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Translational Systems Pharmacology-Based Predictive
Assessment of Drug-Induced Cardiomyopathy

Dimitris E. Messinis1†, Ioannis N. Melas1°, Junguk Hur2, Navya Varshney3, Leonidas G. Alexopoulos4 and Jane P.F. Bai1*

Drug-induced cardiomyopathy contributes to drug attrition. We compared two pipelines of predictive modeling: (1) applying
elastic net (EN) to differentially expressed genes (DEGs) of drugs; (2) applying integer linear programming (ILP) to construct
each drug’s signaling pathway starting from its targets to downstream proteins, to transcription factors, and to its DEGs in
human cardiomyocytes, and then subjecting the genes/proteins in the drugs’ signaling networks to EN regression. We
classified 31 drugs with availability of DEGs into 13 toxic and 18 nontoxic drugs based on a clinical cardiomyopathy incidence
cutoff of 0.1%. The ILP-augmented modeling increased prediction accuracy from 79% to 88% (sensitivity: 88%; specificity:
89%) under leave-one-out cross validation. The ILP-constructed signaling networks of drugs were better predictors than
DEGs. Per literature, the microRNAs that reportedly regulate expression of our six top predictors are of diagnostic value for
natural heart failure or doxorubicin-induced cardiomyopathy. This translational predictive modeling might uncover potential
biomarkers.
CPT Pharmacometrics Syst. Pharmacol. (2018) 7, 166–174; doi:10.1002/psp4.12272; published online 17 January 2018.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THIS

TOPIC?
� There is no translational predictive modeling that

integrates a drug’s mode of action with clinical observa-

tion of toxicity.
WHAT QUESTION DID THIS STUDY ADDRESS?
� This study addresses the question of how to conduct

systems pharmacology predictive modeling that

integrates the modes of action of drugs and their

clinically observed occurrence of treatment-related

cardiomyopathy.

WHAT DOES THIS STUDY ADD TO OUR
KNOWLEDGE?
� This study adds to the knowledge of (1) the proteins/
genes that are top predictors of drug-induced cardiomy-
opathy, and (2) utility of drugs’ modes of action in the
form of signaling pathways for predicting drug-induced
cardiomyopathy.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� This study enables pharmaceutical scientists to fur-
ther translational system’s pharmacology modeling to
facilitate development of therapeutics.

Serious and life-threatening drug-induced adverse events
cause drug attrition at various stages of drug development
or modification of treatment regimens. For instance,
anthracyclines, although effective to treat cancers, are
known to cause irreversible, dose-dependent cardiotoxicity
(contractility-related toxicity).1 Most recently, targeted ther-
apy with tyrosine kinase inhibitors (TKIs) also cause such
toxicity.1 The ability to predict drug-induced cardiotoxicity
may reduce drug attrition and advance precision medicine.

Predictive modeling of adverse drug reactions by inte-
grating information across databases and knowledgebase
of biological activities, chemistry, and adverse drug reac-
tions has been undertaken.2–4 However, no predictive mod-
els of drug-induced cardiomyopathy utilizing signaling
network information have been constructed. Harpaz et al.4

stressed the importance of harnessing multiple sources of

knowledge, biological information, and biomedical literature

for predicting drug toxicity. In line with this notion, we

reported herein predictive modeling by integrating prior

knowledge, drug targets, and empirical data in order to

enable the model to identify key predictors from a drug’s

mode of action, and to have the potential to inform lead

identification and development.
To fill in the gap, we compiled a list of 31 toxic and non-

toxic drugs that were transcriptomically profiled in human

cardiomyocytes5–7; manually curated and compiled their

clinical incidence of treatment-related cardiomyopathy; and

conducted predictive modeling of drug-induced cardiomyop-

athy. Two predictive models were compared: (1) applying

elastic net (EN) to gene expression data; and (2) applying

integer linear programming (ILP) to construct a drug’s
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signaling network to reflect its mechanism of action,8 and

then subjecting the nodes in individual drugs’ signaling

networks to EN regression. The ILP formulation8 navigates

a prior knowledge network of protein-protein, protein-

transcription factor (TF), and TF-gene interactions, and

identifies the pathways that connect a drug’s targets to its

differentially expressed genes (DEGs). The ILP not only

optimizes the solution of finding a drug’s signaling pathways

but also enhances performance of predictive modeling by

enabling identification of the subset of DEGs that are function-

ally relevant to a drug’s mode of action. We further referenced

literature for the microRNAs, which are reportedly of diagnos-

tic value for heart failure and for drug-induced cardiomyopa-

thy, as well as also regulating the expression of our predictors

in hopes of shedding light on potential microRNAs as in vivo

drug-induced cardiomyopathy biomarkers.

METHODS
Compilation of drugs and their clinical incidence of

drug-induced cardiomyopathy
To compile the list of approved drugs that cause treatment-

related cardiomyopathy, we referenced the National Insti-

tutes of Health Common Terminology Criteria for Adverse

Events (version 4.03)9 and the Medical Dictionary for

Regulatory Activities10 for cardiomyopathy-related terms to

text-mine approved drug labels. The terms used included

cardiomyopathy, heart failure, congestive heart failure, car-

diac failure, left ventricular dysfunction, left ventricular fail-

ure, and reduction in left ventricular ejection fraction. The

current drug label PDF files (Drugs@FDA1) were processed

using a text-mining analysis pipeline, as published previ-

ously.11 Individual rates of occurrence for cardiomyopathy

were extracted by manual curation of drug labels, published

redacted new drug application reviews (Drugs@FDA), as

well as published clinical studies.

Predictive modeling
Workflow and highlights of EN and ILP. As shown in

Figure 1, we compared two pipelines of predictive model-

ing. For pipeline 1, we applied EN to DEGs of a drug. For

pipeline 2, we applied ILP to construct each drug’s signal-

ing pathway, and then subjected the genes/proteins in each

drug’s signaling network to EN regression.
The EN is useful for predictive modeling when predictors

greatly outnumber observations while simultaneously being

able to identify statistically significant predictors.12 The EN

regularization is useful for analyzing genomics of drug sen-

sitivity in cancer.13

We applied ILP to a drug’s DEGs and protein targets to

model its mode of action. These two levels of information

are connected via signal transduction where the signal orig-

inates at drug targets, propagates intracellularly via a com-

plex network of signaling cascades, passes through the

layer of TFs, and finally reaches the transcriptomic level of

DEGs. We modeled the interactions in the knowledge net-

work by using the logic formalism,14 which identified the

minimum subset of the network to achieve the desired con-

nectivity. We constructed the specific signaling network

for each drug using an ILP formulation, as published

previously.8

The ILP will enhance predictive performance because it

has the ability to capture cellular responses to a drug, to

identify the subset of important functional DEGs, and to

help differentiate between compounds and translate into

improved performance.

Drug name normalization. Drug names were first normal-

ized and identified by the PubChem compound identifier to

ensure consistency when downloading data from Connec-

tivity Map (CMap),15 Drug Toxicity Signature Generation

Center (DToxS),5 Search Tool for Interactions of Chemicals

(STITCH),16,17 and literature.

Compilation of drug targets. We compiled the targets of

individual drugs from STITCH,16,17 and the “chemical-

protein links” database and selected only human proteins.

The proteins were identified by the SwissProt/EnsEMBL-

identifier, and translated into HUGO Gene Nomenclature

Committee gene symbols18 using the R biomaRt package,

in order to match with the nodes in the prior-knowledge

network.19 We used STITCH’s “interaction types for links”

data file, from where we identified the drugs as activating

or inhibiting individual target proteins. We used only those

associating links between protein-drug pairs with an evi-

dence score of� 0.7.

Gene expression data sources and handling. Wherever

data were available in Affymetrix probe IDs, the probe IDs

(Affymetrix GeneChip Human Genome U133A Array) were

Figure 1 Workflow of predictive modeling. We built datasets
using gene expression data and we compared two piplelines to
predict clinical drug-induced cardiomyopathy and extract features
that best predict such toxicity. Running the Gene Expression
Data at hand through a linear regression model with elastic net
regularization or constructing signaling networks from the data
before modeling using an integer linear programming (ILP) for-
mulation. DToxS, Drug Toxicity Signature Generation Center.

Predictive Assessment of Drug-Induced Cardiomyopathy
Messinis et al.

167

www.psp-journal.com



translated into HUGO Gene Nomenclature Committee gene
symbols18 using the biomaRt package20 and hgu133a221

packages in R, an open source statistical computing
graphics systems. Across all the gene lists, we kept only
those genes with fold change> 2 and P value< 0.05 by a
two-tailed, two-sample, unequal variance Student’s t-test,
adjusted separately for the up and down gene lists with
Bonferroni correction (P value adjusted for multiple
comparisons).22

A list of 75 drugs with drug-induced DEGs available from
cancer cells15 in CMap were used for exploratory modeling
(see Supplementary Table S1 in Supplementary
Document-CMap). To conduct robust predictive modeling,
we exhausted literature and databases and found a list of
31 drugs of which drug-induced DEGs in human cardio-
myocytes5 and stem cells-derived cardiomyocytes5–7 were
available. The two data sources for drug-induced perturba-
tion of gene expression in cardiomyocytes were: (1) 30
drugs from DToxS5, where primary human adult cardiomyo-
cytes were used; and (2) literature data of doxorubicin stud-
ied in human stem cell-derived cardiomyocytes.6,7 The size
of each dataset was mainly constrained by the availability
of DEGs data. For DToxS data, we downloaded the level
two gene expression data, calculated the fold changes,
kept only those DEGs with a P value< 0.05 and a fold
change> 2, and merged them from different donors by
averaging the fold changes while excluding any DEGs with
opposite directions of fold change among donors.

Doxorubicin is widely studied for its dose-dependent car-
diac toxicity, and is commonly dosed at 40–60 mg/m.21 Fol-
lowing intravenous 60 mg/m2, its peak plasma
concentration (Cmax) was 630 ng/mL (1,159 nM).23 See
Supplementary Table S2 for a few studies of transcrip-
tomic profiles of doxorubicin. For our modeling, we included
the data from human-induced pluripotent stem cells-derived
cardiomyocytes by Chaudhari et al.7 and Burridge et al.6

We included the gene expression data by Burridge et al.6

were at 100, 1,000, and 10,000 nM and those by Chaud-
hari et al.7 were at 156 nM (see Supplementary Table S3
for the rationale).

Identifying a drug’s mode of action using ILP. We first built
a prior-knowledge network as a scaffold for constructing a
drug’s signaling network by downloading from Reactome19

the latest version (version 2015) of the “Functional interac-
tions derived from Reactome.” As published previously,8 we
merged those interactions with transcription factors and
obtained a network across the protein, transcription factor,
and gene levels, which contained 64,801 reactions, 2,585
signaling proteins, and 12,376 genes. We applied ILP to
optimize a drug’s signaling network by providing as the
input the scaffold mentioned above and its targets.

The ILP formulation was solved using IBM ILOG CPLEX
optimization studio8 for the objective of optimizing a drug’s
network. Based on the constraints that mimic signal trans-
duction24 and adjustment to the specific case of very large
(>10,000 nodes) networks,8 the algorithm minimized the
mismatch between the data of gene expression measure-
ments and the prior knowledge pathway topology. The out-
put was the optimal signaling network of a drug, identifying

the molecular interactions that seemed to be functional
based on the input of DEGs and drug targets. We were
able to select the minimum part of a prior-knowledge net-
work for each drug that could explain the data in hand. See
Supplementary Document-ILP for understanding the
example of methotrexate signaling network captured by ILP
(Supplementary Figure S1) and how the proposed ILP
formulation works.

Comparing predictive modeling by applying EN to a drug’s
DEGs vs. to its ILP signaling network. To construct a matrix
for EN regression, a drug was marked with 0 if classified as
nontoxic and marked 1 if classified as toxic. We classified
drugs by referencing approved labels for the criteria of
“frequent adverse events being those occurring on one or
more occasions in at least 1/100 patients; infrequent adverse
events being those occurring in 1/100 to 1/1,000 patients;
rare events being those occurring in less than 1/1,000
patients.” Referencing the definition of rare events used in
drug labeling and considering the distribution of clinical inci-
dence, the number of drugs with gene expression data avail-
able, and the heterogeneity of clinical studies, we classified
drugs into two classes, toxic for those with incidence�0.1%
and nontoxic for those with incidence< 0.1%.

A column of “cardiotoxicity” was created with the clinical
incidence score: 1 for “toxic” and 0 for “nontoxic.” Each col-
umn corresponded to a single gene expressed in at least
one of the DEGs signatures. Individual DEGs of a drug
were assigned a value of 1, 21, or 0 to reflect upregulated,
downregulated, or not reported, respectively (pipeline 1).
The same assignments were applied to the nodes in each
drug’s ILP signaling network (pipeline 2).

In our modeling, we used EN regression,12 and more spe-
cifically a linear regression model with an EN penalty deter-
mined using the R package glmnet.25 The EN regularization
is defined by two parameters, alpha and lambda. The EN
regression is a mixing of LASSO and ridge regression and
combines their two penalty terms for the alpha parameter.
When alpha equals 0, EN performs as ridge regression and
when alpha equals 1, EN performs as LASSO. In EN, the
lambda parameter reflects shrinkage of the model’s coeffi-
cients. When lambda equals 0, no shrinkage of the model’s
coefficients is performed but the coefficients decrease toward
0 (although not exactly equal 0) as its value increases. We
tried a range of values for alpha from 0 to 1 by a 0.01 step
and selected the one that minimized the mean squared error.
For that alpha value, we selected the value of lambda that
gave the minimum mean cross-validated error.

To validate each model, we used leave-one-out cross val-
idation (LOOCV) by leaving a drug’s signature out one at a
time (either DEGs or signaling network constructed from
ILP) and did so across the whole list of drugs. Each time
we calculated the accuracy, sensitivity, and specificity for a
predictive model, and selected and reported the model with
the highest accuracy along with its precision, sensitivity,
and specificity. From the chosen predictive model, we
extracted the predictors (genes/proteins) that best predicted
drug-induced cardiotoxicity. The receiver operating charac-
teristic (ROC) and precision-recall curves using the R pack-
age with the former plotted in smooth curve.
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Pipeline 1 – applying EN to DEGs
The results of 75 drugs with DEGs from CMap are summa-

rized in Supplementary Document-CMap. Among these

75 drugs with their DEGs from CMap, 24 drugs were toxic

and the remaining 51 drugs were nontoxic.
A model matrix was constructed using cardiomyocyte

data, with the 34 observations (toxicity classification) as

rows and 15,016 variables (gene expression) as columns.

The predictive linear model was constructed by having as

input all these variables for EN regularization. We tried all

possible different cutoff scenarios (see the spreadsheet

“summary” of Supplementary Table S4 for the results of

the psccm_34_gen_heart trials and the detailed results of

18 models with different cutoffs in the spreadsheet “9”). For

example, a cutoff of 10 meant that we ran the model by

using only those genes that were expressed in at least 10

of the 34 signatures, meaning that the analysis started with

3,508 genes, whereas a cutoff of 15 started the analysis

with the genes that appeared in at least 15 of the 34 signa-

tures, meaning 464 genes were used as the cutoff.

Pipeline 2 – applying EN to gene/protein nodes in ILP-

constructed signaling networks
We first performed exploratory modeling using a list of 75

drugs with gene expression data available in CMap and

concluded that signaling networks of drugs derived from

ILP outperformed their DEGs when applying EN regulariza-

tion (see Supplementary Figure S2 for ROC and

precision-recall curves in Supplementary Document-

CMap).
We were able to find the ILP solutions for drugs with

gene expression data in cardiomyocytes (Supplementary

Table S5) except cefuroxime, domperidone, and olmesar-

tan. These three drugs were removed from this modeling

exercise. At the end, we had 31 signaling networks from 28

drugs (15 nontoxic drugs and 13 toxic drugs). See Supple-

mentary Table S5 for the gene/protein nodes in the signal-

ing network of each individual drugs. We built a model

matrix for the 31 signaling pathways/networks by using

gene expression profiles from cardiomyocytes and by

assigning 1 if a pathway node was upregulated, 21 if it

was downregulated, and 0 if it was not present in a drug’s

optimized signaling network. See the spreadsheet

“summary” of Supplementary Table S4 for the results of

the psccm_34_ILP_heart trial and the detailed results of 31

models with different cutoffs in the spreadsheet “10.”

Biological context of predictors
To gain translational insight, we searched literature for micro-

RNAs that have been shown to be diagnostic markers of

heart failure and also involved in regulation of gene expres-

sion. We mined literature and MiRTarBase, a database of

experimentally validated microRNA-target interactions,26 for

a list of microRNAs, which have been individually reported to

regulate expression of our top gene/protein predictors, and

also been reportedly detected in the circulation of patients

with heart failure with a varying degree of severity27,28 or of

patients with doxorubicin-induced cardiomyopathy.29

RESULTS
The list of drugs and toxicity profile
The list of 31 drugs with their clinical profiles of treatment-

related cardiomyopathy is summarized in Table 1. Literature

search was also conducted to supplement clinical incidence

of cardiomyopathy, if approved drug labels and published

application reviews1 did not have such information. Among

the 31 drugs, there were 13 toxic drugs (41.9%) and there

were 18 nontoxic drugs (59.1%). For those drugs without

mention of cardiomyopathy-related toxicity described in their

labels throughout the sections of clinical studies, postmar-

keting experiences, and warnings and precautions, we also

searched literature and published reviews1 to reach the con-

clusion that they are nontoxic drugs.

Predictive modeling
Applying EN to DEGs (pipeline 1). Using LOOCV across

the whole list of 30 drugs and their gene expression

Table 1 The list of drugs with gene expression in cardiomyocytes and their

cardiotoxicity classification

Drug name Classification Referencea

Afatinib 0 Drugs@FDA and literature search

Alendronate 0 Drugs@FDA and literature search

Amiodarone 1 Drugs@FDA

Axitinib 1 Drugs@FDA

Bosutinib 0 Drugs@FDA and literature search

Cefuroxime 0 Drugs@FDA and literature search

Crizotinib 0 Drugs@FDA and literature search

Cyclosporine 0 Drugs@FDA and literature search

Cytarabine 1 NIH DailyMed

Dasatinib 1 Drugs@FDA

Diclofenac 1 Drugs@FDA

Domperidone 0a Not approved by FDA

Doxorubicin 1 Drugs@FDA

Diethylpropion 0 Drugs@FDA and literature search

Erlotinib 0 Drugs@FDA and literature search

Gefitinib 0 Drugs@FDA and literature search

Imatinib 1 Drugs@FDA

Lapatinib 0 Drugs@FDA

Methotrexate 0 Drugs@FDA and literature search

Olmesartan 0 Drugs@FDA and literature search

Paroxetine 1 Drugs@FDA

Ponatinib 1 Drugs@FDA

Regorafenib 0 Drugs@FDA and literature search

Ruxolitinib 0 Drugs@FDA and literature search

Sorafenib 1 Drugs@FDA

Sunitinib 1 Drugs@FDA

Tofacitinib 0 Drugs@FDA and literature search

Trametinib 1 Drugs@FDA and literature search

Ursodeoxycholic acid 0 Drugs@FDA and literature search

Vandetanib 1 Drugs@FDA

Vemurafenib 0 Drugs@FDA and literature search

FDA, US Food and Drug Administration; NIH, National Institutes of Health.

Note: Toxic: 1 (clinical incidence�0.1%), and nontoxic: 0 (clinical incidence

<0.1%). https://dailymed.nlm.nih.gov/dailymed/
aDomperidone was profiled by Drug Toxicity Signature Generation Center

(DtoxS) and toxicity information was from http://www.hc-sc.gc.ca/dhp-mps/

medeff/reviews-examens/domperidone-eng.php.
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signatures, we achieved 79% accuracy and 75% precision,

with 80% sensitivity and 79% specificity when using those

genes that were expressed in at least 11 of the 34 signa-

tures (a cutoff of 11 in spreadsheet “9” of Supplementary

Table S4). The results of EN regularization are shown in

Figure 2a,c, and the genes/proteins with non-zero coeffi-

cients are PHF19, HSPA8, RIF1, CD46, MXRA7, RAB27A,

TOMM20, MYO6, and CCNA2. The ROC curves and

precision-recall curves are shown in Figure 3 and Supple-

mentary Figure S2 of Supplementary Document-CMap),

respectively.

Applying EN to the gene/protein nodes in ILP-constructed

signaling networks (pipeline 2). By applying EN regression

and LOOCV, we were able to increase both prediction

accuracy and precision to 88%, with 88% sensitivity, and

89% specificity, compared with the results from EN regres-

sion of DEGs (Supplementary Table S4). The EN regulari-

zation is shown in Figure 2b,d. The result for the

psccm_34_ILP_heart trial is in the spreadsheet “summary”

and the detailed results of 31 models with a cutoff ranging

from 1 (5,012 genes/proteins in at least 1 drug) to 31 (5

genes/proteins in at least 31 network signatures) are in

spreadsheet “10” of Supplementary Table S4. The highest

accuracy, sensitivity, and specificity were achieved at cutoff

of 10 with 189 genes/proteins from at least 10 drugs’ sig-

naling networks. The ROC and precision-recall curves are

shown in Figure 3 and Supplementary Figure S3,

respectively.
We concluded that EN-ILP (pipeline 2) outperformed EN

alone (pipeline 1) when applied to the same set of DEGs.

Cardiac context of top predictors
Using EN regularization, we were able to extract the

protein/gene predictors that best predict the toxicity classifi-

cation of drug-induced cardiotoxicity (either toxic for�0.1%

clinical incidence or nontoxic for<0.1%). The 33 protein/

gene predictors along with their individual coefficients are

summarized in Table 2. The network of the top 15 genes/

proteins selected by the model is presented in Figure 4.

Cardiac relevance of these predictors was reviewed and

summarized in Supplementary Table S6. The protein and

gene predictors identified by EN-ILP reflected the key cellu-

lar biological factors for drug-induced cardiotoxicity. The EN

regularization in our predictive modeling selected the

protein/gene predictors that best predicted drug-induced

cardiotoxicity.
We mined an evidence-based database of microRNAs26

for those that reportedly regulate our top predictors, and

also referenced literature to narrow the list to those that are

reportedly of diagnostic value for heart failure. Summarized

in Table 3 are our top 10 predictors and their individual reg-

ulating microRNAs that have reportedly been of diagnostic

Figure 2 Plots of elastic net regularization results. (a and b) Show selection of the alpha parameter in the elastic net regularization by
minimizing the leave-one-out cross validation (LOOCV) mean squared error to extract the features (genes) that best predict clinical
incidence of cardiomyopathy. (c and d) Show the number of variables kept in the model, with a vertical line showing the optimal num-
ber for maximization of accuracy. a and c refer to the results of analyzing gene expression data only, whereas b and d correspond to
the results of analyzing drugs’ signaling networks obtained from integer linear programming formulation analysis. Each of the plotted
lines in c and d corresponds to a variable (for example, a specific gene’s expression) and shows how its coefficient changes with the
log lambda parameter of elastic net. The vertical line shows the optimal number of parameters kept and their coefficients for maximiza-
tion of accuracy.
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value for natural heart failure27,28 or for doxorubicin-induced

cardiomyopathy.29

DISCUSSION

With the clinical incidence of drug-induced cardiomyopathy

as a dependent variable, ILP-enhanced predictive modeling

increased prediction accuracy from 79% to 88%, compared

to modeling with EN and DEGs alone. This improved pre-

diction signified the ability of ILP to computationally capture

a drug’s mode of action through constructing its signaling

pathways for the purpose of predictive modeling. ILP offers

the advantage of integrating our prior knowledge of biologi-

cal protein interactions and drug targets (Reactome and

STITCH), transcription factors, and DEGs into predictive

modeling. ILP also optimizes the size of a drug’s network

signaure in addition to capturing the signaling pathways of

a drug. Take lapatinib as an example, it had 2,265 DEGs

from cardiomyocytes, whereas from this set of DEGs, its

ILP network consisted of 1,923 nodes, including its targets,

proteins involved in its signaling transduction, transcription

factors, and functional DEGs.

The 33 gene/protein predictors along with their individual

positive or negative coefficients could be used to predict

“toxic” or “nontoxic” for a drug by linear summation using

their individual levels of expression (either upregulation (1)

or downregulation (-)) from its ILP-constructed signaling

network. The predictive power of this system’s pharmacol-

ogy predictive model will increase with the amount of data

in the training set.
Among the 31 drugs used to conduct predictive model-

ing, the distribution of toxic (n 5 13) vs. nontoxic (n 5 18)

classification was acceptable, although not ideal. Among

them, there were 18 kinase inhibitors (17 TKIs and 1 serine/

threonine kinase inhibitor), which might seemingly be off-

balance from the perspective of the diversity of drug class.

Vemurafenib is a serine/threonine kinase inhibitor and not

toxic. The distribution of toxic (n 5 8) and nontoxic (n 5 9)

drugs among the 17 TKIs was acceptable. TKIs, in general,

lack target specificity, have multiple targets, and were

designed to disrupt the signaling pathways that are vital to

cancer cell survival.30 Unfortunately, several of these signal-

ing pathways also play a critical role in cardiomyocyte biol-

ogy31; consequently, several TKIs impair cardiac function.

Within this context, our predictive modeling could be useful

for predicting cardiac toxicity for future new chemical entities.

Figure 3 Receiver operating characteristic (ROC) curves. (a) ROC curve from modeling differentially expressed genes (DEGs) using
elastic net (EN) and (b) ROC curve from modeling by subjecting these DEGs to integer linear programming (ILP) to construct their indi-
vidual drugs’ signaling networks and then subject these networks to EN. PSCCM, human cardiomyocytes.

Table 2 Predictors with non-zero coefficients from modeling/analysis of cardiomyocyte data

Gene/protein Coefficient Gene/protein Coefficient Gene/protein Coefficient Gene/protein Coefficient

CYP3A4 20.39 TOP2A 20.11 FLI1 20.03 H2AFX 20.01

ZNF823 0.29 MAX 0.09 TCF12 20.03 IRF1 20.011

CASP3 0.20 JUND 20.08 AHR 0.03 MAP3K5 0.01

HJURP 20.19 MAPK12 20.07 BCR 0.03 E2F1 0.01

EPHA2 20.19 RXRA 0.07 GATA3 0.03 SMOC2 0.01

STAT1 20.17 HOXA5 20.07 SMC3 0.02 CYP2D6 20.01

SP2 0.15 STAT5A 20.05 EDN1 0.02

PDGFR-A 20.12 TCF7L2 0.05 FOXF2 20.02

TRIM28 20.12 NR4A2 20.03 CTCFL 20.02

Nodes from drugs’ signaling networks constructed using integer linear programming (ILP) included proteins (targets and protein-protein interactions) and genes

(differentially expressed). The gene/protein nodes from ILP were then subjected to elastic net regularization.
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All top 15 gene/protein predictors have relevant cardiac

functions except ZNF 823 (Supplementary Table S5). Inter-

estingly, CYP3A4 was an important predictor. Although

CYP3A4 does not have biological interactions with other pre-

dictors, as shown in Figure 4, it is a major drug metabolizing

enzyme.1 Among the 31 drugs, 10 of 13 (85%) toxic drugs

and 11 of 18 (61%) nontoxic drugs were metabolized by

CYP3A4. The toxic drugs that are primarily or extensively

metabolized by CYP3A4, included amiodarone, axitinib,

cytrabine, dasatinib, doxorubicin, imatinib, ponatinib, sorafe-

nib, sunitinib, and vandetanib.1,32–34 For nontoxic drugs, they

are bosutinib, crizotinib, cyclosporine, domperidone, erlotinib,

gefitinib, lapatinib, regorafenib, ruxolitinib, tofacitinib, and

ursodeoxycholic acid.1,35

Some top predictors are biologically associated with focal

adhesion kinase (FAK), a nonreceptor protein-tyrosine
kinase, which is involved in the cytoskeleton-associated

network of signaling proteins.36 Focal adhesion complexes

play a critical role in how cultured cardiomyocytes respond
to mechanical and neurohormonal stimuli, and in the devel-

opment of heart failure.37 FAK activation plays a role in the

adaptive response to cardiac afterload and in myocyte
growth via the protein kinase B/mammalian target of rapa-

mycin pathway.38 the FAK cleavage is mediated by CASP3

family during apoptosis of human normal cells,39 and
occurs with activation of EPHA2 and p38 mitogen-activated

protein kinase during doxazosin-induced apoptosis of a car-

diac cell line.40 FAK activates STAT1 during cell attach-
ment,41 and plays a role in cell migration with one of its

actions being associated with platelet-derived growth factor

receptor (PDGFR) signaling complex.42 In short, the top
predictors are important to maintain normal cardiac function.

Per literature, some microRNAs that reportedly regulated

expression of our predictors have also been shown to be of

diagnostic value for heart failure with a varying degree of
severity (Table 3).27,28 Among them, miR193-3p and

miR26b-5p reportedly regulated more predictors than other

microRNAs, and regulated four and three of our top predic-

tors, respectively. It might be worthy of clinical studies to
determine whether miR193-3p and miR26b-5p are useful in

vivo biomarkers for drug-induced cardiomyopathy. Literature

search uncovered a recent study that investigated circulat-
ing microRNAs in children with anthracycline-induced acute

heart injury.29 Elevated miR-29b and miR-499 in the circula-

tion seemed to correlate with troponin elevation in these
children, and were identified as potential cardiomyopathy

biomarkers.29 This observation of miR-29b elevation in

doxorubicin-induced cardiomyopathy differed from an
observation of decreased expression of miR-29b-3p in the

coronary sinus blood of patients with heart failure.28 The

MiR-29b-3p regulates expression of one of our top 10 pre-
dictors, PDGFR-A. Further studies are needed to investi-

gate the role of miR-29b in drug-induced cardiomyopathy or

Figure 4 Interactions among the top 15 gene/protein predictors.
Interactions among the top 15 genes/proteins selected by our
model to best predict cardiomyopathy using cardiomyocytes data
are depicted as a network using the STITCH website for visuali-
zation. Small nodes correspond to protein of unknown 3D struc-
ture and large nodes to known or predicted. Edges represent
protein-protein associations and the intensity of the line is pro-
portional to the confidence score of each association. The confi-
dence score is calculated by combining the probabilities from all
evidence channels and is corrected for random observation
probability.

Table 3 Top 10 predictors and their corresponding regulating microRNAs that are reportedly of diagnostic value for heart failure

Predictors Regulating microRNAsa that are of diagnostic value References

CYP3A4 No information

ZNF823 miR193-3p (#) Schulte et al.27

CASP3 miR-375b, miR-26b-5p (#); miR-30e-5p (#), let-7a-5p (") Schulte et al.27; Marques et al.28

HJURP miR-671-5p (") Schulte et al.27

EPHA2 miR-26b-5p (#), miR-193b-3p (#); miR-16-5p (#) Schulte et al.27; Marques et al.28

STAT1 miR 145-5p (#) Schulte et al.27

SP2 miR-29a-3p (#), miR-638b Schulte et al.27

PDGFR-A miR-140-5p (#); miR-26b-5p (#); miR-29b-3p (#);
181a-5p ("); miR-1233 (")

Schulte et al.27; Marques et al.28

TRIM28 miR-423-5p (inconsistent reports), miR-193b-3p (#),
miR-183-3p (#), miR-92a-3p (#)

Schulte et al.27

TOP2A miR-193b-3p (#), miR-21-5p (") Schulte et al.27, Marques et al.28

aRegulating microRNAs are from Chou et al.26 (http://mirtarbase.mbc.nctu.edu.tw).
bDifferentiating heart failure with reduced ejection fraction from heart failure with preserved ejection fraction. "and # represent elevation and decrease, respec-

tively, compared to healthy controls.
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in natural heart failure. Even though miR-27b reportedly
regulated CYP3A4,26,43 literature search did not uncover
any reports that suggested miR-27b to be of diagnostic
value for drug-induced cardiomyopathy.

Integrating clinical incidence with the modes of action of
a drug, which is depicted as its signaling network, for pre-
dictive modeling is a strength of our study. There are, how-
ever, some limitations in our approach: (1) nontoxic slightly
outnumbered toxic drugs; (2) limitation of ILP where no bio-
logical feedback controls were considered and assumptions
adopted in ILP formulation; (3) DEGs of doxorubicin in car-
diomyocytes were from different sources than the rest of 30
drugs; and (4) availability of transcriptomic profiling data in
cardiomyocytes. Furthermore, our study inherited the short-
comings associated with the databases and knowledge
base used for our modeling. The impact of disease indica-
tions on the incidence and severity of treatment-related car-
diomyopathy is not well characterized.

Our predictive modeling of integrating clinical incidence
of drug-induced cardiomyopathy with the signaling network
of toxic and nontoxic drugs not only is useful for further
improving its predictive power, but also identifies important
gene/protein predictors that have relevant cardiac biological
functions. Above all, the top genes/protein predictors are
reportedly regulated by specific microRNAs that have been
shown to be of diagnostic value for heart failure or drug-
induced cardiomyopathy. These predictors might be useful
for shedding light on potential microRNAs as in vivo bio-
markers of drug-induced cardiomyopathy.
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