in 

post-mortem brain samples of Alzheimer’s patients as well as brain samples of mouse models of 

AD. Recent genome-wide association studies of Alzheimer’s disease have identified RIN3 (Ras 

and Rab Interactor 3) as a novel risk factor for the disease. RIN3 that functions as a guanine 

nucleotide exchange factor for Rab5 may serve as an important activator for Rab5 in AD 

pathogenesis. In the review, we present recent research highlights on the possible roles of 

dysregulation of Rab5-mediated endocytic pathways in contributing to early pathogenesis of 

Alzheimer’s disease.
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Introduction

Genetic complexity of Alzheimer’s disease

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that often results in 

memory loss and cognitive impairment1–9. The classical neuropathological hallmarks for 

AD include: 1) Aβ-amyloid-containing neuritic plaques and 2) phosphorylated Tau-

containing neurofibrillary tangles (NFT)2,3,10,11. The clinical phase of AD is also marked 

significantly by synaptic loss, selective neuronal death, neurotransmitter loss, and 

neuroinflammation1,3,4,6,8,10,11. At present, there are no disease-modifying treatments for 

this fatal illness. As of today, mutations in three genes: amyloid precursor protein (APP), 

presenilin (PS)1 and PS2, have all been linked to early onset of AD (EOAD)12–15, which 

only account for a very small number of AD cases. Extensive investigation of these 

mutations have helped to formulate the Aβ-amyloid hypothesis1,16, positing that small Aβ-

amyloid peptides (Aβ40/42) underlie the pathogenesis of AD. This has led to many clinical 

trials that use approaches (inhibitors, antibodies etc.) to target and to reduce the buildup of 

toxic Aβ-amyloid peptides. Unfortunately, the anti-amyloid-based treatments have all failed 

in clinical trials thus far17,18. Similarly, intensive efforts have also been made to develop 

inhibitors to prevent aggregation of Tau-containing neurofibrillary tangles. However, these 

efforts have also failed in recent clinical trials19. Nevertheless, studies of these hereditary 

mutations in APP, PS1/2 have helped to gain a greater understanding of the molecular 

pathogenesis of AD.

One of the most important lessons we have learned from these failed clinical efforts is that 

the cause(s) for AD is far more complex than we originally anticipated11. For example, the 

incidence of late-onset AD (LOAD) accounts for the majority cases of AD and the cause(s) 

for LOAD is far from clear in comparison to that for EOAD. In 2009, apolipoprotein E 

(APOE) that plays an important role in lipid transport, Aβ trafficking, synaptic function, 

immune regulation, and intracellular signaling20, was identified as an established risk factor 

for LOAD21. More recently, large scale genome-wide association studies (GWAS) and a 

meta-analysis have identified significant associations between LOAD with SNPs in ~20 

additional loci including CLU, CR1, PICALM, BIN1, ABCA7, MS4A4, EPHA1, CD2AP, 
CD33, INPP5D, MEF2C, HLA-DRB1/HLA-DRB5, NME8, ZCWPW1, PTK2B, SORL1, 
CELF1, SLC24A4/RIN3, FERMT2 and CASS422–27. Identification of these additional risk 

factors highlights the extraordinary genetic complexity of AD.

Dysfunction for the endocytic pathways contributes to early AD pathogenesis

A significant number of the newly identified AD risk loci (PICALM, BIN1, EPHA1, 

CD2AP, MEF2C, PTK2B, SORL1 and RIN3) that encode products that function 

predominantly in endocytic trafficking10. For instance, PICALM (phosphatidylinositol 

binding clathrin assembly protein), whose expression is reduced in AD28–30, plays a central 

role in internalization, trafficking and clearance of Aβ via the low density lipoprotein 

receptor related protein-1 and Rab proteins (Rab5, Rab11)29,31,32; Expression of the longest 

isoform of bridging integrator 1 (BIN1), an adaptor protein that functions in clathrin-

mediated endocytosis and endocytic recycling, was significantly increased in the AD brains 

compared to age-matched controls33,34. Furthermore, BIN1 is significantly correlated with 
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the amount of pTau-containing NFT pathology34 and has been implicated in modulating 

Tau-associated neuronal toxicity34–36. The sortilin-related receptor 1 (SORL1) regulates 

intracellular trafficking and processing of APP37–40. In the absence or reduced expression of 

SORL1, APP is released into late endosomal pathway, where it is subjected to both β- and 

γ-secretase cleavage, thus driving Aβ production41,42. Mutations in SORL1 have been 

associated with both EOAD and LOAD43,44. In addition, APOE and CLU (Clusterin) both 

influence Aβ-aggregation and receptor-mediated Aβ clearance by endocytosis20,45,46. 

Although each of these genes confers only an incremental risk to AD, together they may 

play a significant role in altering endocytic processes, such as internalization, endocytic 

trafficking and signaling, that ultimately contributes to molecular pathogenesis of LOAD47.

Endocytic trafficking and amyloidogenic processing of APP

Neurons with the most extraordinary architecture have elaborate dendrites and axons, so it is 

not surprising that strong evidence has suggested that these early endocytic processes are 

dysregulated in AD48–51 and in AD cases of people with Down syndrome52. For instance, 

amyloidogenic cleavage of APP to yield Aβ likely occurs predominantly in the intracellular 

compartments53–58. Under normal conditions, the early endosome, marked by Rab5, is a 

major site of APP processing by β-secretase (BACE1) to yield the β-cleavage C-terminal 

fragment (β-CTFs)59–62, which is further processed in late endosomes or trans-Golgi 

network (TGN) to give rise to Aβ. Therefore, APP metabolism that produces toxic β-CTFs 

and Aβ is intimately regulated by the endocytic pathways48–51,63–68. Dysregulation of Rab5 

can thus profoundly impact APP processing and Aβ production. In AD, abnormal 

enlargement of Rab5-positive early endosomes is not only characteristic, it is early; it was 

observed in non-demented individuals who were diagnosed postmortem as fulfilling the 

pathological diagnosis of sporadic AD48. Interestingly, endosomal pathology was detected in 

brain regions that were free of Aβ or pTau pathology48,69, suggesting that early endosomal 

abnormalities precede not only the onset of dementia but also the emergence of plaques and 

tangles.

Axonal toxicity of APP β-CTFs and pTau

Although neuronal toxicities by β-CTF or C99 have been observed for quite some time70–73, 

little is known about the underlying cellular mechanism(s). Recent evidence has pointed to a 

strong adverse impact of β-CTF on synaptic plasticity and neuronal function. The effect 

appears to be independent of Aβ, but is intimately linked to early cellular pathology in 

AD55,60,73–80. Intra-neuronal accumulation of excessive β-CTFs likely contributed to 

worsening cognitive function in AD patients in failed clinical trials of γ-secretase 

inhibitors17,18,74,78,79. We and others have recently demonstrated that excessive β-CTFs 

increased the level of activated Rab5, i.e. GTP-Rab5, impaired retrograde axonal delivery of 

endosomes or trophic factors that resulted in neuronal atrophy79–81.

Moreover, a recent study has demonstrated that pathogenic tau species, phorsphorylated tau 

(pTau) is also impacted by endocytic trafficking and by APP processing82. Using human-

stem-cell-derived forebrain neurons, Moore and colleagues have shown that APP mutations 

and increased gene dosage of APP caused marked increase in both total Tau and 

phosphorylated Tau in these AD neurons82. They further demonstrated that γ-secretase 
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inhibition that resulted in accumulation of APP- β-CTF/α-CTF led to an increase in tau, 

while treatment with inhibitors of β-secretase decreased Tau82. Therefore, intracellular 

trafficking and processing of APP impacts tau proteostasis as well. Since disruption of tau 

homeostasis has been implicated in disrupting axonal function19,35,36,83–87, the link between 

β-CTF and Rab5 dysregulation, and between endosomal dysfunction and pTau thus warrants 

further investigation. RIN3, the Ras and Rab interactor 3, a stimulator and stabilizer for 

GTP-Rab588,89 identified in recent GWAS studies22,24,25, may fill an important gap linking 

β-CTF to Rab5 dysregulation in AD.

Dysregulation of Rab5 in Alzheimer’s disease

Rab5 is a small GTPase that cycles between an inactivate GDP-bound form and an active 

GTP-bound form for its biological functions90–94. Activation of Rab5 requires guanine-

nucleotide exchange factors (GEFs) such as RIN390,94. Inactivation of Rab5 is under the 

control of GTP-hydrolysis-activating proteins (GAPs)95 due to a low intrinsic rate of GTP 

hydrolysis by Rab5 itself. It is under the dual control by both GEFs and GAPs, and Rab5 

regulates early steps of endocytosis, ensuing endosomal membrane trafficking, sorting and 

endosomal fusion90–92,94,96.

Through interaction with numerous effectors such as: APPL1/2 [adaptor protein containing 

pleckstrin homology (PH) domain, phosphotyrosine binding (PTB) domain and leucine 

zipper motif 1]97, Rabaptin-5/Rabex-5, early endosome antigen 1 (EEA1), 

phosphatidylinositol 3-kinases98–102, Rab5 contributes importantly to cellular homeostasis. 

These effector proteins specifically bind to the activated form of Rab5, i.e. the GTP-bound 

form (GTP-Rab5) and regulates tethering and fusion of the early endosomes99,103–106. 

Therefore, Rab5 plays a critical role in docking of endosomal membranes, and motility of 

endosomes and intracellular signal transduction91,92,107.

Sustained activation of Rab5 will result its interaction with the class C VPS/HOPS complex, 

an established GEF for Rab7108 residing on late endosomes, thus leading to conversion from 

Rab5+ early endosomes to Rab7+-late endosomes for degradation. Therefore, the timing and 

duration of Rab5 in GTP-bound form is tightly regulated to ensure a smooth transition from 

early to late endosomes. This is especially important for axonal neurotrophic signals. 

Extensive studies have demonstrated that neurotrophic factors such as nerve growth factor 

(NGF) binds to their Trk receptor to be internalized into Rab5+ signaling endosomes that 

carry important downstream signaling machineries such as Erk, PI3K, PLCγ for axonal 

transport to deliver the trophic signals to the soma and nucleus109–114. An intriguing 

question is how the signaling endosome is retained as Rab5+ early endosomes, but not 

progress to Rab7+ late endosomes, during their transit within the long axons. Work from the 

laboratory of Dr. G. Li has shed lights into the potential mechanisms115. As it turns out, 

following activation by NGF, TrkA recruits a Rab5-GAP to quickly convert GTP-Rab5 to 

GDP-Rab5 to keep the level of GTP-Rab5 in check, thus preventing the Rab5 to Rab7 

conversion. As a result, the NGF/TrkA signaling endosomes is prohibited from premature 

degradation115.

Given the important roles played by Rab5 in retrograde endosomal sorting and trafficking, it 

is not surprising that recent studies have demonstrated that the function and activity of Rab5 
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is compromised in early phases of Alzheimer’s disease49,50,64,80,81,92,93,116, as well as in 

mouse models of Parkinson’s disease117,118. Persistent hyperactivation of Rab5 upsets other 

endocytic pathways such as late endosomes, lysosomes and autophagy, processes that have 

all been found to be altered in AD48,51,63,119,120. An important consequence of these 

changes under the pathological condition results in premature degradation of the 

neurotrophic factor signaling, thus effectively preventing the delivery of retrograde trophic 

signals to the soma/nucleus, leading to neuronal atrophy. This is indeed the case for early 

degeneration of basal forebrain cholinergic neurons in Down syndrome111,113.

Dysfunction of retromers has also been implicated in AD62,121,122. Retromer is a protein 

complex that mediates endosome-to-Golgi transport. The levels of Vps35 and Vps26, two 

key retromer proteins, were significantly reduced in the entorhinal cortex of AD 

patients62,121. Vps26 binds to a hexapeptide motif (FANSHY) in the cytoplasmic tail of the 

sorting receptor SorLA (aka SORL1 or LR11)123,124. SorLA is a neuronal sorting protein 

that directs trafficking of APP also from endosomes to the Golgi123,124. It is thus 

conceivable that reduced levels of SorLA in conjunction with dysfunctional retromer would 

exacerbate the deficit of APP trafficking from endosomes to Golgi, resulting in 

accumulation of APP in endosomes. It is within the endosomal compartments enriched with 

proteolytic enzymes, APP is processed by β-secretase to drive production of β-CTF and 

Aβ62,122–124.

In addition to Rab5 containing-early endosomes, the recycling endosomal pathways 

mediated by Rab4/Rab11 that regulate intracellular sorting, trafficking and processing of 

APP has been found to be altered as well in AD125. Accumulation of APP β-CTF has been 

shown to impair a key neuronal specific soma-to-axon transcytosis pathway126,127. Using 

induced pluripotent stem cell (iPSC)-derived human neurons with familiar AD mutations in 

PS1 (presenilin 1) and APP, a recent study from Dr. L. Goldstein’s laboratory has 

demonstrated that subcellular distribution and trafficking of APP was altered in these 

neurons126; the level of APP was increased in the soma while APP in the axons was 

significantly reduced, a pattern closely reminiscent the distribution of Rab11 in these 

neurons126. Furthermore, knocking down Rab11 induced a similar defect in soma-to-axon 

transcytosis of APP in isogenic control neurons126. These studies have demonstrated that 

Rab11 plays a key role in the neuronal soma-to-axon transcytosis and dysfunction of Rab11 

may also contribute to the early phase of AD pathogenesis.

Increased APP and its β-CTF leads to enlargement of Rab5+ early endosomes

One of the earliest neuronal pathologies of AD is endosomal dysfunction, that was observed 

in AD patients prior to the deposition of any extracellular β-amyloid (Aβ)128–130. In 

addition, patients with Down Syndrome (DS), who are known to develop AD pathology 

after the age of 40, also show these same endosomal abnormalities as early as 28 weeks of 

gestation111,128. These findings suggest that neurons become compromised intracellularly 

well before any plaque formation or tau accumulation occurs in the brain. Endosomal 

alterations reported in these two neurological disorders include increased endocytosis and 

enlarged early endosomes that contain the early endosomal protein Rab5129–132. Studies 

have also provided evidence that the cellular level of amyloid precursor protein (APP) is 
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linked to Rab5 containing early endosomal abnormalities111,128–132. APP, which is 

triplicated in DS and is one of the main proteins implicated in AD, is a transmembrane 

protein which is cleaved first by β- or α-secretase producing the corresponding APP C-

terminal fragments: β-CTF or α-CTF. Cleavage by γ-secretase then produces the APP 

intracellular domain (AICD) and generates the Aβ peptides. Of these, several APP gene 

products and processed fragments, the full-length APP and β-CTF, have been shown to play 

a direct role in the early endosomal pathologies seen in AD and DS110,128,131,132. Recently, 

we shown that excessive full-length APP, APP mutants and APP β-CTFs, but not APP α-

CTFs or AICD, could elevate the Rab5 activity and induce the enlargement of early 

endosome in both PC12M cell and primary basal forebrain cholinergic neurons (BFCNs)80, 

which degenerates early in AD113,133–138. Importantly, APP β-CTFs induced neuronal 

atrophy in cultured rat E18 BFCNs and these effects by APP β-CTFs were rescued by a 

dominant-negative Rab5 mutant in vitro in cultured BFCNs as well as in a fly model of 

AD80. Therefore, consistent with studies from Dr. Nixon’s group81, these studies have 

demonstrated a role played by APP β-CTFs in mediating cellular toxicity by accumulation 

of toxic APP products.

APP/β-CTF acts through Rab5 to impair retrograde axonal trafficking of nerve growth 
factor leading to neuronal atrophy

NGF is a target-derived neurotrophic factor that acts through its surface TrkA receptor to 

support the survival, differentiation, and maintenance of BFCNs139,140. NGF signaling 

regulates expression of genes and cellular programs important for the BFCN phenotype, 

including cell size113,140. Following endocytosis, the NGF/TrkA signaling complexes are 

trafficked to Rab5+ early endosomes109,114. The “signaling endosomes”, as depicted in 

Figure 1, are then transported in a retrograde direction to the corresponding cell bodies to 

transmit NGF trophic signals139,140. Thus, axonal trafficking mediated by Rab5+ early 

endosomes plays a critical role in maintaining the trophic status of BFCNs. Any alteration in 

these aspects could potentially disrupt axonal transport, resulting in neurodegenerative 

disorders. Recently, our group together with Dr. Nixon’s laboratory found that APP β-CTF 

act though increased activation of Rab5 to cause enlargement of early endosomes79–81. 

Consequently, retrograde axonal trafficking and signaling of NGF in BFCNs or brain-

derived neurotrophic factor in cortical neurons is reduced through increasing pauses79,80. 

Importantly, disruption of retrograde axonal trafficking of NGF signals results in trophic 

deficits in BFCNs, leading to neuronal atrophy80. Importantly, we have demonstrated that 

axonal transport deficits and neuronal atrophy can be rescued through the expression of a 

dominant negative Rab5 mutant, both in BFCN neurons as well as in a fly model of AD80. 

These studies have further confirmed the contribution of hyperactivated Rab5 to axonal 

transport deficits and neuronal atrophy in AD79–81.

Based on our studies, we propose the following model to explain how NGF-TrkA signaling 

transport is impacted in the presence of APP β-CTF through increased activation of Rab5. In 

normal BFCNs (Figure 2A), NGF binds to and activates TrkA at the axonal terminals. The 

NGF-TrkA signaling complex undergoes endocytosis and is internalized into the cell 

cytoplasm to form Rab5+ signaling endosomes. The signaling endosomes are transported in 

a retrograde direction along the microtubule toward the cell body to propagate the growth 
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and differentiation signals to the nucleus. The NGF/TrkA machinery is then attenuated in the 

cell body in late endosomes and lysosomes.

However, under pathogenic conditions, BFCNs are loaded with excessive APP and APP β-

CTF (Figure 2B), which in turn results in an increase in the level of GTP-Rab5 leading to 

sustained activation of Rab5. Overactivation of Rab5 induces the enlargement of early 

endosomes that impair endocytic trafficking of APP, further exacerbating its processing. In 

addition, abnormally enlarged early endosomes may interfere with retrograde axonal 

transport of NGF signals. Additionally, increased Rab5 activity may also impact motor 

proteins to impair axonal transport. The net effect of all these aspects of APP and APP β-

CTF will be reduced trophic signals being delivered to the soma, which will lead to neuronal 

atrophy111,113.

The missing link between APP/β-CTF and Rab5 activation

1: RIN3—Recent GWAS studies have identified RIN3 as a risk factor for AD. RIN3, a 

guanidine nucleotide exchange factor (GEF) for selective members of the Rab5 family 

(Rab5, Rab21, Rab22, Rab24 and Rab31)88,89, functions as the stimulator and stabilizer for 

GTP-Rab588,89. RIN3 has a Src homology 2 (SH2) domain, a proline rich domain (PRD), a 

RIN-homology (RH) domain, a Vps9 (vacuolar protein sorting-associated protein 9) 

conserved in the catalytic domains of the Rab5 GEFs (Vps9p, Rabex-5 etc.) and a Ras-

association (RA) domain (Figure 3A)88. It is possible that increased activity of RIN3 is 

responsible for the increase in the level of GTP-Rab5, that results in early endosomal 

abnormalities and axonopathy, leading to neuronal degeneration in AD. However, it remains 

to be defined: 1) if and how the function and expression of RIN3 is altered in AD; 2) if and 

how the activity of RIN3 is impacted by APP and APP β-CTF that results in hyperactivation 

of Rab5; and 3) whether or not Rab5 GEFs other than RIN3 also play a role in increased 

Rab5 activation in AD.

2. APPL1—In addition to RIN3, APPL1 (adaptor protein, phosphotyrosine interacting with 

pleckstrin homology domain and leucine zipper 1), an Rab5 effector (Figure 3B), has been 

shown to link APP β-CTF to Rab5 overactivation in AD and Down syndrome81. In a recent 

study, Dr. Nixon’s laboratory has elegantly demonstrated that both APPL1 and β-CTF are 

increased in AD and that β-CTF binds to the YENPTY domain to the PTB domain of 

APPL1 and recruits APPL1 to Rab5 endosomes81. They have demonstrated that the 

increased presence of APPL1 to Rab5 endosomes leads to stabilization of active GTP-Rab5, 

which contributes to endocytic dysfunction e.g. pathologically accelerated endocytosis, 

abnormal enlargement of endosomes and impaired axonal transport of Rab5 endosomes81. 

Importantly, these endocytic defects in fibroblasts from Down syndrome were rescued by 

knocking down APPL1. Therefore, APPL1 represents an important adaptor that links APP 

β-CTF to hyperactivation of Rab5 and to endosomal dysfunction in AD and Down 

syndrome. However, this novel APPL1-dependent pathogenic pathway in AD will need to be 

further validated.
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Dysregulation of Rab5 in Parkinson’s disease

In addition to AD, recent studies have also pointed to that Rab5-mediated endocytic 

functions are impacted in Parkinson's disease (PD), for which α-synuclein aggregates, a 

major component of Lewy bodies (LBs) and associated Lewy neurites (LNs)141,142, play a 

central role in the pathogenesis of the disease. The presence of α-synuclein aggregates 

significantly impacts intracellular vesicular trafficking by Rab proteins58,143. Conversely, 

these Rab proteins appear to modulate the protein level, aggregation, spreading and also 

toxicity of α-synuclein143. For example, Rab5A-mediated endocytosis of α-synuclein was 

found to be correlated with the neuronal cell death and with the that subsequently caused the 

formation of Lewy body-like intracytoplasmic inclusions144. Importantly, expression of a 

GTPase-deficient Rab5A mutant reduced endocytosis of α-synuclein and abrogated its 

cytotoxicity144. Using an APP transgenic mouse model of Alzheimer’s disease, a recent 

study found that reducing endogenous α-synuclein restored the levels of Rab3a and Rab5 

proteins58. In our recent study, we have observed increased expression of α-synuclein 

interacts with dynein motor and induces endosomal dysfunction by enhancing the level of 

activated Rab proteins (Rab5, Rab7), and hyperactivated Rab5 in a PD mouse model 

overexpressing wildtype α-synuclein. And all this may contribute to the impairment of 

retrograde axonal transport of BDNF and neuronal atrophy145.

Possible interplays between Rab5 activation and PICALM, BIN1 in AD pathogenesis

Increasing evidence has pointed to the disturbance of Rab5-mediated endocytic pathways 

possibly playing a critical role in early cellular pathogenesis of AD and other 

neurodegenerative disorders such as PD. It remains unclear how these Rab5-mediated 

pathways interact with the GWAS hits (PICALM, BIN1, CD2AP, EPHA1, and SORL1), that 

also function at various stages of endocytosis10,11, to impact pathogenesis in LOAD. We 

have just begun to understand how these GWAS hits impact endocytic pathways, potentially 

leading to neurodegeneration in AD. For example, PICALM28,29,31,32 and BIN134–36 both 

function in clathrin-mediated endocytosis. Yet, the level of PICALM was reduced in LOAD 

patients10,11, while BIN1 expression was increased in the brain of AD patients who carry 

high-risk polymorphisms upstream of BIN135,45. Although PICALM has been suggested to 

promote APP processing and increase Aβ production in neurons, it is possible that PICALM 

plays a more important role in Aβ clearance from the brain by facilitating internalization of 

Aβ into endothelial cells and consequently releasing it to the bloodstream146. Since 

expression of PICALM is much higher in endothelial cells than in neurons147, reduced levels 

of PICALM may therefore impair Aβ clearance more that Aβ production in LOAD patients. 

Increased accumulation of extracellular Aβ will undoubtedly upset the Rab5 endocytic 

pathways in neurons to impact their well-being52. This may explain why a minor PICALM 

allele (rs3851179 SNP), associated with increased expression of PICALM, is protective 

against AD likely by increasing clearance of extracellular Aβ to reduce its toxicity on 

neurons28. On the other hand, although the pathogenic mechanism of BIN1 is presently 

unknown, one can speculate that elevated level of BIN1 in LOAD patients34–36,45 increase 

endocytosis and promote Aβ production in neurons35, which in turn may induce activation 

of Rab5 to impair trafficking and signaling of neurotrophic factors52.
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Conclusion

AD is an extremely complex disease that involves many different cell types, factors and 

pathways. These different components may act independently or work in tandem to 

contribute AD pathogenesis. It has become increasingly clear that homeostasis of endocytic 

sorting, trafficking and signaling, that is critical for maintaining neuronal function, is 

disrupted in AD. Those AD risk factors discovered in GWAS studies that target the 

endocytic pathways may act alone or work in tandem to impair the normal function and 

process of the endocytic pathways. Delineating the interplays among these factors and 

pathways will not only enhance our understanding of the mechanisms responsible for 

neurodegeneration in AD and other diseases, but also will facilitate the discovery of novel 

target for developing treatment strategies for these disorders.
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A brief synopsis statement

Dysregulation of the endo-lysosomal system has emerged as one of the early cellular 

pathologies for Alzheimer’s disease (AD). Rab5 is a small GTPase that plays a critical 

role in mediating internalization and endocytic trafficking. Recent studies have 

demonstrated Rab5 is hyper-activated and Rab5+ early endosomes are found to be 

abnormally enlarged in post-mortem brain of AD patients and in mouse models of AD. In 

the review, we will summarize recent research findings linking Rab5 dysfunction to AD 

pathogenesis.
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Figure 1. 
A simplified depiction of an NGF signaling endosome showing that NGF binds to TrkA that 

activates the Erk, PI3K and PLCγ signaling cascades. In addition, APP/APP βCTF may act 

through RIN3 or APPL1 to activate Rab5. The dynein motor protein complex is also 

required to drive the retrograde axonal transport of the NGF signaling endosome.
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Figure 2. 
Proposed models for retrograde axonal transport function of NGF signaling endosomes in 

normal neurons (A) and under conditions of excess APP or APP βCTF (B). Please see the 

text for a detailed description.
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Figure 3. 
Domain structures of RIN3 (A) and APPL1 (B). A: RIN3 is consisted of a SH2 domain (a 

Src homology 2 domain), a proline rich domain (PRD), a RIN-homology domain (RH), a 

Vsp9 domain [vacuolar protein sorting-associated protein 9 domain that is conserved in the 

catalytic domains of the Rab5 GEFs (Vps9p, Rabex-5 etc.)], and a Ras-association domain 

(RA)88,89. B: APPLI contains a BAR (Bin/Amphiphysin/Rvs) domain, a PH (pleckstrin 

homology) domain and a PTB (phosphotyrosine-binding) domain148.
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