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In this article, a general geometric singular
perturbation framework is developed to study
the impact of strong, spatially localized, nonlinear
impurities on the existence, stability and bifurcations
of localized structures in systems of linear reaction–
diffusion equations. By taking advantage of the
multiple-scale nature of the problem, we derive
algebraic conditions determining the existence and
stability of pinned single- and multi-pulse solutions.
Our methods enable us to explicitly control the
spectrum associated with a (multi-)pulse solution. In
the scalar case, we show how eigenvalues may move
in and out of the essential spectrum and that Hopf
bifurcations cannot occur. By contrast, even a pinned
1-pulse solution can undergo a Hopf bifurcation in a
two-component system of linear reaction–diffusion
equations with (only) one impurity.

This article is part of the theme issue ‘Stability of
nonlinear waves and patterns and related topics’.

1. Introduction
The analysis of the impact of spatial defects on
systems of partial differential equations has received
a great deal of attention over the past few decades
([1–20], e.g.). A large part of this research centred
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around heterogeneous Schrödinger-type equations ([5,6,9,10,12,18], e.g.) and typical defects
considered are Dirac delta-function-like defects ([5,10,12,14,18], e.g.) and step-function-like
defects ([7,8], e.g.). It has, for instance, been shown that spatial defects are able to pin travelling
waves in nonlinear wave equations [2,3,11].

In this manuscript, we are interested in the impact of large, spatially localized, nonlinear
defects on the pattern formation process for linear systems of reaction–diffusion equations
(RDEs). In particular, we are interested in strongly localized impurities that have the structure of
Dirac delta-function-type perturbations in the singular limit ε → 0,

α

ε2 I
(

x − x0

ε2

)
G(U), (1.1)

where 0 < ε � 1 is a sufficiently small parameter, α ∈ R is a parameter measuring the strength
of the impurity and G is a sufficiently smooth nonlinear function (of the state variable U) that
satisfies G(0) �= 0. The Dirac delta-type impurity I is centred around ξ0 := x0/ε

2 and is assumed to
decay exponentially fast. Without loss of generality, we furthermore assume that

∫∞

−∞
I(ξ ) dξ = 1, ξ := x

ε2 . (1.2)

A typical example of such a Dirac delta-type impurity is I0(ξ0) = (1/
√

π) e−ξ 2
0 . Hence, for ε → 0,

(1.1) is locally (near x0) asymptotically large and effectively negligible otherwise.
We analyse the impact several of these strongly localized impurities of the form (1.1) can

have on the existence, stability and bifurcations of stationary, or pinned, single- and multi-pulse
solutions for systems of RDEs in one spatial dimension. More specifically, we study

∂U
∂t

= D̄
∂2U
∂x2 + AU +

n∑
i=1

αi

ε2 Ii

(
x − xi

ε2

)
Gi(U), (1.3)

where (x, t) ∈ R × R
+, U(x, t): R × R

+ → R
N are the state variables, D̄ is a diagonal diffusion N ×

N-matrix with positive entries, i.e. D̄ = diag(d1, . . . , dN) with di > 0. The constant N × N-matrix A
is chosen such that the trivial state U ≡ 0 of the unperturbed system

∂U
∂t

= D̄
∂2U
∂x2 + AU, (1.4)

is stable. Note that U ≡ 0 is not a solution to the perturbed problem (1.3) since Gi(0) �= 0 by
assumption. In addition, 0 < ε � 1 and all other parameters are assumed to be O(1) with respect
to ε. The strongly localized impurities (αi/ε

2)Ii((x − xi)/ε2)Gi(U) are all of the form (1.1) and
they are centred around the well-separated locations xi in the sense that 0 < xi+1 − xi =Os(1) for
i = 1, . . . , n − 1. That is, xi+1 − xi =O(1) and xi+1 − xi �� 1.

The unperturbed system (1.4) does not possess stationary pulse solutions since it is linear
and the addition of strongly localized impurities (potentially) creates stationary/pinned—or even
oscillatory—pulse solutions that asymptote to the background state U = 0. This is similar to
paradigmatic singularly perturbed slow-fast RDEs with linear slow flow, such as the Gray–Scott
and Gierer–Meinhardt models, where a fast V-component can be interpreted as being added to the
linear RDE for the slow U-component ([21–23], e.g.). In other words, adding the strongly localized
impurities of the form (1.1) to (1.4) to create localized solutions can be seen as a simplifying
alternative to adding fast components to (1.4). Adding strongly localized impurities to (1.4) is
a very controllable way to make a linear system locally nonlinear and it is not unrealistic from an
applied point of view as the linearity of the model breaks down under strong perturbations. Also,
as we will show, (1.3) is very amendable for analysis while its localized structures exhibit rich and
fully controlled behaviour. For instance, the leading order parts of the eigenvalues determining
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the stability of the pinned pulse solutions can be computed explicitly and the computations are
drastically simpler than the technical Evans function computations for slow–fast RDEs ([24],
e.g.). So, (1.3) could, for instance, easily be used as a starting point—and organizing centre—for
understanding complex, or maybe even chaotic, pulse dynamics ([25,26], e.g.).

Remark 1.1. The present work distinguishes itself in two ways from the existing literature on
the impact of strongly localized impurities on the dynamics of evolutionary PDEs ([5,10,12,14,18],
e.g.). Firstly, our approach is developed in the setting of a general class of RDEs, while all the
literature we are aware of is focused on specific models (see also the discussion in §4). Secondly,
the present analysis is valid for ε > 0 (but sufficiently small), i.e. for (more) realistic impurities
of the type (1.1) that only become of Dirac delta-functions in the singular limit ε → 0. In other
words, the current analysis extends the singular limit approach—with Dirac delta-function-
type impurities—of the large majority of the literature (see, however, also [17,18]). In fact, our
approach may serve as a (geometric) framework by which results presented in the literature may
be rigorously validated and extended beyond the Dirac delta-function limit to impurities of the
type (1.1).

(a) Results and outlook
The strong localization of the nonlinearities in (1.3) allows us to develop a general geometrical
singular perturbation framework to study the existence, stability and bifurcations of these pinned
pulse solutions supported by (1.3). More specifically, (1.3) is to leading order linear away from
the impurities and it can thus be solved—to leading order—explicitly in these slow regions. The
nonlinearities Gi of the strongly localized impurities are then used to construct pinned pulse
solutions by appropriately concatenating the different slow parts over the fast regions. Also, by
the linearity of the slow problem (i.e. (1.4)) it directly follows that n impurities are needed to
be able to construct a pinned n-pulse solution. Observe that the construction of the pinned
pulse solutions is similar to—but algebraically simpler than—the construction of pulse solutions
in, for example, the Gray–Scott and Gierer–Meinhardt models with linear slow components
([21–23], e.g.).

To determine the spectral—and nonlinear [27]—stability of such a constructed pinned pulse
solution, we linearize (1.3) around the pinned pulse solution. The spectrum of the linearized
stability problem naturally falls into two parts: the essential spectrum σess and the point spectrum
σpt containing the associated eigenvalues ([27], e.g.). The former deals with instabilities arising
from ±∞, while the latter deals with instabilities arising near the pulses, or interfaces, of the
associated pinned pulse solution. By the particulars of the model, the essential spectrum of a
pinned pulse solution supported by (1.3) coincides, to leading order, with the spectrum of the
trivial state U ≡ 0 of the unperturbed problem (1.4). Since we require the latter to be stable,
the essential spectrum of a pinned pulse solution is—by assumption—always fully contained
in the open left-half plane and thus does not yield instabilities. Consequently, the stability of a
pinned pulse solution supported by (1.3) is fully determined by the location of its eigenvalues.
In sharp contrast to typical RDEs, it is relatively straightforward to determine the leading order
parts of these eigenvalues as we can directly relate the associated linear stability problem to the
existence problem in the different slow and fast regions. However, see also remark 1.4. Hence, we
have explicit control over the eigenvalues—and thus the stability—of the pinned pulse solutions
supported by (1.3). This allows us, for example, to directly search for Hopf, and other types of
more complex, bifurcations.

For the scalar case, the diffusion matrix D̄ = d1 can be scaled to one, and the requirement that
the trivial state U ≡ 0 of the unperturbed problem (1.4) is stable implies that A (which is a scalar
in this case) is negative. Therefore, we define μ := −A and we prove the following result.

Theorem 1.2. Fix N = 1, d1 = 1 and 0 > A := −μ and let ε be small enough. Then, (1.3) with n
impurities supports pinned n-pulse solutions (with the ith pulse centred at xi) if there exist non-degenerate
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Figure 1. (a) Numerically obtained stable pinned 1-pulse solutionU+
p supported by the scalar version of (1.3) with one impurity

located at the origin. In particular, n= 1 and x1 = 0 in (1.3). In addition, D̄= 1,μ(:= −A)= 0.8,α1 = 1, ε = 0.1, I1(ξ )=
(1/

√
π ) e−ξ 2

and G1(U)= −U2 + 4U − 1. (b) Close-up of (a) around the impurity. The dots indicate the numerically
obtained pinned 1-pulse solution, while the solid curve represents the asymptotically constructed leading order pinned 1-pulse
solution. (c) The leading order magnitude ū± of the pinned 1-pulse solutions supported by themodel as function of the system
parameterμ obtained from the existence condition (1.5) of theorem 1.2. The solid curve represents stable pulse solutions U+

p as
obtained from the stability condition related to (1.6) of theorem 1.2. The dashed curve represents unstable pulse solutions U−

p

also supported by the model. The dot on the stable curve atμ = μ∗ = 9
16 indicates the emergence/disappearance of a point

eigenvalue out of/into the essential spectrum, see remark 2.1 and §2a(i) for more details.

{ūi}n
i=1 solving the system of equations

2
√

μūi =
⎛
⎝ n∑

j=i

αjGj(ūj) e−√
μxj

⎞
⎠ e

√
μxi +

⎛
⎝ i−1∑

j=1

αjGj(ūj) e
√

μxj

⎞
⎠ e−√

μxi , i = 1, . . . , n. (1.5)

The amplitude of the ith pulse of such a pinned n-pulse solution is to leading order given by ūi.
All eigenvalues λ of such a pinned n-pulse solution are real-valued and the n-pulse solution is stable if

all λ > −μ for which the matrix M(λ) :=⎛
⎜⎜⎜⎜⎝

α1G′
1(ū1) − 2

√
μ + λ α2G′

2(ū2) e−√
μ+λ(x2−x1) · · · αnG′

n(ūn) e−√
μ+λ(xn−x1)

α1G′
1(ū1) e−√

μ+λ(x2−x1) α2G′
2(ū2) − 2

√
μ + λ · · · αnG′

n(ūn) e−√
μ+λ(xn−x2)

...
...

. . .
...

α1G′
1(ū1) e−√

μ+λ(xn−x1) α2G′
2(ū2) e−√

μ+λ(xn−x2) · · · αnG′
n(ūn) − 2

√
μ + λ

⎞
⎟⎟⎟⎟⎠ (1.6)

is non-invertible, necessarily have �(λ) < 0—see also remark 1.5.

See figure 1 for an example of a numerically obtained stable pinned 1-pulse solution supported
by the scalar version of (1.3). The fact that all eigenvalues of a pinned n-pulse solution of the
scalar version of (1.3) are real-valued stems from the fact that the associated stability problem is
a Sturm–Liouville problem ([27], e.g.). A direct consequence is that, unlike their counterparts in
two-component slow-fast RDEs ([24], e.g.), pinned n-pulse solutions of the scalar version of (1.3)
cannot undergo Hopf bifurcations. A straightforward computation also shows that the matrix
M(0) (1.6) is non-invertible if and only if {ū}n

i=1 is a degenerate solution of (1.5). So, upon changing
a system parameter, a stable pinned n-pulse solution and unstable pinned n-pulse solution
generically merge and disappear in a saddle-node bifurcation when λ = 0 is an eigenvalue (of
both pinned 1-pulse solutions), see, for example, §2a(i) and figure 1. Or, alternatively, a stable
pinned n-pulse solution and unstable pinned n-pulse solution merge and exchange stability via
a transcritical bifurcation when λ = 0 is an eigenvalue. In §2, we first introduce the geometrical
singular perturbation framework to study the existence and stability of pulse solutions supported
by (1.3) for N = 1 and n = 1. As it turns out, the linearity of (1.3) away from the localized
impurities significantly simplifies the stability analysis and the stability condition follows, in
essence, directly from the existence analysis. However, see also remark 1.4. Next, we use this
general framework to prove theorem 1.2.
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In contrast to the scalar case, pinned pulse solutions can undergo a Hopf bifurcation for
systems of RDEs with strongly localized impurities—even when there is only one impurity. To
show this, we study the simplest system of RDEs of the form (1.3) in §3. That is, we study (1.3)
with N = 2 and n = 1. However, see also remark 1.6. Without loss of generality, we can assume
that the impurity is located at the origin and that the diffusion coefficient of the U1-component is
scaled to 1, i.e. d1 = 1. That is, we study

∂U1

∂t
= ∂2U1

∂x2 + aU1 + bU2 + α

ε2 I1

(
x
ε2

)
G1(U1, U2)

and
∂U2

∂t
= D

∂2U2

∂x2 + cU1 + dU2 + β

ε2 I2

(
x
ε2

)
G2(U1, U2),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (1.7)

with G1(0, 0) �= 0 �= G2(0, 0) to ensure that U ≡ 0 is not a solution to (1.7). The requirement that
the trivial state U ≡ 0 of the unperturbed problem (1.4) is stable implies that a + d < 0, ad − bc > 0
and a + d/D < 0—which is the standard condition that prevents Turing instabilities ([28], e.g.).
We prove the following result by generalizing the geometric singular perturbation framework for
the scalar case.

Theorem 1.3. Let a, b, c, d, D be such that a + d < 0, a + d/D < 0 and ad − bc > 0 and let ε be small
enough. Then, (1.7) supports pinned 1-pulse solutions (U1,p, U2,p) centred around 0 if there exist non-
degenerate (ν∗

1 , ν∗
2 ) ∈ R

2 solving

2(ν1v
+
1,+ + ν2v

−
1,+) = αG1(ν1u+

1,+ + ν2u−
1,+, ν1u+

2,+ + ν2u−
2,+)

and 2(ν1v
+
2,+ + ν2v

−
2,+) = β√

D
G2(ν1u+

1,+ + ν2u−
1,+, ν1u+

2,+ + ν2u−
2,+).

⎫⎪⎬
⎪⎭ (1.8)

Here, v±
1,2,+ and u±

1,2,± are explicitly known quantities depending on the system parameters and the
particulars of the impurity. The amplitudes (ū1, ū2) of the (U1, U2)-coordinates of a pinned 1-pulse solution
are to leading order given by (ν1u+

1,+ + ν2u−
1,+, ν1u+

2,+ + ν2u−
2,+).

A pinned 1-pulse solution (U1,p, U2,p) is stable if all λ ∈ C \ σess solving

det(N (λ)) = det

(
A(λ) B(λ)
C(λ) D(λ)

)
= 0, (1.9)

have �(λ) < 0. Here, σess and A(λ),B(λ), C(λ),D(λ) : C \ σess → C are explicitly known and depend on
the system parameters and the impurities.

We refer to §3 for the details regarding v±
1,2,+, u±

1,2,± and the matrix N (λ). Observe that, as
for the scalar case, λ = 0 being an eigenvalue is again related to the solution (ν∗

1 , ν∗
2 ) of (1.8)

being degenerate. It is now straightforward to derive conditions on the system parameters and
impurities such that a pinned pulse solution of (1.7) can undergo a Hopf bifurcation, see §3b(i).

We end the manuscript with a discussion and outlook of future projects related to systems
with strong localized impurities.

Remark 1.4. In principle, we could have used an Evans function framework ([29], e.g.) to obtain
the stability results of theorems 1.2 and 1.3. In fact, (1.6) and (1.9) can be directly related to a
condition of the form E(λ) = 0, where E(λ) is a—remarkably simple and very explicit—Evans-
function associated with the spectral stability problem. We decided not to pursue this direction
for the brevity and readability of the manuscript.

Remark 1.5. In this manuscript, we use the convention that �(
√

x) > 0 for x ∈ C \ (−∞, 0].

Remark 1.6. While theorem 1.3 only entails pinned 1-pulse solutions of (1.7) (i.e. (1.3) with
N = 2 and n = 1), the geometrical singular perturbation framework presented in this manuscript
can also be used to study linear systems of RDEs of arbitrary size and with an arbitrary number
of impurities, i.e. (1.3) for arbitrary N and n. However, for algebraic simplicity and brevity, we
decided to focus on only the scalar case (i.e. N = 1) and the two-component case with one impurity
(i.e. N = 2 and n = 1) in this manuscript.
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2. Scalar linear reaction–diffusion equations with impurities
We start by analysing the scalar version of (1.3)

∂U
∂t

= ∂2U
∂x2 − μU +

n∑
i=1

αi

ε2 Ii

(
x − xi

ε2

)
Gi(U), (2.1)

with U(x, t) : R × R
+ → R and where, without loss of generality, the diffusion constant D̄ = d1 has

been scaled to 1, −A := μ > 0—to ensure that trivial state U ≡ 0 of the unperturbed problem (1.4)
is stable—and the impurities are as described in (1.1).

(a) Pulse solutions with one impurity
To introduce the methodology, we first focus on the impact of one impurity, i.e. we take n = 1.
Without loss of generality, we centre this impurity at the origin, i.e. we set x1 = 0. Hence, pinned
pulse solutions correspond to homoclinic solutions governed by the following second-order
ordinary differential equation (ODE)

0 = d2u
dx2 − μu + α

ε2 I
(

x
ε2

)
G(u). (2.2)

The strong spatial localization of the impurity imposes two different spatial scales, x versus
ξ := x/ε2, on (2.2). Consequently, we can study (2.2) using geometric singular perturbation theory
(GPST) [30,31]. More specifically, we split our spatial domain into three regions I−s := (−∞, −ε),
If := [−ε, ε] and I+s := (ε, ∞), and we use the two different spatial scales to study (2.2) in the
different regions. Note that the boundaries ±ε of these regions are asymptotically small compared
to x, while they are asymptotically large compared with ξ . In the slow regions I±s , the impurity
is exponentially small and the slow flow of (2.2) is approximated by the following system of
first-order ODEs

du
dx

= v

and
dv

dx
= μu.

⎫⎪⎪⎬
⎪⎪⎭ (2.3)

The origin is a saddle point with stable manifold ls := {(u, v) | v = −√
μu} and unstable manifold

lu := {(u, v) | v = √
μu}. So, for a fixed u, the distance between the stable manifold and unstable

manifold is �sv(u) = −2
√

μu.
In the fast, or defect, region If near the origin, the impurity is dominating the dynamics of (2.2)

and to describe this fast flow we use the fast spatial time scale ξ := x/ε2. This transforms (2.2) to

0 = d2u
dξ2 + ε2αI(ξ )G(u) − ε4μu. (2.4)

Note that (2.2) and (2.4) are equivalent as long as ε �= 0. To leading order, the flow of (2.4) is
governed by d2u/dξ2 + ε2αI(ξ )G(u) = 0, which we equivalently write as

du
dξ

= εw

and
dw
dξ

= −εαI(ξ )G(u).

⎫⎪⎪⎬
⎪⎪⎭ (2.5)

Note that w = εv = εux and that since uξ =O(ε) in (2.5), u is to leading order constant in the fast
region If. In other words u = ū + O(ε) in If. Consequently, the accumulated change of w during a
passage through the fast region If is

�fw(ū) := −εα

∫
If

I(ξ )G(u(ξ )) dξ = −εα

∫ 1/ε

−1/ε

I(ξ )G(u(ξ )) dξ = −εαG(ū) + O(ε2), (2.6)

since we assumed that
∫+∞

−∞ I(ξ ) dξ = 1.
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In the singular limit ε → 0, a homoclinic solution to (u, v) = (0, 0) to (2.2) should follow lu of
(2.3), take off from lu following the fast dynamics of (2.5) and touch down again on ls, and then
follow ls of (2.3) back to the origin ([22], e.g). Thus, �sv(ū) and �fw(ū) should be the same up to a
factor ε (since w = εv) and we get that ū—the leading order component of u over the fast field—is
determined by the solutions ū of the nonlinear algebraic expression

2
√

μu = αG(u). (2.7)

In addition, a homoclinic solution to (2.2) is in the singular limit ε → 0 given by

uh(x) =

⎧⎪⎪⎨
⎪⎪⎩

ū e
√

μx, x ∈ I−s ,

ū, x ∈ If,

ū e−√
μx, x ∈ I+s ,

(2.8)

where ū solves (2.7) and observes that the magnitude of the homoclinic solution uh is given by
ū. This homoclinic solution uh corresponds to a pinned 1-pulse solution Up(x) of (2.1) with one
impurity (i.e. n = 1). As long as the solution ū to (2.7) is non-degenerate, i.e. as long as the curves
of (2.7) intersect transversally, then this pinned 1-pulse solution persists, and is to leading order
given by (2.8), for ε �= 0 small [30,31]. Note that this in essence establishes the existence part of
theorem 1.2 for n = 1, for more details see the proof of theorem 1.2 below.

To determine the spectral (and nonlinear) stability of a pinned 1-pulse solution Up(x), which is
to leading order given by (2.8), we linearize (2.1) around Up(x). As alluded to in the Introduction,
the linearized operator has no essential spectrum [27] in the right-half plane. Hence, we focus on
the point spectrum of the linearized operator. The associated eigenvalue problem determining
the point spectrum σpt is obtained by substituting the ansatz U(x, t) = Up(x) + e−λtp(x), with
λ ∈ C \ σess with σess = (−∞, −μ], into (2.1) and linearizing the resulting expression. This gives

d2p
dx2 − (μ + λ)p + α

ε2 I
(

x
ε2

)
G′(Up)p = 0. (2.9)

The spatial localization of the impurity and the fact that Up is to leading order constant in the
fast field If allows us to treat (2.9) in a similar fashion as (2.2). In fact, in the slow regions I±s the
impurity is exponentially small and the slow flow of (2.9) is approximated by

dp
dx

= q

and
dq
dx

= (μ + λ)p.

⎫⎪⎪⎬
⎪⎪⎭ (2.10)

Hence, the leading order slow flow of (2.9) in the slow regions can be obtained from the leading
order slow flow of (2.3) by replacing μ with μ + λ. In particular, �sq(p) = −2

√
μ + λp. In the fast

region near the origin, the impurity is dominating the dynamics of (2.9). Moreover, since Up = ū
to leading order in the fast field, the fast flow of (2.9) is approximated by

dp
dξ

= εr

and
dr
dξ

= −εαI(ξ )G′(ū)p,

⎫⎪⎪⎬
⎪⎪⎭ (2.11)

with ξ := x
ε2 . We can directly relate (2.11) to (2.5) by replacing G′(ū)p with G(u). Hence, p is to

leading order constant in If and �fr(p̄) = −εαG′(ū)p̄ + O(ε2). Consequently, the eigenvalue of a
non-trivial eigenfunction p related to a pinned 1-pulse solution Up is, to leading order, determined
by the solution of

2
√

μ + λ = αG′(ū), (2.12)

see also (2.7).
Since �(

√
μ + λ) > 0, (2.12) has no solutions for αG′(ū) ≤ 0. Consequently, a pinned 1-pulse

solution Up for which αG′(ū) ≤ 0 only has essential spectrum and is thus stable. For αG′(ū) > 0,
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the eigenvalue of a pinned 1-pulse solution Up can be determined explicitly from (2.12) and is
given by

λ = α2

4
G′(ū)2 − μ. (2.13)

Hence, for αG′(ū) > 0, the pinned 1-pulse solution Up is stable if μ > (α2/4)G′(ū)2 > 0 and unstable
if 0 < μ < (α2/4)G′(ū)2.

Remark 2.1. At μ = μ∗ such that αG′(ū) = 0, an eigenvalue disappears into the essential
spectrum σess = (−∞, −μ] to form a resonance pole ([27], e.g.). Note that this provides a
remarkably simple explicit example of an eigenvalue moving into the essential spectrum σess.
See also figure 1c.

Remark 2.2. While the trivial state U ≡ 0 of the scalar RDE without impurities, i.e. (1.4), looses
stability as μ becomes negative, a pinned 1-pulse solution Up(x) of the scalar RDE with one
impurity ceases to exist or looses stability at μ = (α2/4)G′(ū)2 > 0. That is, a pinned 1-pulse
solution Up(x) of the heterogeneous system becomes unstable before the trivial solution U ≡ 0
of the associated homogeneous system becomes unstable. This can be interpreted as that the
impurity generates an instability within the defect region for 0 < μ < (α2/4)G′(ū)2, but that the
equation wants to remain near its trivial state in the slow regions away from the impurity. Hence,
for 0 < μ < (α2/4)G′(ū)2 we expect that the solution blows-up in the defect region or evolves to
another stable pinned 1-pulse solution. This is confirmed by numerical simulations.

(i) Example 1: scalar pinned 1-pulse solutions

To further illustrate the theoretical results discussed above, we consider the following scalar linear
RDE with one impurity

∂U
∂t

= ∂2U
∂x2 − μU + 1

ε2 I0

(
x
ε2

)
(−U2 + 4U − 1), (2.14)

where ε > 0 is small enough, μ > 0 and I0(ξ ) = (1/
√

π) e−ξ 2
. The existence criterion (2.7) implies

that, for ε small enough, (2.14) supports a pinned 1-pulse solution with leading order magnitude
ū if ū solves 2

√
μu = (−u2 + 4u − 1). This gives

ū± = 2 − √
μ ±

√
(2 − √

μ)2 − 1. (2.15)

Hence, (2.14) has two positive pinned 1-pulse solutions U±
p with leading order magnitude ū± > 0

(2.15) for 0 < μ < 1. These two solutions merge and disappear in a saddle-node bifurcation for μ =
1. Note that (2.14) also has two negative 1-pinned pulse solutions for μ > 9, we will not consider
these solutions here.

The eigenvalue expression (2.12) is only well defined for αG′(ū) > 0, and while αG′(ū−)
is always positive for 0 < μ < 1, αG′(ū+) is only positive for 9

16 < μ < 1. In other words, the
eigenvalue of ū+ disappears into the essential spectrum σess = (−∞, −μ] upon decreasing μ (from
1) to μ = μ∗ = 9

16 , see also remark 2.1. For αG′(ū±) > 0, the eigenvalue expression (2.13) for (2.14)
reduces to

λ± = 1
4 (−2ū± + 4)2 − μ = ((2 − √

μ)2 − 1) ∓ 2
√

μ

√
(2 − √

μ)2 − 1. (2.16)

So, λ− > 0 for 0 < μ < 1, while λ+ < 0 for 9
16 < μ < 1. Consequently, the pinned 1-pulse solution

U−
p is unstable for 0 < μ < 1, while the pinned 1-pulse solution U+

p is stable for 0 < μ < 1. See also
figure 1.
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xx1

x2

x3
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u–3
+
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+

u–1
+�s �u

v

(a) (b)
u–2

+

Figure 2. (a) Sketch of a pinned 3-pulse solution U3p(x). (b) The associated phase portrait in the slow (u, v)-coordinates. The
transitions through the three fast fields induced by the three impurities centred around x1,2,3 are indicated by the double arrows.

(b) Proof of theorem 1.2
In this section, we study the impact of n impurities on the scalar RDE (2.1) and we prove
theorem 1.2. A pinned n-pulse solution Un

p(x), see figure 2 for a typical sketch of a pinned 3-pulse
solution U3

p(x), corresponds to a homoclinic solution of

0 = d2u
dx2 − μu +

n∑
i=1

αi

ε2 Ii

(
x − xi

ε2

)
Gi(u). (2.17)

We proceed as in §2a to construct these pinned n-pulse solutions, but now we split the
spatial domain in n + 1 slow regions away from the impurities and n fast regions around
the impurities. That is, I1

s := (−∞, x1 − ε), Ii+1
s := (xi + ε, xi+1 − ε), for i = 1, . . . , n − 1, In+1

s :=
(xn + ε, ∞) and Ii

f := [xi − ε, xi + ε], for i = 1, . . . , n. All the impurities are exponentially small in
the n + 1 slow regions since the centres of the impurities are by assumption well-separated.
Hence, the slow flow of (2.17) in the slow regions is still to leading order given by the linear
equation (2.3), and

u(x) = Ai e
√

μx + Bi e−√
μx in Ii

s for i = 1, . . . , n + 1, (2.18)

where An+1 = B1 = 0 to ensure that the n-pulse solution approaches the background state U = 0 as
x → ±∞, while the other remaining 2n integration constants Ai and Bi still need to be determined.

In the ith fast region Ii
f, the ith impurity is dominating the dynamics of (2.17). Therefore, we

introduce n new fast variables ξi := (x − xi)/ε2 for i = 1, . . . , n, and the flow of (2.17) in the ith fast
region Ii

f is to leading order governed by

du
dξi

= εw

and
dw
dξi

= −εαiI(ξi)Gi(u)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.19)

for i = 1, . . . , n, see also (2.5). Equivalently to (2.6), we get that the u-component is to leading order
constant, say ūi, in the ith fast region Ii

f for i = 1, . . . , n. By contrast, the accumulated change of w
during a passage through the ith fast region Ii

f is, to leading order, given by

�i
fw(ūi) := −εαiGi(ūi) (2.20)

Combining (2.18) and (2.20), with the observation that u is to leading order constant over the
fast fields, allows us—after a tedious, but straightforward, algebraic computation—to determine



10

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A376:20170183

.........................................................

the remaining 2n unknown integration constants. They are given by

Ai = 1
2
√

μ

n∑
j=i

αjGj(ūj) e−√
μxj , Bi = 1

2
√

μ

i−1∑
j=1

αjGj(ūj) e
√

μxj , (2.21)

where we adapted the convention that an empty sum is zero, i.e. B1 = An+1 = 0. By (2.18)
evaluated at xi—so that u = ūi—it follows that the ūis are indeed determined by the existence
condition (1.5). The constructed homoclinic solution corresponds to a pinned n-pulse solution of
(2.1) in the singular limit ε → 0. It follows from a direct application of GPST [30,31] that such a
pinned n-pulse solution persists—and is to leading order given by (2.18) and (3.10)—for 0 < ε � 1,
as long as the solution set of (1.5) is non-degenerate. This proves the first part of theorem 1.2.

To determine the stability of a pinned n-pulse solution Un
p(x), we linearize (2.17) around Un

p(x).
Again, by construction, the resulting linearized operator has no essential spectrum in the right-
half plane and we can focus on the point spectrum. The associated eigenvalue problem is given
by

d2p
dx2 − (μ + λ)p +

n∑
i=1

αi

ε2 Ii

(
x − xi

ε2

)
G′

i(U
n
p)p = 0, (2.22)

where we recall that λ ∈ C \ σess, with σess = (−∞, −μ]. All eigenvalues λ of (2.22) are real-valued
since (2.22) is a Sturm–Liouville problem ([27], e.g.). In a similar fashion as for the stability
problem for the scalar equation with one impurity (2.9), we can relate (2.22) to (2.17) to explicitly
determine the leading order parts of the eigenvalues. In particular, the leading order slow flow of
(2.22) in the slow fields can be obtained from the leading order slow flow of (2.17) in the slow fields
by replacing μ with μ + λ. In addition, the leading order fast flow of (2.22) in the fast field Ii

f can be
obtained from the leading order fast flow of (2.17) in the fast field Ii

f, i.e. (2.19), by replacing Gi(u)
with G′

i(U
n
p)p. Since both the pinned n-pulse solution Un

p and the eigenfunction p are to leading

order constant in the fast field Ii
f, we get that the eigenvalues of a non-trivial eigenfunction are

determined by the solutions of

2
√

μ + λp̄i =
⎛
⎝ n∑

j=i

αjG
′
j(ūj)p̄j e−√

μ+λxj

⎞
⎠ e

√
μ+λxi

+
⎛
⎝ i−1∑

j=1

αjG
′
jp̄j(ūj) e

√
μ+λxj

⎞
⎠ e−√

μ+λxi , i = 1, . . . , n, (2.23)

where p̄i, i = 1, . . . , n, is the leading order constant value of the eigenfunction p in the ith fast field
Ii
f. Since (2.23) is equivalent to M(λ)p = 0, with M(λ) as in (1.6), (2.23) has non-trivial solutions if

and only if detM(λ) = 0. This completes the second part of theorem 1.2.

(i) Example 2: scalar pinned 3-pulse solutions

As an example, we further study the existence condition (1.5) and stability condition (2.23) for
pinned 3-pulse solutions in the scalar linear RDE (2.1) with three impurities. See figure 2 for a
typical sketch of a pinned 3-pulse solution and its associated slow phase portait. For n = 3, the
existence condition (1.5), respectively, stability condition (2.22), reduces to

2
√

μū1 = α1G1(ū1) + α2G2(ū2) e−√
μ(x2−x1) + α3G3(ū3) e−√

μ(x3−x1),

2
√

μū2 = α2G2(ū2) + α3G3(ū3) e−√
μ(x3−x2) + α1G1(ū1) e−√

μ(x2−x1)

and 2
√

μū3 = α3G3(ū3) + α1G1(ū1) e−√
μ(x3−x1) + α2G2(ū2) e−√

μ(x3−x2),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.24)
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Figure 3. (a–c): Typical sketches of f (Λ) and g(Λ; L1, L2) for 0< γ1 < γ2 < γ3 with both L1,2 respectively, small,
intermediate and large. Equation (2.27) has, respectively, one, two and three positive solutions. (d): The first, respectively
second, root of f (Λ)= g(Λ; L1, L2) emerges from theessential spectrumatΛ = 0 (for increasing L1,2) at the curvesω1,2(L1, L2)
where g(0; L1, L2)= f ′′(0). In other words, g(0; L1, L2)< f ′′(0) in the grey areas and (2.27) has one, respectively, three, positive
solutions, while g(0; L1, L2)> f ′′(0) in the intermediate white area and (2.27) has two positive solutions.

respectively,

2
√

μ + λp̄1 = α1G′
1(ū1)p̄1 + α2G′

2(ū2)p̄2 e−√
μ+λ(x2−x1)

+ α3G′
3(ū3)p̄3 e−√

μ+λ(x3−x1),

2
√

μ + λp̄2 = α2G′
2(ū2)p̄2 + α3G′

3(ū3)p̄3 e−√
μ+λ(x3−x2)

+ α1G′
1(ū1)p̄1 e−√

μ+λ(x2−x1)

and 2
√

μ + λp̄3 = α3G′
3(ū3)p̄3 + α1G′

1(ū1)p̄1 e−√
μ+λ(x3−x1)

+ α2G′
2(ū2)p̄2 e−√

μ+λ(x3−x2).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.25)

Upon introducing the short-hand notation γi := αiG′
i(ūi), i = 1, 2, 3, L1 := x2 − x1, L2 := x3 − x2 and

Λ := 2
√

μ + λ (with �(Λ) > 0), (2.25) can be rewritten as⎛
⎜⎝ γ1 − Λ γ2 e−ΛL1/2 γ3 e−Λ(L1+L2)/2

γ1 e−ΛL1/2 γ2 − Λ γ3 e−ΛL2/2

γ1 e−Λ(L1+L2)/2 γ2 e−ΛL2/2 γ3 − Λ

⎞
⎟⎠
⎛
⎜⎝p̄1

p̄2
p̄3

⎞
⎟⎠=

⎛
⎜⎝0

0
0

⎞
⎟⎠ . (2.26)

For the determinant of the above matrix to be zero we get

f (Λ) := (γ1 − Λ)(γ2 − Λ)(γ3 − Λ) = γ1γ2 e−ΛL1 (γ3 − Λ) + γ1γ3 e−Λ(L1+L2)(γ2 − Λ)

+ γ2γ3 e−ΛL2 (γ1 − Λ) − 2γ1γ2γ3 e−Λ(L1+L2)

=: g(Λ; L1, L2). (2.27)

Since the stability problem from which (2.22) originated is a Sturm–Liouville problem, we know—
surprisingly—that the above equation (2.27) cannot have any complex-valued roots with �(Λ) >

0. Hence, upon changing the system parameters, roots of (2.27) can only emerge from or enter into
the essential spectrum at Λ = 0, see also remark 2.1.

For example, for 0 < γ1 < γ2 < γ3 a direct computation shows that f (0) = g(0; L1, L2) = γ1γ2γ3 >

0 and f ′(0) = g′(0; L1, L2) = −γ1γ2 − γ1γ3 − γ2γ3 < 0. By contrast, f ′′(0) = 2(γ1 + γ2 + γ3) > 0 and
g′′(0; L1, L2) = 2L1γ1(γ2 + γ3) + 2L2γ3(γ1 + γ2) − 2L1L2γ1γ2γ3. For large L1,2, g′′(0; L1, L2) � −1.
Furthermore, for Λ �= 0, g(Λ; L1, L2) → 0 for L1,2 large, while g(Λ; L1, L2) → g0(Λ) := γ1γ2γ3 −
Λ(γ1γ2 + γ1γ3 + γ2γ3) for L1,2 small. In other words, (2.27) has three real-valued solutions, one
near each γi, for L1,2 large, while (2.27) has only one real-valued solution, near γ1 + γ2 + γ3, for
L1,2 small, see also (a) and (c) of figure 3. Upon decreasing L1,2 the real-valued roots near γ1,2
move sequentially towards zero and enter into the essential spectrum. For example, in figure 3b
one of the roots of (2.27) for L1,2 large already disappeared into the essential spectrum and (2.27)
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has only two real-valued roots left. This sequentially (dis)appearing of the solutions of (2.27) from
the essential spectrum can be determined explicitly by comparing the relative magnitudes of f ′′(0)
and g′′(0; L1, L2) as function of L1 and L2, see figure 3d. Similar results can be obtained for γ1,2,3
with different parities.

3. Linear two-component reaction–diffusion equations with one localized
impurity

While pinned pulse solutions to the scalar version of (1.3) cannot undergo Hopf bifurcations,
pinned pulse solutions supported by a system of linear RDEs of the form (1.3) can potentially
undergo Hopf bifurcations. To show this we study the simplest system of linear RDEs of the form
(1.3), that is, a linear two-component system of RDEs with one localized impurity (1.7), i.e. (1.3)
with N = 2 and n = 1. However, see also remark 1.6.

(a) Proof of theorem 1.3
We prove theorem 1.3 by deriving the conditions for the existence and stability of pinned 1-pulse
solutions in system (1.7). Pinned 1-pulse solutions of (1.7) correspond to homoclinic solutions of

0 = ∂2u1

∂x2 + au1 + bu2 + α

ε2 I1

(
x
ε2

)
G1(u1, u2)

and 0 = D
∂2u2

∂x2 + cu1 + du2 + β

ε2 I2

(
x
ε2

)
G2(u1, u2).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.1)

Recall that we assumed that G1(0, 0) �= 0 �= G2(0, 0) and—since we want the background state (0, 0)
of the unperturbed problem (1.4) (i.e. (1.7) with α = β = 0) to be stable—we require that a + d <

0, a + d/D < 0 and ad − bc > 0.
As before, we split our spatial domain into three regions I−s := (−∞, −ε), If := [−ε, ε] and I+s :=

(ε, ∞). In the slow regions I±s away from x = 0, the impurity is exponentially small and the slow
flow of (3.1) can be approximated by

du1

dx
= v1,

dv1

dx
= −(au1 + bu2),

du2

dx
= 1√

D
v2

and
dv2

dx
= − 1√

D
(cu1 + du2).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

The characteristic equation of (3.2) associated with the equilibrium point at the origin (0, 0, 0, 0) is
λ4 + λ2(a + d/D) + (ad − bc)/D = 0. This gives λ±

+ =
√

Λ± and λ±
− = −

√
Λ±, with

Λ± = 1
2D

(−(aD + d) ±
√

�) and � := a2D2 + 2D(2bc − ad) + d2. (3.3)

By assumption Λ+Λ− = (ad − bc)/D > 0 and Λ+ + Λ− = −(a + d/D) > 0. Consequently, �(Λ±) >

0 and, for � ≥ 0, λ±
± ∈ R and λ+

− ≤ λ−
− < 0 < λ−

+ ≤ λ+
+ with λ±

− = −λ±
+, while λ±

± ∈ C and λ+
+ = λ̄−

+ =
−λ̄−

− = −λ+
−, with �(λ+

+) > 0 and �(λ+
+) > 0, for � < 0. So, in all cases we get that the origin has

a two-dimensional unstable manifold Wu spanned by the eigenvectors V±
+ associated with λ±

+
and a two-dimensional stable manifold Ws spanned by eigenvectors V±

− associated with λ±
−. For

� ≥ 0 the origin is of (degenerate) saddle-type, while trajectories are spiralling for � < 0. In the
remaining part of this proof we, for simplicity and brevity, assume that � > 0. The proof in the
other two cases goes in exactly the same fashion and will be omitted. The eigenvectors V±

± are
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given by (u±
1,±, v±

1,±, u±
2,±, v±

2,±)t such that u+
i,+ = u+

i,−, u−
i,+ = u−

i,− and v+
i,+ = −v+

i,−, v−
i,+ = −v−

i,−, for
i = 1, 2. In particular,

Wu =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

u1
v1
u2
v2

⎞
⎟⎟⎟⎠= ν1

⎛
⎜⎜⎜⎝

u+
1,+

v+
1,+

u+
2,+

v+
2,+

⎞
⎟⎟⎟⎠+ ν2

⎛
⎜⎜⎜⎝

u−
1,+

v−
1,+

u−
2,+

v−
2,+

⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

and Ws =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

u1
v1
u2
v2

⎞
⎟⎟⎟⎠= ν4

⎛
⎜⎜⎜⎝

u+
1,+

−v+
1,+

u+
2,+

−v+
2,+

⎞
⎟⎟⎟⎠+ ν3

⎛
⎜⎜⎜⎝

u−
1,+

−v−
1,+

u−
2,+

−v−
2,+

⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.4)

with ν1,2,3,4 ∈ R. Consequently, the distance between a point on the stable manifold and another
point on the unstable manifold is

�s(u1, v1, u2, v2) = ((ν4 − ν1)u+
1,+ + (ν3 − ν2)u−

1,+, −(ν1 + ν4)v+
1,+ − (ν2 + ν3)v−

1,+,

(ν4 − ν1)u+
2,+ + (ν3 − ν2)u−

2,+, −(ν1 + ν4)v+
2,+ − (ν2 + ν3)v−

2,+).

In the fast region If near x = 0, the impurity is dominating the dynamics of (3.1). Therefore, we
write (3.1) in its equivalent fast form in the fast variable ξ = x/ε2

0 = ∂2u1

∂ξ2 + ε2αI1(ξ )G1(u1, u2) + ε4(au1 + bu2)

and 0 = D
∂2u2

∂ξ2 + ε2βI2(ξ )G2(u1, u2) + ε4(cu1 + du2).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.5)

The fast flow of (3.5) can to leading order be approximated by

du1

dξ
= εw1,

dw1

dξ
= −εαI1(ξ )G1(u1, u2),

du2

dξ
= ε√

D
w2

and
dw2

dξ
= − ε√

D
βI2(ξ )G2(u1, u2).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)

As for the scalar problem, this implies that the u-components are only slowly varying near the
fast field If. Consequently, they are to leading order constant in If, that is u1,2 = ū1,2 + O(ε) in If.
As a result, the accumulated change of w1 during a passage through the fast region If is to leading
order given by �fw1(ū1, ū2) := −εαG1(ū1, ū2) and similarly �fw2(ū1, ū2) := −(ε/

√
D)βG2(ū1, ū2).

The fact that the u-components are to leading order constant over the fast field If implies that
the u-components of the stable manifold Ws and unstable manifold Wu (3.4) need to match at
x = 0. This gives ν1 = ν4 and ν2 = ν3 and consequently (ū1, ū2) = (ν1u+

1,+ + ν2u−
1,+, ν1u+

2,+ + ν2u−
2,+).

In addition, to account for the change of w1,2, or v1,2, over the fast region If, we get

2(ν1v
+
1,+ + ν2v

−
1,+) = αG1(ν1u+

1,+ + ν2u−
1,+, ν1u+

2,+ + ν2u−
2,+)

and 2(ν1v
+
2,+ + ν2v

−
2,+) = β√

D
G2(ν1u+

1,+ + ν2u−
1,+, ν1u+

2,+ + ν2u−
2,+).

⎫⎪⎬
⎪⎭ (3.7)

Each equation determines a (collection of) curve(s) in the (ν1, ν2)-plane that, typically, intersect

(transversally) several times, say at (ν∗,j
1 , ν∗,j

2 ), j = 1, . . . , J. In the singular limit ε → 0, this yields

J homoclinic solutions corresponding to J pinned 1-pulse solutions (Uj
1,p, Uj

2,p) of (1.7) with

leading order amplitude (ūj
1, ūj

2) = (ν∗,j
1 u+

1,+ + ν
∗,j
2 u−

1,+, ν∗,j
1 u+

2,+ + ν
∗,j
2 u−

2,+). For 0 < ε � 1, standard
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GPST arguments show that these pinned 1-pulse solution (Uj
1,p, Uj

2,p) persist as long as its

corresponding solution (ν∗,j
1 , ν∗,j

2 ) of (3.7) is non-degenerate [30,31]. This completes the first part of
the proof of theorem 1.3.

To determine the stability of such a pinned 1-pulse solution (U1,p, U2,p) (where we dropped
the superscript j), we linearize (1.7) around (U1,p, U2,p). Again, by assumption, the resulting
linearized operator has no essential spectrum in the right-half plane and we can focus on the
point spectrum. The associated eigenvalue problem for λ ∈ C \ σess is given by

0 = d2p1

dx2 + (a − λ)p1 + bp2

+ α

ε2 I1

(
x
ε2

)(
∂G1

∂p1
(U1,p, U2,p)p1 + ∂G1

∂p2
(U1,p, U2,p)p2

)

and 0 = D
∂2p2

∂x2 + cp1 + (d − λ)p2

+ β

ε2 I2

(
x
ε2

)(
∂G2

∂p1
(U1,p, U2,p)p1 + ∂G2

∂p2
(U1,p, U2,p)p2

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.8)

As for the scalar equations studied in the previous section, we can relate the stability problem (3.8)
to the existence problem (3.1). Specifically, the leading order slow flow of (3.8) in the slow fields
can be obtained from the leading order slow flow of (3.1) in the slow fields by replacing (a, d) in
(3.1) with (a − λ, d − λ). In addition, the leading order fast flow of (3.8) in the fast field If can be
obtained from the leading order fast flow of (3.1) in the fast field If by replacing G1,2(u1, u2) in (3.1)
with (∂G1,2/∂p1)(U1,p, U2,p)p1 + (∂G1,2/∂p2)(U1,p, U2,p)p2. Since both (U1,p, U2,p) and (p1, p2) are to
leading order constant in the fast field If, we get that the eigenvalues of a non-trivial eigenfunction
(p1, p2) are to leading order determined by the (ω1, ω2)-solutions of

2(ω1q+
1,+ + ω2q−

1,+) = α

(
∂G1

∂p1
(ū1, ū2)(ω1p+

1,+ + ω2p−
1,+)

+∂G1

∂p2
(ū1, ū2)(ω1p+

2,+ + ω2p−
2,+)

)

and 2(ω1q+
2,+ + ω2q−

2,+) = β√
D

(
∂G2

∂p1
(ū1, ū2)(ω1p+

1,+ + ω2p−
1,+)

+∂G2

∂p2
(ū1, ū2)(ω1p+

2,+ + ω2p−
2,+)

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.9)

where p±
1,+, p±

2,+, q±
1,+ and q±

2,+ are related to the stable and unstable manifolds of the slow flow
of (3.8) in a similar fashion as (3.4) of the existence problem. In particular, p±

1,+, p±
2,+, q±

1,+ and q±
2,+

depend on the system parameters, and thus on a − λ and d − λ. The system of equations (3.9) is
linear in (ω1, ω2) and is non-trivially solvable if det(N (λ)) = 0 (1.9), with the entries of the matrix
N (λ) (1.9) given by

A(λ) = 2q+
1,+ − α

(
∂G1

∂p1
(ū1, ū2)p+

1,+ + ∂G1

∂p2
(ū1, ū2)p+

2,+

)
,

B(λ) = 2q−
1,+ − α

(
∂G1

∂p1
(ū1, ū2)p−

1,+ + ∂G1

∂p2
(ū1, ū2)p−

2,+

)
,

C(λ) = 2q+
2,+ − β√

D

(
∂G2

∂p1
(ū1, ū2)p+

1,+ + ∂G2

∂p2
(ū1, ū2)p+

2,+

)

and D(λ) = 2q−
2,+ − β√

D

(
∂G2

∂p1
(ū1, ū2)p−

1,+ + ∂G2

∂p2
(ū1, ū2)p−

2,+

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.10)
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and where we suppressed the explicit dependence of A,B, C and D on the system parameters
and ū1,2. From (1.9) with (3.10) we get

F (λ) :=A(λ)D(λ) − B(λ)C(λ) = 0. (3.11)

In other words, the solutions of (3.11) determine the leading order parts of the eigenvalues, and
hence the stability, of a pinned 1-pulse solution (U1,p, U2,p) supported by (1.7). This completes the
second part of the proof of theorem 1.3.

(b) A Hopf bifurcation
We further analyse the existence condition (3.7) and stability condition (3.11) to confirm that
a pinned pulse solution of theorem 1.3 can indeed undergo a Hopf bifurcation. To make the
analysis manageable, we further simplify (1.7) by assuming that b = 0, G1(U1, U2) = G1(U2) and
G2(U1, U2) = G2(U1). Since b = 0, we require that both a and d are negative to ensure that the
background state (0, 0) of the unperturbed problem (1.4) is stable. Therefore, we set μ1 := −a and
μ2 := −d and assume that both μ1 and μ2 are positive. So, we study

∂U1

∂t
= ∂2U1

∂x2 − μ1U1 + α

ε2 I1

(
x
ε2

)
G1(U2)

and
∂U2

∂t
= D

∂2U2

∂x2 + cU1 − μ2U2 + β

ε2 I2

(
x
ε2

)
G2(U1).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.12)

Since � > 0 (3.3) for b = 0, the characteristic equation related to the slow flow has two real-valued
negative roots and two real-valued positive roots. More precisely, λ+

± = ±√
μ1 and λ−

± = ±√
μ2/D.

So, if we in addition assume that μ1 �= μ2/D, then these roots do not coincide. A straightforward
computation shows that the associated stable manifold Ws and unstable manifold Wu are given
by (3.4) with u+

1,+ = 1, v+
1,+ = √

μ1, u+
2,+ = c/(μ2 − μ1D), v+

2,+ = c
√

μ1D/(μ2 − μ1D), u−
1,+ = 0, v−

1,+ =
0, u−

2,+ = 1 and v−
2,+ = √

μ2. Since the u-components are to leading order constant in the fast field
If, we—as before—have that ν1 = ν4 and ν2 = ν3 in (3.4) and the existence condition (3.7) becomes

2
√

μ1ν1 = αG1

(
c

μ2 − μ1D
ν1 + ν2

)

and 2
(

c
√

μ1D
μ2 − μ1D

ν1 + √
μ2ν2

)
= β√

D
G2(ν1).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.13)

So, as long as (3.13) has a non-degenerate real-valued solution (ν1, ν2), (3.12) supports a pinned
1-pulse solution (U1,p, U2,p) with leading order amplitudes (ū1, ū2) = (ν1, (c/μ2 − μ1D)ν1 + ν2) for
ε small enough.

To determine the stability of such a pinned pulse solution (U1,p, U2,p), we have to explicitly
compute A(λ; ū1, ū2),B(λ; ū1, ū2), C(λ; ū1, ū2) and D(λ; ū1, ū2) (3.10) and solve (3.11). Therefore, we
analyse the eigenvalue problem associated with (3.12)

0 = d2p1

dx2 − (μ1 + λ)p1 + α

ε2 I1

(
x
ε2

)
dG1

dp2
(U2,p)p2

and 0 = D
∂2p2

∂x2 + cp1 − (μ2 + λ)p2 + β

ε2 I2

(
x
ε2

)
dG2

dp1
(U1,p)p1,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.14)

with λ ∈ C \ σess where σess = (−∞, − min{μ1, μ2}]. The associated stable and unstable manifold
associated with (3.14) can directly be obtained from the stable and unstable manifold of the
existence problem by replacing μ1,2 by μ1,2 + λ. In the end, the stability condition (3.9) becomes

2
√

μ1 + λω1 = α
dG1

dp2
(ū2)

(
c

μ2 − μ1D − λ(D − 1)
ω1 + ω2

)

and 2

(
c
√

(μ1 + λ)D
μ2 − μ1D − λ(D − 1)

ω1 +
√

μ2 + λω2

)
= β√

D

dG2

dp1
(ū1)ω1.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
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This system has non-trivial (ω1, ω2)-solutions if

4
√

μ2 + λ
√

μ1 + λ + 2αc
dG1

dp2
(ū2)

√
(μ1 + λ)D − √

μ2 + λ

μ2 − μ1D − λ(D − 1)
− αβ√

D

dG1

dp2
(ū2)

dG2

dp1
(ū1) = 0, (3.15)

which is the stability condition (3.11) for a pinned 1-pulse solution (U1,p, U2,p) of (3.12).

(i) Example 3: pinned 1-pulse solutions in a system of reaction–diffusion equationswith a Hopf bifurcation

To further simplify the existence condition (3.13) and stability condition (3.15), we assume that
μ1 = μ2 = μ > 0 (and we thus also assume that D �= 1). The two conditions reduce to

2
√

μν1 = αG1

(
− c

μ(D − 1)
ν1 + ν2

)

and 2
(

− c
√

μD
μ(D − 1)

ν1 + √
μν2

)
= β√

D
G2(ν1),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.16)

respectively,

4(μ + λ) − 2αcGp2 (ū2)

√
D − 1√

μ + λ(D − 1)
− αβ√

D

dG1

dp2
(ū2)

dG2

dp1
(ū1) = 0. (3.17)

If we assume that (3.16) has a non-degenerate solution (ν1, ν2), then (3.12) with μ1 = μ2 =
μ > 0 supports a pinned 1-pulse solution (U1,p, U2,p) with leading order amplitudes (ū1, ū2) =
(ν1, −ν1(c/μ(D − 1)) + ν2) for ε small enough. Upon defining Λ̃ := √

μ + λ, with �(Λ̃) > 0 to
ensure that λ /∈ σess, α̃ := 1

2 α, β̃ := 1
2 β, B̃ := α̃cGp2 (ū2)(

√
D − 1) and C̃ := (α̃β̃/

√
D)(dG1/dp2)(ū2)

(dG2dp1)(ū1), we rewrite the stability condition (3.17) as

H(Λ̃) := Λ̃3 − C̃Λ̃ − B̃ = 0, (3.18)

For C̃ > 0, this cubic polynomial H(Λ̃) has a minimum −B̃ − (2/3
√

3)C̃
√

C̃ at Λ̃ =
√

C̃/3 > 0. If,

in addition, −(2/3
√

3)C̃
√

C̃ < B̃ < 0, then (3.18) has two real-valued positive solutions. These two

real-valued solutions merge and become complex-valued at Λ̃ =
√

C̃/3 > 0 for B̃ = −(2/3
√

3)C̃
√

C̃.
Thus, there exist system parameters and impurities such that (3.18) has complex-valued solutions
Λ̃ = nr ± nii, with nr > 0. This gives λ = (n2

r − n2
i − μ) ± 2nrnii, and we can tune μ such that �(λ) =

0, i.e. set μ = n2
r − n2

i . Hence, pinned 1-pulse solutions supported by (3.12) with μ1 = μ2 = μ can
undergo a Hopf bifurcation.

For instance, for (3.12) with α = β = 2, c = −√
3/3, D = 4, G1(U2) = U2 + 1 and G2(U1) = U1 + 2,

we have that the existence condition, respectively, stability condition, is given by

2
√

μν1 = 2

(√
3

9μ
ν1 + ν2 + 1

)

and 2
(

2
√

3μ

9μ
ν1 + √

μν2

)
= ν1 + 2,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.19)

respectively,

4(μ + λ) + 4
9

√
3

1√
μ + λ

− 2 = 0. (3.20)

The existence condition is solved by

(ν1, ν2) =
(

18(μ + √
μ)

18μ
√

μ − 9
√

μ + 2
√

3
,

18μ
√

μ + 9μ − 4
√

3
√

μ − 2
√

3
√

μ(18μ
√

μ − 9
√

μ + 2
√

3)

)
,
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U2(x, 100)

(a) (b)

Figure 4. (a) Numerically obtained evolution of theU1-component to a stable pinned 1-pulse solution for (3.12)with the system
parameters as in Example 3, that is, α = β = 2, c = −√

3/3, D= 4, G1(U2)= U2 + 1, G2(U1)= U1 + 2, μ1 = μ2 =
μ = 0.2> μ̂ (3.21) and ε = 0.1. (b) We observe excellent agreement between the numerical obtained profiles of both the
U1-component and the U2-component at t = 100 (solid black curved) and the predicted asymptotic profiles (coloured dotted
curves). (Online version in colour.)
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U1 (x, t)
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−20

20 0
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(a) (b)

Figure 5. (a) Numerically obtained evolution of theU1-component of (3.12)withα = β = 2, c = −√
3/3, D= 4,G1(U2)=

U2 + 1, G2(U1)= U1 + 2, μ1 = μ2 = μ = 0.1< μ̂ (3.21) and ε = 0.1. We observe that the profile—as expected since
μ < μ̂—blows-up, see also remark 2.2. (b) Numerically obtained evolution of the U1-component for the same system and
with the same initial condition, except that G1(U1, U2)= U2 + 1 − ε3U31 . The added small nonlinearity−ε3U31 to G1 prevents
the profile from blowing-up (while it does not alter the leading order asymptotic results) and we observe the evolution of the
profile to a breathing pinned 1-pulse solution. (Online version in colour.)

and hence there exist a unique pinned 1-pulse solution for the given system parameters and
impurity. By the linearity of G1 and G2, the stability condition (3.20) is independent of the profile
of this pinned 1-pulse solution. Moreover, (3.20) can be solved explicitly and the roots with
positive real-valued part are given by

μ + λ =

:=μ̂︷ ︸︸ ︷
1

12
(4 − (3 + 2

√
2)1/3 − (3 − 2

√
2)1/3) ±

√
3

12
((3 + 2

√
2)1/3 − (3 − 2

√
2)1/3)i. (3.21)

Hence, setting μ = μ̂ ≈ 0.137 (3.21) yields a pair of purely imaginary eigenvalues λ =
±(

√
3/12)((3 + 2

√
2)1/3 − (3 − 2

√
2)1/3)i ≈ ±0.180i. Note that for μ = μ̂, the solution to the

existence condition (3.19) becomes (ν1, ν2) ≈ (8.73, −10.0) and (ū1, ū2) ≈ (8.73, 2.26). Hence, a Hopf
bifurcation is expected for the given system parameters and impurity upon decreasing μ through
μ̂. See also figures 4 and 5.
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4. Results and outlook
The class of N-component systems of RDEs (1.3) proposed in this paper provides a very promising
combination of tractable analysis, complex dynamics and applied relevance. The systems
are linear, except for asymptotically small regions in space in which the system experiences
asymptotically strong nonlinear impurities (and these are the only sources of nonlinearities). We
have shown that these systems typically exhibit (multi) pulse-type solutions that are localized
around the impurities. Owing to the asymptotic nature of the heterogeneities, the existence of
these patterns can be established by the methods of GPST in a manner that is very similar to the
construction of pulse-type patterns in singularly perturbed slow-fast RDEs ([21,23], e.g) (where
the fast component plays the role of the impurities in the present systems). In recent years, the
stability analysis of pulse-patterns in these singularly perturbed slow-fast RDEs (on unbounded
domains) has evolved into an established approach, based on Evans function theory [29] and
NLEP (non-local eigenvalue problem) methods [24,32], see [33] and references therein. Although
the spectral stability thus is largely under control, the technical effort is—in general—formidable.
As a consequence, the analysis of the bifurcations of these patterns is strongly limited [25], since
the necessary centre manifold analysis is largely based on explicit calculations on (inverting) the
spectral operator [34,35]. The systems introduced here do not suffer from this obstruction: we
have shown—again by the methods of GPST—that the spectral stability problem associated with
an impurity-induced pulse pattern reduces to linear algebra and it is based on solving linear
constant coefficient equations, see our main theorems 1.2 and 1.3 and their proofs. Moreover,
due to the spatial heterogeneities, the trivial translational eigenvalue λ = 0 is removed from the
system, which also strongly simplifies the centre manifold analysis [25,34]. Thus, the systems
presented here are ideal candidates to enter deeper into the realm of bifurcations of localized
pulse patterns in singularly perturbed RDEs on unbounded domains. The three explicit examples
worked out in the text show that it is relatively simple to cook up explicit spectral configurations.
Hence, we indeed may use systems of the type (1.3) to perform a centre manifold analysis near
spectral configurations of co-dimension one and higher. Natural next analytical steps may be a
detailed unfolding of a Bogdanov–Takens bifurcation [35] of a localized pinned pulse solution
in (1.3), or a hunt for controllable chaotic pulse dynamics by unfolding a (specific) co-dimension
three bifurcation [36]. In turn, this may serve as a first analytical step towards understanding the
(numerical) observations in [26].

Another fundamental aspect of pulse dynamics in RDEs that is significantly limited by the
technical effort it takes to control the spectral problem, is that of the interactions of pulses, or,
more general, of localized structures, beyond the weak interaction limit [37]. Especially, the impact
of essential spectrum near the imaginary axis on these interactions is yet not at all understood
[38,39]. The literature on localized patterns with oscillating tails is very limited—see however
[40,41]—while it is natural to expect that especially in these situations the impact of marginally
stable essential spectrum on the interaction dynamics will be significant. As shown here, these
types of patterns can be constructed along the very same lines as the more classical pulse solutions
with monotonic tails, see the proof of theorem 1.3 (and note the sign of � (3.3) does not impact
the approach). Therefore, fundamental novel insights can be expected by studying (1.3) with two
or more impurities for parameter combinations that make the essential spectrum approach the
unstable right-half plane, especially for pulse patterns that have oscillating tails.

Finally, it should be remarked that the systems considered here are of a slowly linear nature
according to the terminology introduced in [23,26] for two-component singularly perturbed slow-
fast RDEs (which was generalized to N ≥ 2-component models in [33]). The extended class of
singularly perturbed slowly nonlinear RDEs introduced in these papers corresponds to allowing
the U-equation outside the impurities, i.e. (1.4), to be nonlinear. At present, it is not clear how
strong the traditional restriction to slowly linear systems effects the dynamics of the system
(note that all paradigmatic models considered in the literature—FitzHugh–Nagumo, Gierer–
Meinhardt, Gray–Scott, Schnakenberg, etc.—are of this slowly linear type). Once again, simplified
models of type (1.3), but now with a general nonlinear structure outside the impurities, may help
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to understand this distinction: even if the unperturbed model (1.4) is nonlinear, the analysis of
the class of models introduced here is drastically more simple than that of the corresponding
singularly perturbed model.
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