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Abstract
Environmental DNA (eDNA) analysis of water samples is on the brink of becoming a 
standard monitoring method for aquatic species. This method has improved detection 
rates over conventional survey methods and thus has demonstrated effectiveness for 
estimation of site occupancy and species distribution. The frontier of eDNA applica-
tions, however, is to infer species density. Building upon previous studies, we present 
and assess a modeling approach that aims at inferring animal density from eDNA. The 
modeling combines eDNA and animal count data from a subset of sites to estimate 
species density (and associated uncertainties) at other sites where only eDNA data are 
available. As a proof of concept, we first perform a cross-validation study using experi-
mental data on carp in mesocosms. In these data, fish densities are known without 
error, which allows us to test the performance of the method with known data. We 
then evaluate the model using field data from a study on a stream salamander species 
to assess the potential of this method to work in natural settings, where density can 
never be known with absolute certainty. Two alternative distributions (Normal and 
Negative Binomial) to model variability in eDNA concentration data are assessed. 
Assessment based on the proof of concept data (carp) revealed that the Negative 
Binomial model provided much more accurate estimates than the model based on a 
Normal distribution, likely because eDNA data tend to be overdispersed. Greater im-
precision was found when we applied the method to the field data, but the Negative 
Binomial model still provided useful density estimates. We call for further model de-
velopment in this direction, as well as further research targeted at sampling design 
optimization. It will be important to assess these approaches on a broad range of study 
systems.
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1  | INTRODUCTION

Assessing status and trends of wild populations and communities is a 
challenging endeavor, especially for species that are difficult to detect 
(Williams, Nichols, & Conroy, 2002). The use of environmental DNA 
(eDNA) to detect elusive species has been a revolution in this regard 
(Dougherty et al., 2016; Hunter et al., 2015; Rees et al., 2014; Smart, 
Tingley, Weeks, van Rooyen, & McCarthy, 2015). The application of 
eDNA data for estimating binary metrics (i.e., presence/absence) of 
species distribution is now established (Biggs et al., 2015; Eichmiller, 
Bajer, & Sorensen, 2014). The next frontier of eDNA applications is 
to estimate continuous, or at least ordinal, metrics of species den-
sity and diversity (Evans et al., 2016). Several studies have demon-
strated positive correlations between metrics of animal density and 
eDNA concentration in different aquatic organisms, including fish 
(Lacoursière-Roussel, Côté, Leclerc, & Bernatchez, 2016; Lacoursière-
Roussel, Rosabal, & Bernatchez, 2016; Takahara, Minamoto, 
Yamanaka, Doi, & Kawabata, 2012; Wilcox et al., 2016), amphibians 
(Pilliod, Goldberg, Arkle, & Waits, 2013; Thomsen et al., 2012), crusta-
ceans (Tréguier et al., 2014), and mollusks (Goldberg, Sepulveda, Ray, 
Baumgardt, & Waits, 2013). These studies investigated correlations 
between eDNA concentration in the water and animal density or bio-
mass, but they did not assess whether it was possible to accurately 
predict animal density from eDNA. Indeed, eDNA data often appear 
to be overdispersed, an issue that could limit our ability to use eDNA 
information to infer metrics of animal density or biomass (Iversen, 
Kielgast, & Sand-Jensen, 2015). Overdispersion in eDNA data is likely 
due to several factors, including [but not limited to] variation in in-
dividual shedding rates (Klymus, Richter, Chapman, & Paukert, 2015; 
Maruyama, Nakamura, Yamanaka, Kondoh, & Minamoto, 2014), un-
even distribution of animals in the environment (Lacoursière-Roussel, 
Côté, et al., 2016; Lacoursière-Roussel, Rosabal, et al., 2016; Laramie, 
Pilliod, & Goldberg, 2015; Pilliod et al., 2013; Yamamoto et al., 2016), 
water and environmental disturbance regime (e.g., local water flow; 
Barnes & Turner, 2016), as well as sampling methods and environmen-
tal conditions (Goldberg, Pilliod, Arkle, & Waits, 2011; Lacoursière-
Roussel, Côté, et al., 2016; Lacoursière-Roussel, Rosabal, et al., 2016; 
Pilliod, Goldberg, Arkle, & Waits, 2014).

Making the transition to estimation of animal density from eDNA 
concentration data requires (1) the development of adequate statis-
tical models that account for issues inherent to eDNA studies (e.g., 
overdispersion) and (2) empirical validation of these models. These 
are the two novel elements that we provide in this article, which rep-
resents an important first step in this direction. First, we present a 
statistical modeling approach for the estimation of animal density for 
a number of sites from two sources of data: (1) “eDNA-only data”: 
eDNA quantitative data, without any other type of information about 
animal density, available for all sampled sites; and (2) “dual data”: 
eDNA quantitative data, associated with reliable animal density esti-
mates or metrics, available from a subset of sites. Our approach uses 
the information on the relationship between eDNA concentration 
and animal density, contained in the dual data, to infer animal density 
for all other sites, from the eDNA-only data. Instead of relying on the 

post hoc extrapolation of a linear regression linking eDNA and density 
data, we provide a likelihood-based method that combines all data in 
a one-step analysis and directly provides estimates of animal density 
and the associated uncertainty (i.e., SE and 95% C.I.). After introducing 
the method, we assess its performance using experimental data from 
a controlled study on common carp (Cyprinus carpio). In this proof of 
concept study, the model was implemented on eDNA data collected 
in mesocosms where the number of carps was perfectly known, thus 
providing an ideal situation to evaluate the method’s accuracy under 
controlled conditions. Finally, we implemented the approach on field 
data from a study on Idaho giant salamanders (Dicamptodon aterrimus) 
to assess its potential to work in natural settings.

2  | MODEL DESCRIPTION

For the model described here, we consider that Ki eDNA water sam-
ples, obtained from either spatial or temporal replicates, are collected 
at each one of a total of I sites for which we want to infer animal 
density. The eDNA data are denoted wik for each site i = {1, … I} and 
each sampling replicate k = {1, … Ki}. Data wik must be a quantita-
tive metric of eDNA concentration (e.g., ng/l or DNA copies per ml). 
Ideally, the Ki samples for a site i are extracted from spatially repli-
cated water samples pooled together and homogenized. Water rep-
licates would typically be collected at selected locations inside the 
sampling unit (site; e.g., pond, wetland, section of river), at a single 
time, thus ensuring population closure. For diffusion-limited lentic 
waters where eDNA concentrations are likely to reflect space use 
of the target species (e.g., Eichmiller et al., 2014), the sampling unit 
should be carefully identified and sampling replicates collected iden-
tically over the area of inference. Such a “snapshot” sampling design 
is probably more reliable than using temporally separated replicates, 
given that temporal variability in environmental conditions can affect 
eDNA. Moreover, if collection of eDNA replicates is spread across a 
relatively long period of time (e.g., several weeks), we are more likely 
to violate the assumption of closure of the target population, as birth, 
death, immigration, or emigration might occur between sampling oc-
casions. In such a case, the population density we are trying to esti-
mate would not be meaningful. In addition to the collection of eDNA, 
“traditional” surveys (e.g., repeated visual counts, trapping) must be 
conducted at a subset J < I sites to provide accurate and reliable esti-
mates of animal density Dj for each site j = {1, …J}. We will refer to (1) 
the (I-J) sites where only eDNA are available (i.e., uninformed animal 
density) as eDNA-only sites and (2) the subset of J sites, randomly 
selected among the I sites, where both eDNA and animal density data 
are available, as dual data sites. The dual data sites inform the rela-
tionship between eDNA concentration and animal density and thus 
allow inference about animal density Dj at the eDNA-only sites. Our 
results (below) suggest that very few dual data sites (e.g., J = 3–5) 
are necessary for the model to work properly and provide accurate 
estimates when the relationship between eDNA concentration and 
animal density is constant across sampled sites (i.e., over space and 
time).
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The goal is to infer unknown animal density Dj for all sites i ≠ j from 
the data wik and Dj. This can be achieved by modeling, for each site i, 
the probabilistic distribution of eDNA concentration wik as a function 
f (Di) of local animal density Dj, which is known (or at least estimated) 
for any site j but totally unknown for any site i ≠ j. This model can be 
written in a very general fashion as: 

where Distr simply denotes any probabilistic distribution and θ rep-
resents a vector of parameters relevant to this distribution. There 
are three different types of model parameters here: (1) parameter(s) 
(β) describing the relationship f() between animal density Di and the 
expected value of the eDNA metric E(wik) (in the models discussed 
below we model this as a simple linear relationship, as E(wik) = β0 × Di, 
where parameter β0 is the coefficient characterizing the relationship 
between animal density (Di) and the expected concentration of eDNA 
E(wik)); (2) parameter(s) (θ) that are specific to the probabilistic distri-
bution chosen and thus describe variability of the realized eDNA data 
wik around the theoretic expected value E(wik); and (3) the unknown 
values of animal density (Di) for any site i ≠ j.

Here, we consider two different distributions to model the data 
wik: (1) a Normal distribution that assumes that deviations of realized 
values wik from E (wik) are normally distributed; and (2) a Negative 
Binomial distribution that allows for larger dispersion in the realized 
values wik. To further investigate dispersion issues, we also imple-
mented a model based on the Poisson distribution, which is a special 
case of the Negative Binomial distribution (see Appendix S1).

The Normal model can be written as follows: 

where μi = β0 × Di is the expected value of wik at site i and σ2 repre-
sents across-replicates variance in values wik. The corresponding likeli-
hood formulation is as follows: 

The Negative Binomial model is written as follow: 

where μi = β0 × Di is the expected value of wik at site i and r is the 
dispersion parameter, sometimes referred to as the “target number of 
successful trials” in the traditional description of the negative binomial 
distribution. Parameter r quantifies across-replicates variability and 
overdispersion in values wik. The likelihood formulation for this model 
is as follows: 

where, pi =  r

μi+r
, which also referred to as the probability of trial suc-

cess of the negative binomial process. For the Negative Binomial 
model, data inputs must be integers. Ideally, eDNA concentration is 
quantified as a number of DNA copies, which does not require any 

transformation, as in our carp example. Otherwise, eDNA values 
must first be transformed as integers, like we did in our salamander 
example.

3  | APPLICATION 

3.1 | Material and methods 

3.1.1 | Proof of concept data

As a proof of concept, we applied the method on an experimental 
dataset on common carp, where fish density was known without 
error. This experiment consisted in a total of I = 11 non-empty meso-
cosms and Ki = 3 eDNA sampling replicates per mesocosm (site), taken 
at 1-week intervals. Here, temporal replicates were used instead of 
the “snapshot” spatial replicate design recommended above, but be-
cause it was a controlled experiment, variability in environmental con-
ditions was not an issue. For full details on this case study, see Doi 
et al. (2015).

Model performance was quantified by the root mean squared 
error and 95% C.I. realized coverage of repeated animal density 
estimates ( ̂Di) provided by the model in a cross-validation study. 
We used an exhaustive leave-p-out cross-validation approach 
where p represents the number of sites for which animal density 
was assumed unknown (i.e., eDNA-only sites) and thus used for 
validation. The number J = I–p of dual data sites represents the 
subset of data used for model calibration. We assessed the model 
for four different scenarios of model calibration: I-p = {2, 3, 4, 5} 
dual data sites (I = 11; hence p = {9, 8, 7, 6}). Cross-validations 
were exhaustive: For each scenario, the learning or testing pro-
cess was done for all possible ways Cp

I
 of subdividing the original 

dataset. For instance, for I = 11, with p = 8, a total of Cp

I
= 165 vali-

dation repetitions were performed. For each individual repetition, 
we proceeded as follows: (1) J sites, for which we kept both eDNA 
and density data, were used as dual data sites, and p sites, for 
which only eDNA data were kept, were used as eDNA-only sites 
for the analysis; (2) model outputs provided density estimates ̂Di,i≠j 
for a total of p = I-J eDNA-only sites; (3) the p estimates ̂Di≠j ob-
tained as model’s outputs were compared to the “known” density 
values that were left out of the analysis. We also calculated the 
error (εi =  ̂Di -Di) and recorded whether the “known” value was in-
cluded in the 95% confidence interval (C.I.). This process was re-
peated Cp

I
 times, for all possible unique combinations. From these 

cross-validation results, we then derived two summary measures 
to assess model performance. First, we calculated the root mean 
squared error (RMSE), across all cross-validation repetitions. The 
RMSE is a measure of total error, combining bias and systematic 
error (variance, imprecision). Second, we calculated the realized 
coverage of the 95% C.I., across all cross-validation repetitions, 
as the proportion of time that the known animal density value (Di) 
was included in the 95% C.I. produced by the model output ( ̂Di±SE). 
For a well-behaved estimator procedure, the realized coverage 
should be very close to 0.95.
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3.1.2 | Field dataset

To evaluate the potential applicability of the method in natural set-
tings, we applied the model to data obtained from a stream salaman-
der survey performed in summer 2011 in the South Fork Salmon 
River Sub-basin, Idaho, USA (Pilliod et al., 2013). During this field 
study, eDNA was collected and quantified at the downstream edge of 
a survey reach just prior to salamander sampling in five streams (see 
Pilliod et al., 2013 for details). Idaho giant salamanders were surveyed 
using single-pass electrofishing in a 500-m stream reach (defined as a 
site) of each stream and salamander density was then estimated as the 
number individuals captured divided by the area searched per stream. 
The 500-m reach was randomly selected and predefined as the spa-
tial sampling unit or site. While the rate of eDNA loss per distance of 
stream is unknown, it has been estimated to occur on the scale of 100–
200 m (Wilcox et al., 2016) to as much as 9 km (Deiner & Altermatt, 
2014). Here, we used the sites from the Pilliod et al. (2013) study that 
were sampled with electrofishing, not those that were only sampled 
with the kick-net technique (see Pilliod et al., 2013) because this latter 
method did not provide reliable metrics of salamander densities. On 
the other hand, electrofishing has been shown to be one of the most 
reliable field sampling methods for larval and paedomorphic life stages 
of this species (Cossel, Gaige, & Sauder, 2012; Pilliod et al., 2013). The 
environmental characteristics (see Table S1) of the five sites we used 
were not significantly different than those of the other sites in terms 
of stream flow (sites used: x̄ = 1.0 m3/s; other sites: x̄ = 0.9 m3/s), 
temperature (sites used: x̄ = 11.5°C; other sites: x̄ = 9.7°C), and depth 
(sites used: x̄ = 25.2 cm; other sites: x̄ = 21.4 cm). Only the stream wet 
width differed significantly (sites used: x̄= 491.8 cm; other sites: x̄= 
332.9 cm). Nonpaedomorphic adult salamanders, which are terrestrial, 
were never captured during electrofishing surveys, and thus were as-
sumed to contribute little to no eDNA to the water. The whole dataset 
consisted of I = 5 sites (i.e., a 500-m upstream stretch in five differ-
ent streams) and the number of per-site water sampling replicates (Ki) 
varied from 3 to 12. For two sites Ki = 3, for two others Ki = 9 and for 
one site Ki = 12. The data for the two sites with nine samples actually 
consisted of three replicated samples from each of three slightly dif-
ferent methods of water collection (GrabFilter, GrabHold, Instream; 
see Pilliod et al., 2013). We were confident in using all nine samples 
together because (1) the difference between methods only concerned 
water collection and storage (not eDNA processing and analysis), and 
(2) previous investigation had shown no evidence to suggest differ-
ences in the amount of eDNA captured by each method for these 
samples (Pilliod et al., 2013, pp 1126).

To assess models’ performance on this dataset, we used the same 
cross-validation approach as described above, but with the caveat that 
salamander densities were not known perfectly. Because densities 
were estimated from a field sampling technique (electrofishing) that 
cannot provide perfect detection of individuals, we acknowledge that 
there is inherent uncertainty in the density data that feed the model, 
which likely affects the accuracy of our estimator. Despite this caveat, 
we think it was useful to assess the model with field data obtained 
from typical methods used by field biologists. These imperfect density 

measures still provide useful relative measures of true density, which 
we believe capture consistent differences among the sampled sites.

3.2 | Results

Before running analyses with our new modeling approach, we looked 
at correlations between values of eDNA concentration and animal 
density, to get a sense of the “quality” of information contained in the 
dataset. Correlation was high for both the proof of concept (r = .84, 
Figure 1a) and the field datasets (r = .79, Figure 1b). We also quan-
tified the degree of overdispersion in eDNA, using average values 
of per-site variance-to-mean ratio (VMR), with VMR > 1 indicating 
overdispersion and VMR < 1 indicating underdispersion. This infor-
mation was especially useful to compare performances of the differ-
ent models considered. We found a high degree of overdispersion in 
the carp eDNA data, with the per-site VMR averaging 182.2. Here, 
no data transformation was applied because the original eDNA data 
were quantified as a number of DNA copies per ml, which are already 
integer values.

For the salamander data, the per-site VMR averaged 0.49, which 
is much lower than the VMR value observed for the proof of concept 
dataset. To apply the Negative Binomial model, values of eDNA con-
centration (initially expressed in ng/l) were transformed as integers, 
after having been scaled to the level of precision with which DNA con-
centration can be measured (see details in Appendix S2).

3.2.1 | Proof of concept data

Results from the cross-validation study clearly indicated that the 
Normal distribution was inappropriate to model the carp eDNA data 
and make inference about carp density. With the Normal model, es-
timators of carp density were inaccurate (Table 1, Figure 2a), with a 
RMSE > 1310 in the best case scenario, which is to be compared to 
the range of values of true carp density that lies between 1.7 and 
47.2 indiv/m2 (the RMSE was > 100 times larger). We can also see 
from Figure 2a that, in many cases, the estimators of carp density 
were biased high. Moreover, the realized coverage of the 95% C.I. 
was poor, between 0.37 and 0.44. On the other hand, the Negative 
Binomial model provided more accurate estimates of carp density 
(Table 1, Figure 2b, Table S2). The RMSE was between 10 and 12, 
which seems reasonable. The coverage of the 95% C.I. was also good, 
falling between 0.95 and 1.00 for the four scenarios considered (i.e., 
different number of dual data sites I-p = {2, 3, 4, 5}). Increasing the 
number of dual data sites from two to five does not seem to improve 
estimator accuracy or coverage level very much. This suggests that 
small sample sizes of dual data sites might be appropriate to achieve 
good estimator properties, but it is important to keep in mind that 
these small numbers still represent fairly large proportions of the total 
number of sites (between 18% and 45%).We also assessed the ability 
of the Negative Binomial model at providing relative rankings of site 
density. We found rates of correct relative rank assignment of 76.2%, 
76.8%, 78.9%, and 81.5% for scenarios with 2, 3, 4, and 5 dual data 
sites, respectively. Estimate of the dispersion parameter r was 0.94 
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(SE = 0.412), a value in accordance with the highly overdispersed na-
ture of these data (note: the more overdispersion, the smallest the val-
ues of r; we consider no overdispersion as r→∞). As a consequence of 
this high degree of overdispersion, the Poisson model (i.e., equivalent 
of the Negative Binomial but without overdispersion) showed much 
poorer performance, in terms of C.I. coverage, than the Negative 
Binomial (Appendix S1).

3.2.2 | Field dataset

Similarly to the proof of concept dataset, we found the Negative 
Binomial model to perform better than the Normal model (Table 1, 
Figure 3). Here, only 2 and 3 dual data sites were used to inform the 

eDNA/salamander density relationship, but it represented 40% and 
60% of all the sites (I = 5), respectively. The realized coverage was 
1.00 for both scenarios assessed. Typically, this would reflect low 
precision associated with individual estimates (i.e., large 95% C.I.’s), 
but, as we can see on Figure 3b, individual 95% C.I.’s do not appear 
overly large. Almost all individual 95% C.I.’s are of similar extent and 
they cover a reasonable range of values. The RMSE, in both case 
scenarios, were not large (RMSE = {0.02, 0.03}, Table 1) relative to 
the range of estimated Di values ( ̂Di∈ {0.022, 0.137}, ̂Di. = 0.056). The 
Negative Binomial model also showed good performance in terms 
of relative ranking of site’s density (76.7% and 90% correct ranking, 
for scenario with 2 and 3 dual data sites, respectively). The Normal 
model did not perform nearly as well, showing (1) higher total error 
(RMSE), (2) larger biases, (3) lower precision (very large individual 
95% C.I.’s; Figure 3a), and (4) lower coverage. In accordance with 
the low VMR values (0.49) of this dataset, estimates of the disper-
sion parameter r were very large ( r̂  = 44,914). We were thus not 
surprised to see the Poisson mol perform as well as the Negative 
Binomial (Appendix S1).

4  | DISCUSSION

We provided a model framework to estimate animal density using 
eDNA data in combination with known animal density values obtained 
for a subset of sampled sites. Cross-validation analyses, performed 
using a dataset for which fish densities were known with certainty, re-
vealed that this approach can work well when the correlation between 
eDNA data and animal density values is high. Cross-sample variability 
of eDNA concentration was best modeled with a Negative Binomial 
distribution, as found in a previous study (Furlan, Gleeson, Hardy, & 

F IGURE  1 Linear regression between 
eDNA concentration data and measures 
of animal density for the two datasets. 
The correlation (r) and proportion of 
explained variance (R2) values are both 
shown on each graph. (a) Common carp 
dataset: number of eDNA copies quantified 
through droplet digital PCR across values 
of carp density (carps/m2). (b) Idaho giant 
salamander dataset: concentration (ng/l) 
of eDNA quantified through qPCR across 
values of salamander density (salamanders/
m2). We note that the absolute SD among 
sampling replicates tends to increase with 
larger values of DNA concentration
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TABLE  1 Summary results of analyses for both dataset. The root 
mean squared error (RMSE) and the 95% C.I. coverage are shown. 
See Figures 2 and 3 for a detailed plot of individual estimates for the 
different scenarios assessed

Normal model
Negative binomial 
model

RMSE Coverage RMSE Coverage

Proof of concept analysis: common carp dataset

2 dual data sites 1,310 0.39 11 1.00

3 dual data sites 4,337 0.39 11 0.97

4 dual data sites 15,403 0.37 12 0.97

5 dual data sites 44,340 0.44 10 0.95

Field data analysis: Idaho giant salamander dataset

2 dual data sites 0.06 0.82 0.03 1.00

3 dual data sites 0.08 0.84 0.02 1.00
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Duncan, 2016). Although the results from the field dataset must be in-
terpreted with caution, because salamander density values bear sub-
stantial uncertainty, they also supported these findings. Indeed, here 
too, the Negative Binomial clearly outperformed the Normal model, 
and it provided useful estimates of salamander densities, although not 
as accurate as in the experimental data analysis. These findings high-
light the inadequacy of the Normal distribution to model variability 
in the link between eDNA and animal density. This strongly suggests 
that ad hoc extrapolations based on simple linear regression, which 
assume Normal errors, should be avoided. Generalized regressions, 
as well as maximum likelihood and Bayesian approaches, based on 

negative binomial (sometimes Poisson) distributions are more appro-
priate (Furlan et al., 2016).

The main limit of our method, currently, lies in the fact that it 
does not explicitly account for uncertainty in animal density values ̂Dj

. Uncertainty was not an issue with the carp data because the num-
ber of animals in each mesocosm was known. These data were ideal 
to assess model performance as proof of concept scenario, but they 
may not reflect field levels of eDNA in the environment. Using sur-
vey estimates of animal density (from the traditional surveys) as data 
points, without consideration of the associated uncertainty, can cre-
ate biases and erroneously inflate our confidence in the eDNA-based 

F IGURE  2 Results of the cross-validation study from the common carp dataset (mesocosm experiment). Each point represents the density 
estimate obtained from (a) the Normal model and (b) the Negative Binomial model, for cases where fish density was known for 2 (black), 3 (red), 
4 (green), or 5 (blue) sites (i.e., dual data sites). The horizontal black dashes represent the known values of animal density
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estimates of animal density. We therefore emphasize that it will be 
important to pursue model developments of this approach in order 
to (1) add a detection-based process for density estimation in the 
modeling frame and (2) explicitly incorporate uncertainty of ̂Di val-
ues when modeling the eDNA-density relationship (i.e., the model 
presented here). Both goals could be achieved by modeling these dif-
ferent processes in a hierarchical framework (Royle & Dorazio, 2008) 
using, for instance, Bayesian inferential tools (Link & Barker, 2009). 
More specifically, it could be performed within a MCMC routine 
by (1) explicitly incorporating the estimation procedure of ̂Dj (e.g., 
mark–capture, N-mixture models, etc.) in a Bayesian model and (2) 
sampling the posterior distribution of parameters ̂Dj, instead of using 
point estimates.

Another important area that deserves discussion and further re-
search is sampling design. As with any estimator, the key to obtaining 
reliable estimates relies on our ability to obtain representative sam-
ples and characterize the probabilistic distribution (e.g., variability) of 
the biological and sampling processes involved in the data generating 
mechanisms. Here, these mechanisms can be summarized hierarchi-
cally as consisting of (1) a latent process relating true (unknown) an-
imal density (Di) to the expected (average) concentration of eDNA 
[E(wij)] in the environment and (2) another unknown process for the 
variability in the actual values of eDNA concentration collected and 
quantified through PCR [wij|E(wij)]. The first process combines ele-
ments of both the biological and environmental processes (Barnes & 
Turner, 2016) that determine (1) the rate of DNA shedding and pro-
duction by the focal organisms, (2) how this DNA will be transported 
and distributed in the environment (spatial aspects), and (3) how 
long it will persist in the environment (temporal aspects). Altogether, 
these elements will determine how much DNA from the focal spe-
cies is available to sampling in the environment. This is formalized 
in our model by the function f (Di) which ultimately determines the 
expected value of the eDNA in our samples for a given local animal 
density (E(wij)|Di). The investigator cannot control any of these ele-
ments, but the timing and spatial design of water sample collection 
will affect the amount of total available eDNA exposed to sampling. 
It is essential for the application of the method that the relationship 
between density and eDNA available to sampling remains consistent 
across sampling sites for which inference is to be made. The second 
process combines elements of sampling design and laboratory pro-
cessing, which can be regrouped under the term “sampling process,” 
determining the concentrations of eDNA actually measured (wij), 
for a given amount that was available for sampling. This process is 
formalized in our model by the choice of specific distributions: wij| 
E(wij)~Distr(E(wij), θ). The accuracy with which we can characterize 
this distribution and estimate model’s parameters will strongly be 
affected by the sampling design chosen. We therefore encourage 
endeavors that focus on improving eDNA sampling (Goldberg et al., 
2016). Important study design issues concern the timing and location 
of sampling, as well as the number of water sample replicates and 
the volume of water collected. Timing of eDNA sampling should be 
chosen in relation to the species’ life cycle and in consideration of the 
assumption of population closure (Williams et al., 2002). Indeed, as 

with any monitoring effort, sampling must occur when all individuals 
from the focal population are available for detection. It is also im-
portant that the independent density data (e.g., animal counts) used 
for model calibration be collected at virtually the same time as the 
eDNA data.

The exact location at which water samples should be collected 
is also of prime importance for this method. First, it is important to 
clearly define the sampling unit to which inference is to be made. 
In lentic systems that are naturally delimited in space, such as pond 
or lakes, the site and local population sampled are usually easily de-
fined. However, to accurately sample such an enclosed space, the 
water from which eDNA is to be extracted must be representative 
of the entire sampling unit (e.g., whole pond). Individual spatial rep-
licates, which would be analyzed separately for DNA, can be used 
directly as sampling replicates. However, because animal space 
use, and thus target DNA distribution, is likely to be heterogeneous 
within the unit, such a design is likely to inflate variability in eDNA 
measurements. Instead, we recommend using a sampling design 
where each sampling replicate is obtained from several spatial repli-
cates covering the entire unit of interest. The latter could be pooled 
and homogenized before proceeding to water filtering and DNA 
amplification. Repeating this procedure for each individual sampling 
replicates (i.e., repeat Ki times) will provide the most representative 
sample for DNA concentration and density. As an alternative, but 
less desirable, one could resample a homogenized bulk of water to 
obtain the desired number of sampling replicates. In open lotic sys-
tems such as streams and rivers, limits of spatial inference might be 
less obvious. Moreover, eDNA transport distance, which is affected 
by water flow, adsorption, and degradation, is a critical, but currently 
poorly understood component in lotic systems (Jane et al., 2015; 
Wilcox et al., 2016). Animal distributions and movements may also 
influence eDNA concentrations and transport along a stream with 
unknown consequences for abundance estimation (e.g., input from 
an upstream population, local eDNA unavailable due to downstream 
export). If the system is open, this will cause issues similar to viola-
tion of the (temporal) closure assumption discussed above (Williams 
et al., 2002). In our salamander example, we know that salamander 
movements are limited relative to the scale of sampling (J.O. Cossel, 
unpublished data), but transport of eDNA downstream could still be 
an issue (Pilliod et al., 2014).

The quantity of water filtered for each sample will affect the like-
lihood of obtaining outlier values of eDNA concentration Wik, which 
are due to potential aggregation of eDNA distribution in the environ-
ment (Barnes & Turner, 2016; Lacoursière-Roussel, Côté, et al., 2016; 
Lacoursière-Roussel, Rosabal, et al., 2016). Therefore, the more water 
is filtered, the more likely we are to dilute this aggregation pattern 
and tend toward the local average concentration of eDNA in our in-
dividual samples. Sampling replication is crucial to better characterize 
the relationshipf

(
Di

)
 and the pattern of variability in individual sam-

ples. Given the overdispersed nature of quantitative eDNA data, the 
consideration of the adequate number of spatial replicates of water 
samples is even more important. Similarly, it will be important to care-
fully consider the number of technical replicates for each individual 
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water sample k processed in the laboratory to provide values of eDNA 
concentration. Finally, it is important to mention that the consistency 
and sensitivity of DNA analysis methods will influence the precision 
of estimates.

Besides sampling issues concerned with the eDNA component, 
it will also be important to consider how many dual data sites are 
required and what sites should be targeted to accurately inform the 
eDNA–animal density relationship. The selection of dual data sites 
should be random, but it is also important to consider the sites’ 
characteristics when making these choices. Indeed, the physical and 
environmental characteristics (e.g., flow, discharge level, substrate, 
etc.) of the sites might influence the eDNA–density relationship. 
Therefore, a stratified sampling strategy across these characteristics 
would ensure representation of this variation. With enough sites, 
these measures could be used as covariates to further refine these 
modeled relationships. Methodologic work aimed at assessing and 
optimizing all these aspects of sampling design (eDNA and dual data 
sites) could also improve the reliability of the analytical method pre-
sented here.

Concerns and skepticism about using eDNA to estimate animal 
density have been raised (Iversen et al., 2015). The main argument 
of these critics relies on observations of heterogeneity in organ-
ism’s individual DNA shedding rates (Klymus et al., 2015; Maruyama 
et al., 2014). Although we agree this is a relevant point that compli-
cates estimation of animal density from eDNA, we emphasize that 
the existence of these sources of variation and uncertainties could 
be accommodated through appropriate statistical models (e.g., ex-
plicitly modeling sources of heterogeneity with covariates or ran-
dom effects) and will not necessarily prevent density estimation. For 
us, the main limiting factor for this method to work appropriately 
in field studies concerns the level of correlation at the population 
level, not at the individual level, between eDNA concentration in 
the environment and local animal density. Strong correlations can 
exist despite substantial variability in individual shedding rate (Doi 
et al., 2015; Thomsen et al., 2012), making eDNA concentration a 
potentially useful source of data to estimate, or at least provides rel-
ative indices of animal density. However, we acknowledge that this 
method will not work in all settings (e.g., when population sizes are 
extremely low, Spear, Groves, Williams, & Waits, 2015). The pres-
ence of outliers will also influence the strength of existing correla-
tions (Biggs et al., 2015; Pilliod et al., 2013), but as illustrated here, 
appropriate statistical distributions can be used to account for this 
phenomenon.

Environmental DNA methods are already showing great prom-
ise (Goldberg, Strickler, & Pilliod, 2015; Goldberg et al., 2016), and 
we are convinced that, over the years, they will follow a path of 
method developments (e.g., laboratory techniques, modeling, sam-
pling designs), which will make them a standard tool for wildlife 
monitoring and ecological science. Our modeling approach rep-
resents one of the first steps to advance the difficult, but important 
topic of inferring animal density from eDNA data. This work builds 
upon previous studies (Barnes & Turner, 2016; Goldberg et al., 

2013; Lacoursière-Roussel, Côté, et al., 2016; Lacoursière-Roussel, 
Rosabal, et al., 2016; Pilliod et al., 2013; Takahara, Minamoto, & Doi, 
2013; Takahara et al., 2012; Wilcox et al., 2016), but moves beyond 
a simple post hoc extrapolation based on linear regressions. The next 
big steps in this methodological development will require: (1) further 
model development to accommodate varying sources of uncertain-
ties and allow incorporation of environmental covariates, fixed, and 
random effects; (2) further investigation of sampling design optimi-
zation; and (3) testing of different species in natural lotic and lentic 
waters.
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