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Abstract

The rapid emergence of Gram-negative ‘superbugs’ has become a significant threat to human
health globally and polymyxins become a last-line therapy for these very problematic pathogens.
Polymyxins exhibit their antibacterial killing by the initial interaction with lipid A in Gram-
negative bacteria. Polymyxin resistance can be mediated by phosphoethanolamine (PEA)
modification of lipid A that abolishes the initial electrostatic interaction with polymyxins. Both
chromosome-encoded (e.g. EptA, EptB and EptC) and plasmid-encoded PEA transferases (e.g.
MCR-1 and MCR-2) were reported in Gram-negative bacteria; however, their sequence and
functional heterogeneity remain unclear. Here, we report a comparative analysis of PEA
transferases across ten clinically relevant Gram-negative bacteria species using multiple sequence
alignment and phylogenetic analysis. Our results show that the pairwise identities among
chromosome-mediated EptA, EptB and EptC from E. coliare low, and EptA shows the highest
similarity with MCR-1/2. Among PEA transferases from representative strains of ten clinically
relevant species, the catalytic domain is more conserved compared to the transmembrane domain.
Particularly, PEA acceptor sites and zinc binding pockets show high conservation among different
species, indicating their potential importance for PEA transferase function. The evolutionary
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relationship of MCR-1/2 and EptA from ten selected bacterial species was evaluated by
phylogenetic analysis. Cluster analysis illustrates that 325 EptA from 275 strains of ten species
within each individual species are highly conserved, whereas the inter-species conservation is low.
Our comparative analysis provides key bioinformatic information to better understand the
mechanism of polymyxin resistance via PEA modification of lipid A.
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1. Introduction

The ‘ESKAPE’ pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.)
have presented a significant threat to the global public health [1]. These ‘superbugs’ can
cause life-threatening nosocomial infections and most of them are multidrug-resistant
(MDR) [2]. The rapid evolution and dissemination of antibiotic resistance among pathogenic
bacteria are outpacing the discovery and development of novel antibiotics [3]. Polymyxins
(e.g. polymyxin B and colistin) display promising bactericidal activity against the vast
majority of Gram-negative bacteria, and are the last-resort antibiotics to treat infections of
MDR Gram-negative pathogens [4]. However, along with the extensive use of polymyxins,
in particular in the agriculture sector, the concern of potential rapid spread of polymyxin
resistance has been raised [5]. Alarmingly, the accumulation of reports on plasmid-borne
mcrgenes (e.g. mer-1and mer-2encoding PEA transferases MCR-1/2) indicates the
potential for rapid dissemination of polymyxin resistance [6, 7]. Serious infections caused
by polymyxin-resistant ‘superbugs’ are very likely untreatable due to resistance to all
currently available antibiotics.

The detailed mechanism of antibacterial activity of polymyxins is unknown. Our current
understanding involves the initial interaction of polymyxins with lipid A of Gram-negative
bacteria, permeabilising the outer and inner membranes, and resulting in cell death [8].
Several other mechanisms have been proposed, such as ribosome binding [9], prevention of
cell division [10], and inhibition of bacterial respiration [11]. Bacteria have developed a
variety of polymyxin resistance mechanisms, including intrinsic resistance and acquired
resistance. For instance, Proteus mirabilis, Serratia marcescens and Burkholderia cepacia are
naturally resistant to polymyxins [12]; whereas some strains from P aeruginosa, A.
baumannii and K. pneumoniae can develop resistance in response to cationic antimicrobial
peptides (including polymyxins) [13]. The mechanisms of acquired polymyxin resistance
include lipopolysaccharide (LPS) modifications to reduce its net negative charge [14],
increased drug efflux [15], and loss or functional inactivation of porins [16]. The most well
studied resistance mechanism thus far is via modifications of the lipid A moiety of LPS [17].
The initial binding of polymyxins on lipid A mainly depends on the electrostatic interaction
between positively charged diaminobutyric acid (Dab) residues of polymyxins and the
negatively charged phosphate groups on lipid A in the outer leaflet of the bacterial outer
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membrane [18]. Addition of positively charged chemical residues (e.g.
phosphoethanolamine [PEA] and 4-amino-4-deoxy-L-arabinose [L-Ara4N]) to lipid A
abolishes the interaction with polymyxins, and causes the development of resistance.

Recently, mcr-1 and mcr-2were discovered on plasmids in Escherichia coli, Salmonella
entericaand K. pneumoniae [19]. Both mcrgenes encode PEA transferases (MCR-1/2) that
catalyse the addition of phosphoethanolamine to a phosphate of lipid A in
Enterobacteriaceae. In several Gram-negative bacteria such as Neisseria meningitides and A.
baumannii, chromosome-encoded EptA (formerly known as PmrC) is responsible for the
modification of lipid A with PEA [19]. In addition to lipid A PEA transferases, many Gram-
negative bacteria have modifications on different sites of LPS that are catalysed by different
PEA transferases [20]. EptB and EptC (CptA) can modify the 3-deoxy-d-manno-oct-2-
ulosonate (Kdo I1) of the inner core and the O-6 of L-glycero-D-manoheptose | of the LPS,
respectively [21]. Among these enzymes, EptA, EptB and EptC are chromosome-mediated
PEA transferases; while MCR-1 and MCR-2 are plasmid-mediated, potentially enabling the
resistance widespread via horizontal gene transfer. There is lack of conservation and
evolutionary investigations on different types of PEA transferases across multiple Gram-
negative bacterial species. Here we conducted a computational study of PEA transferases
associated with polymyxin resistance across clinically relevant Gram-negative species. This
study provides key mechanistic information on polymyxin resistance due to the LPS
modification by PEA transferases across multiple Gram-negative bacteria.

2. Material and Methods

2.1. Selection of Gram-negative bacteria and collection of PEA transferase sequences

To cover a wide range of Gram-negative bacteria (including intrinsically polymyxin-resistant
and polymyxin-susceptible), ten clinically relevant species with PEA-modified LPS were
selected, including N. meningitides, Neisseria gonorrhoeae, E. coli, Shigella flexneri, S.
enterica, K. pneumoniae, P. aeruginosa, A. baumannii, Vibrio cholerae and Helicobacter
pylori. Table 1 provides additional information on the selected bacteria and their
representative strains (collected based on the annotations from NCBI Genome Database)
which were ranked based upon their taxonomic order. The noted pathogenicity and
polymyxin MICs of the representative strains were extracted from the literature. All types of
PEA transferases (i.e. EptA, EptB, EptC, MCR-1 and MCR-2) were retrieved from NCBI
RefSeq database [22] and/or KEGG Orthology database [23]. Appendix Text S1 provides
the list of selected strains of each species and their full-length EptA sequences in the FASTA
format.

2.2. Multiple sequence alignment

We employed Clustal Omega [24] for multiple sequence alignment (MSA) and the
conservation among different PEA transferases was examined based on protein sequences.
Parameters used for performing MSA were set by default of Clustal Omega. To enhance the
visualisation of the MSA, Jalview [25] was utilised to highlight the conserved sequence
motifs and key amino acids. To explore the sequence conservation of PEA transferases
which have different active sites on LPS, we first performed the MSA of 5 PEA transferases
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including MCR-1 in E. coli SHP45, MCR-2 in E. coli KP37 (first identified in these two
strains [6, 7]), EptA, EptB and EptC in £. coli K-12 MG1655 (a reference strain). Sequence
identities were calculated via the SIAS webserver (http://imed.med.ucm.es/Tools/sias.html).
Subsequently, the MSA of MCR-1/2 and EptA from ten species was conducted to compare
the sequence conservation across polymyxin-susceptible and intrinsically polymyxin-
resistant bacteria.

2.3. Phylogenetic analysis

To evaluate the evolutionary relationship and distance of the PEA transferases among
different Gram-negative bacteria, MEGA 7 software was employed to construct a
phylogenetic tree with the MSA of the representative EptA together with MCR-1/2 based on
the maximum likelihood method [26]. Confidence values for branches and nodes of the
resulting tree were validated by bootstrap analysis with 1,000 replicates to ensure
appreciable reliability [27].

2.4. Cluster analysis of EptA from different species and strains

The original dataset containing ten Gram-negative bacteria was further augmented by adding
EptA sequences from all available strains based on the classification of KEGG Orthology
database. Pairwise identities among the 325 EptA sequences from different bacteria and
strains together with MCR-1/2 sequences were calculated using the Basic Local Alignment
Search Tool (BLAST) [28]. Hierarchical cluster analysis based on the pairwise identity
values was conducted using R programming package for classifying the PEA transferases
and comparing the sequence similarity among the strains from the same and different Gram-
negative bacterial species. A heat map was plotted to visualise the hierarchical cluster
analysis results.

3. Results and Discussion

3.1. Sequence conservation among chromosome-encoded EptA, EptB, EptC and plasmid-
encoded MCR-1/2 in E. coli

MSA was performed to investigate the sequence conservation of PEA transferases in E. coli
(Fig. 1A) which have different active sites on LPS. PEA transferases consist of two major
domains, the A-terminal transmembrane domain and the C-terminal catalytic domain [29].
Despite the availability of recently published catalytic domain structures of EptA from
Neisseria meningitidis [30] and MCR-1 [29, 31-33], the structure of any PEA transferase
has not been completely solved. Hence, in the present study we conducted sequence
conservation and evolutionary analysis using the protein sequences of PEA transferases.
MSA of both chromosome- and plasmid-encoded PEA transferases (Fig. 1A) shows higher
conservation in the catalytic domain (mean pairwise sequence identity of ~35%), compared
to the transmembrane domain (mean pairwise sequence identity of ~26%). Across both
chromosome- and plasmid-encoded PEA transferases, several conserved sites were
identified by MSA based on the MCR-1 sequence, including Glu246, Thr285, His395,
Asp465, His466 and His478. The phosphorylated site Thr285 is important to the catalytic
function of plasmid-encoded MCR-1 and acts as the acceptor for the PEA group during the
phosphate transfer reaction [6]. Thr285 is conserved among MCR-1, MCR-2, EptA and
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EptB (Fig. 1A), which may indicate that these four enzymes bind to PEA in a similar mode.
In MCR-1, two zinc-binding pockets have been identified, Glu246-Thr285-Asp465-His466
and His395-His478 [33]. A recent study showed that depletion of zinc ions from culturing
media increased the susceptibility of MCR-1-positive £. colito colistin (MIC decreased
from 2 pg/mL to 0.5 pg/mL), indicating zinc-binding is vital for MCR-1 activity [31]. The
MSA (Fig. 1A) clearly demonstrates that within the first zinc-binding pocket residues
(Glu246-Thr285-Asp465-His466), three residues (i.e. Glu246, Asp465 and His466) are
highly conserved across the sequences of all five types of chromosome- and plasmid-
encoded PEA transferases from £. coli. In the second zinc-binding pocket, His478 is not
conserved in EptC but across all other four types of PEA transferases in £. coli[33].

The pairwise identities among the three chromosome-encoded PEA transferases EptA, EptB
and EptC are low (17-26%; Fig. 1B); while the plasmid-encoded PEA transferases MCR-1
and MCR-2 share 81% identity and the major sequence differences are seen in the A-
terminus. MCR-1 and MCR-2 share high sequence identities (both ~33%) with EptA,
probably because they all transfer PEA to the same active site, lipid A. In contrast, EptB and
EptC show low sequence identities with MCR-1 and MCR-2 (16-24%); this is not
unexpected as EptB and EptC transfer PEA to the outer 3-deoxy-D-manno-oct-2-ulosonate
(Kdo I1) and the heptose residues, respectively, which are different from lipid A PEA
transferases [20]. Moreover, EptC shares the lowest similarity with the other PEA
transferases, probably due to the fact that EptC catalyses multiple reactions related to
resistance to cationic antimicrobial peptides and bacterial motility [34]. For instance, in
Campylobacter jejuni, four enzymatic targets of EptC have been identified to date, including
heptose | of the core oligosaccharide of LPS, 1- and 4’-phosphate groups of lipid A, A\-
linked heptasaccharides and the flagellar rod protein FIgG [34].

3.2 Sequence alignment of EptA across strains from ten Gram-negative bacteria and
MCR-1/2 from E. coli

Ten clinically relevant Gram-negative bacteria that are able to modify their lipid A with PEA
were selected (Table 1). As EptB and EptC cannot be found in most of the species and EptA
has been reported to be more relevant to polymyxin resistance [20], in the present study we
only focused on the sequence comparison of EptA from the ten species plus MCR-1/2 from
E. coli. In total, 325 EptA sequences of all the strains listed in KEGG Orthology Database
from the ten Gram-negative bacteria were extracted and the MSA was then constructed with
the obtained EptA sequences together with MCR-1/2.

Among the ten clinically relevant Gram-negative bacteria, the C-terminal catalytic domain
of EptA among different bacteria was more conserved (mean pairwise sequence identity of
50%) than the A-terminal transmembrane domain (mean pairwise sequence identity of 31%;
Fig. 2). This finding is similar to the results shown in Fig. 1A that the catalytic domain is
more conserved than the transmembrane domain among EptA, EptB, EptC and MCR-1/2.
The higher variability in the transmembrane domain is probably because of different
membrane compositions among different Gram-negative bacteria. Regarding the functional
sites, the two zinc-binding pockets (i.e. Glu246-Thr285-Asp465-His466 and His395-
His478) are both conserved across all the EptA of the ten Gram-negative bacteria species,

Int J Antimicrob Agents. Author manuscript; available in PMC 2019 April 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Huang et al.

Page 6

MCR-1 and MCR-2 (Fig. 2). Such high conservation of zinc-binding pockets among
multiple Gram-negative bacteria indicates that the zinc-binding domain plays a crucial role
in lipid A modification and polymyxin resistance.

The EptA sequences of polymyxin-susceptible (MIC<2 pg/mL) [5] and intrinsically
polymyxin-resistant strains (MIC=4 pg/mL) together with MCR-1 and MCR-2 were
compared. Interestingly, several amino acids (i.e. 11e128, Val240, Val241, Glu310, Asn311,
Asp327, Leu522 based on the MCR-1 sequence) are different among PEA transferases of
intrinsically polymyxin-resistant species from those of polymyxin-susceptible species (Fig.
2).

There are two PEA transferases annotated as EptA in P aeruginosa PAOL in the KEGG
Orthology Database, which share the sequence identify of 48%. To analyse the evolutionary
relationship among the 11 EptA from ten bacterial species one MCR-1, and one MCR-2, a
phylogenetic tree was constructed using the maximum likelihood method with MEGA 7
(Fig. 3). Notably, previous phylogenetic analysis indicated that MCR-1 is closely related to
the PEA transferase from Paenibacillus sophorae, a known Gram-positive polymyxin
producer. However, such a conclusion is not convincing as Pa. sophorae is a Gram-positive
bacterium which lacks LPS and, therefore, transferring PEA to lipid A does not exist. In the
present study, we firstly confirmed the existence of lipid A modification in the examined
bacteria before the MSA and phylogenetic analysis (Table 1). As shown in Fig. 3, short
phylogenetic distance is evident in the EptA from E. coli, Sh. flexneri, S. entericaand K.
pneumoniae, indicating their closer evolutionary relationship compared to the other species
examined. The representative strain of £. coliused in Fig. 3 is £. coli K-12 MG1655 which
has only one EptA, despite that some strains of £. co/i have more than one EptA enzymes.
The phylogenetic distances in Fig. 3 are consistent with the taxonomical classification of £.
coli, Sh. flexneri, S. entericaand K. pneumoniae, as they all belong to the same class
(Gammaprotebacteria) and order (Enterobacteriales). In terms of genetic variations, MCR-1
and MCR-2 (i.e. plasmid-encoded PEA transferases conferring resistance to polymyxins) are
closer to both types of EptA from £ aeruginosathan from the other examined Gram-
negative bacteria. MCR-1 and MCR-2 stay in the same sub-clade within polymyxin-
susceptible P aeruginosa rather than Enterobacteriales where the MCR-1/2 were first
identified. Interestingly, the phylogenetic tree shows MCR-1 and MCR-2 have a closer
relationship with polymyxin-susceptible Pseudomonadales and Enterobacteriales, than
intrinsically polymyxin-resistant Vibrionaceae (e.g. V/ cholerae), Neisseriales (e.g. V.
meningitides, N. gonorrhoeae) and Campylobacterales (e.g. H. pylori). Polymyxin B MICs
of the representative strain of H. pylori 26695 and V. cholerae are >250 pg/mL and =512
ug/mL, respectively [35, 36], ranked as two of the most polymyxin-resistant strains in our
dataset. EptA in H. pylori (belonging to Epsilonproteobacteria, Campylobacterales) and V/
cholerae (belonging to Gammaproteobacteria, Vibrionaceae) have the farthest phylogenetic
relationship to EptA in the other Gram-negative bacteria examined.
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3.3. Cluster analysis based on an augmented dataset with 325 EptA from the selected ten
species of Gram-negative bacteria and MCR-1/2 from E. coli

In total, 325 EptA sequences of 275 strains and 10 species from the KEGG Orthology
database were employed for cluster analysis. Among them, 230 strains (83.6%) have only
one eptA in their genomes while 45 strains (16.4%) have two or three different eotA genes.
To examine the sequence diversity of EptA among different species, we performed
hierarchical cluster analysis based on the pairwise identities to classify 325 EptA together
with MCR-1/2. Overall, the 325 EptA sequences together with MCR-1 and MCR-2 were
clustered into 13 groups in a heat map for convenient comparison and visualisation, based on
their identity levels (Fig. 4). EptA sequences within different strains in the same species
generally have identities >90%, indicating the high conservation within the same species. On
the other hand, poorer inter-species conservation was demonstrated by lower pairwise
identities of EptA sequences across different species (Fig. 4). EptA sequences from £. colj,
S. enterica, K. pneumoniae and Sh. flexnerihave higher identity values (> 60%) with each
other than with other bacteria species. This is consistent with the generated phylogenetic tree
and their taxonomic relationships (Fig. 3). In addition, consistent with the result of the
phylogenetic tree (Fig. 3), H. pylorihas the lowest similarity with the other Gram-negative
bacteria examined in this study. Alignment of 325 EptA together with MCR-1/2 was
performed (Appendix Fig. S2) for intuitive visualisation of the conservation among all the
strains. By the time of submission of our revised manuscript, we noticed that a very recent
study reported that MCR-1 is evolutionarily close (identity of 59—-64%) to EptA from
Moraxella species [37]. However, rather than the multiple sequence alignment results purely
on Moraxellain the recent report [37], our study is featured by three major aspects: (1)
large-scale sequence alignment across multiple species and phylogenetic analyses were
conducted; (2) the bioinformatic analysis was based on all major PEA transferases, i.e.
EptA, EptB, EptC and MCR-1/2; and (3) conservation analysis was performed with the PEA
acceptor Thr285 and zinc-binding pockets. In summary, our cluster analysis illustrates that
the EptA sequences show higher conservation within the same species but are poorly
conserved inter-species.

Conclusions

In summary, this is the first comparative study to demonstrate the evolutionary relationship
of PEA transferases, including MCR-1, MCR-2 and EptA among 275 strains in 10 major
Gram-negative bacteria. Our results reveal that the catalytic domain, particularly PEA
acceptor sites and zinc binding pockets, is conserved. EptA within each individual species is
highly conserved while the inter-species conservation is low. This study provides key
evolutionary insight into PEA transferases and PEA-mediated polymyxin resistance, which
may contribute to rescuing the clinical utility of this last-line therapeutic option and the
discovery of novel approaches to combat potentially rapid prevalence of resistance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights
. MCR-1/2 and EptA in 10 bacterial species were examined in the conservation
analysis
. EptA is highly conserved in each species but not inter-species

. PEA acceptor site and zinc binding pocket are highly conserved in all EptA
examined

. Evolutionary distance of EptA is not related to intrinsic polymyxin
susceptibility
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Fig. 1.
(A) Multiple sequence alignment (MSA) of different PEA transferases selected from

representative strains of £. colj, including MCR-1, MCR-2, EptA, EptB and EptC. The
residues are coloured by their degree of conservation. The darker the colour is, the more
conserved the amino acid is. Black lines underneath the alignment represent conserved
motifs among MCR-1, MCR-2 and Ec_EptA but not homologous among Ec_EptB or
Ec_EptC; while cyan lines under the alignment represent homologous motifs among
MCR-1, MCR-2, Ec_EptA and Ec_EptB but not in Ec_EptC. Abbreviations and relevant
accession numbers listed in Fig. 1 are as follows: MCR-1 (from the plasmid in £. coli
SHP45, WP_049589868.1); MCR-2 (from the plasmid in £. coli KP37, WP_065419574.1);
Ec_EptA (in £ coliK-12 MG1655, NP_418538.2); Ec_EptB (in £. coli K-12 MG1655,
NP_418002.2) and Ec_EptC (in £. coli K-12 MG1655, NP_418390.1). (B) Heatmap of
pairwise identities among MCR-1, MCR-2, EptA, EptB and EptC based on the sequence
BLAST.
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MSA of EptA, MCR-1 and MCR-2 from ten Gram-negative bacteria. The residues are
coloured by their degree of conservation. The darker the colour is, the more conserved the
amino acid is. MCR-1 and MCR-2 sequences are highlighted in light pink, whereas four
polymyxin-resistant bacteria (i.e. Vibrio cholerae, Neisseria meningitides, Neifsseria
gonorrhoeae and Helicobacter pylori) are highlighted in light yellow. The following
abbreviations are used to denote the bacteria in the figure, Nm: N. meningitides, Ng: N.
gonorrhoeae, Ec: E. coli, Shf: Sh. flexneri, Se: S. enterica, Kp: K. pneumoniae, Pa: P
aeruginosa, Ab: A. baumannii,N/c: V. cholera, and Hp: H. pylori.
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Phylogenetic tree constructed with 11 EptA and MCR-1, MCR-2 sequences by MEGA 7
based on the maximum likelihood method. The scale bar corresponds to proportional length
of branch presenting an amount genetic change of 0.10. The percentage bootstrap support
(per 1000 replicates) was indicated by the values at each node. Bootstrap support values (%)
based on 1,000 replicates are indicated by the values at each node. The number (in
percentage) next to each node represents a measure of support for the node. The taxonomy

and polymyxin B MICs are listed on the right side. MCR-1 and MCR-2 sequences are

highlighted in light pink, whereas four polymyxin-resistant V/ cholerae, N. meningitides, N.
gonorrhoeae and H. pylori are highlighted in light yellow. The following abbreviations are
used to denote the bacteria in the figure, Nm: N. meningitides, Ng: N. gonorrhoeae, Ec: E.
coli, Shf: Sh. flexneri, Se: S. enterica, Kp: K. pneumoniae, Pa: P aeruginosa, Ab: A.
baumannii, /c: V. cholera, and Hp: H. pylori.
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Ec_EptA_1
&Shf_EptA
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Heatmap of a hierarchical cluster analysis of the pairwise identities among 325 EptA and
MCR-1 and MCR-2 sequences. The darker the colour is, the higher the identity is between
the two strains. The following abbreviations are used to denote the bacteria in the figure,
Nm: N. meningitides, Ng: N. gonorrhoeae, Ec: E. coli, Shf. Sh. flexneri, Se: S. enterica, Kp:
K. pneumoniae, Pa: P, aeruginosa, Ab: A. baumannii, \/c: V. cholera, and Hp: H. pylori.
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