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Abstract

Potts Hamiltonian models of protein sequence co-variation are statistical models constructed from 

the pair correlations observed in a multiple sequence alignment (MSA) of a protein family. These 

models are powerful because they capture higher order correlations induced by mutations evolving 

under constraints and help quantify the connections between protein sequence, structure, and 

function maintained through evolution. We review recent work with Potts models to predict 

protein structure and sequence-dependent conformational free energy landscapes, to survey protein 

fitness landscapes and to explore the effects of epistasis on fitness. We also comment on the 

numerical methods used to infer these models for each application.

Introduction

There is a long history of the use of coevolutionary information in the form of protein 

sequence variation to probe the relationship between protein structure, function, and fitness, 

to understand how allosteric interactions are transmitted through proteins, and to predict 

protein structure from sequence. Reviews of this history can be found in [1–4]. More 

recently, powerful inverse inference statistical approaches have been developed to study 

these relationships, which encode sequence variation extracted from multiple sequence 

alignments (MSAs) into spin-glass Hamiltonian models of the sequence space. The 

Hamiltonians take the form

(1)

where the sequence S is a string of letters corresponding to the amino acid types {s} at each 

of L positions, encoded in an alphabet of q letters, and hi(si) (‘fields’) and Jij(si, sj) 

(‘couplings’) are single-site and pair-site parameters [5,6]. For some problems it is sufficient 
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to use a q = 2 binary alphabet {0, 1} at each position, where 0 corresponds to the wildtype or 

consensus amino acid type and 1 corresponds to a mutant; this Hamiltonian is referred to as 

an Ising model by analogy with the Hamiltonian which describes magnetic spin systems in 

condensed matter physics. To describe the 20 amino acid types (plus a gap character) at each 

position the generalized model is referred to as a Potts Hamiltonian model, describing spin 

glasses. As with spin glasses, this Hamiltonian can describe complex landscapes with 

multiple local minima. The model is based on the maximum entropy principle that seeks to 

construct the minimally biased sequence probability distribution that reproduces the one-site 

〈si〉 and two site 〈sisj〉 mutational probabilities (or marginal probabilities) of a protein MSA, 

giving a distribution P(S)/expH(S). Its parameters can be determined by maximum likelihood 

inference given data, by methods reviewed below.

This area of research is a rapidly developing field of computational biology at the 

intersection with structural biology, biological physics, and branches of biology concerned 

with evolutionary protein fitness. The fast paced developments in sequencing, including the 

sequencing of large numbers of whole genomes for many species, and the development of 

deep sequencing techniques [7–9], has provided a rich source of data for the construction of 

correlated mutation models of protein structure, energetics, and evolution. The purpose of 

this article is to review the most recent developments using Ising/Potts models in 

computational biology with a particular focus on: firstly protein structure and the mapping 

of (free) energy landscapes; secondly modeling of fitness landscapes as proteins evolve 

under selective pressure, and finally a review of the most recent numerical methods for 

solving the inverse inference problem, and how well they perform in the context of the kinds 

of problems reviewed in the following sections.

Protein structure and free energy landscapes

Evolutionary sequence patterns contain information about protein structure, which can 

complement experimental data such as crystallographic and NMR structures. Before the 

introduction of Ising/Potts spin models of protein sequence variation, covariance matrices 

evaluated from MSAs were used in this way for protein structure modeling [10–12]. 

Covariance occurs because interacting residues are constrained by physical proximity effects 

and their mutations are therefore correlated. But correlations are induced by both direct and 

indirect effective interactions between residues that need not be close in space. For example, 

allosteric effects often involve long range interactions mediated by networks of interacting 

residues. One of the prime motivations for developing Potts models of protein sequence 

space has been to disentangle the direct from the indirect correlations as part of a procedure 

known as ‘direct coupling analysis’ (DCA), which improves on traditional covariance 

methods by providing a mapping between strongly directly interacting residues inferred 

from the model and contacts in 3D protein structure [13].

For contact prediction, the Potts model parameters are not used directly but an ‘interaction 

score’ summarizing the q2 residue-dependent coupling parameters Jij(si, sj) is computed for 

each position-pair i, j, and the top-ranking position-pairs are interpreted as predicted 

contacts for the family as a whole. These contacts can then be used as input in further 

computations to study protein structures and conformational landscapes, for example for 
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abinitio structure prediction of the native (folded) conformation using NMR (distance 

geometry) structure determination algorithms [14,15], or using the contacts to bias or 

constrain molecular dynamics simulations and Go-models using a homologous crystal 

structure as a starting point [16–18]. Progressively more detailed aspects of the 

conformational-energy landscapes of proteins have been explored with this strategy. The 

inferred contact constraints have been used to predict alternate (experimentally unobserved) 

intermediate conformations [19•], to sample conformational space along a conformational 

transition, predict conformational flexibility of parts of a protein and simulate the folding 

transition [20•], and to predict conformations of dimers, multimers, and repeat proteins [21–

24]. Other studies investigate ways of combining the predicted contacts with additional 

structural data [25–27].

Recent studies have begun to mine the residue-specific parameters of the Potts model to map 

out sequence-dependent conformational free energy landscapes. These applications 

implicitly relate the coupling parameters Jij(si, sj) of the Potts model to pairwise physical 

interaction strengths or free energy contributions. In one approach the sequence-specific 

coupling strengths Jij(si, sj) are used as interaction strengths (biases) in coarse grained 

molecular simulations [28]. By examining the residue-dependent coupling parameters for 

sequences in a common family, it is possible to detect which interaction pairs contribute to 

the stability of particular conformations (not necessarily the native conformation) and the 

sequence dependence of these conformational preferences (see Figure 1) [29•].

The correspondence between the Potts Hamiltonian and free energy landscapes has been 

made even more explicit in other studies, which compare H(S) to the free energy of folding 

of a protein sequence in its native fold ΔG(S), motivated by the idea that the folding process 

is a major determinant of protein fitness and therefore prevalence of sequences in the MSA. 

Experimental evidence supports this relationship. A number of studies have shown that for 

single and double mutants to a sequence, the change in the sequence’s statistical Potts score 

ΔH is linearly related to the experimental change in free energy of folding upon mutation 

ΔΔG [30••,31••,32]. The Potts energy H(S) of entire sequences has also been found to be 

correlated to protein melting temperature [33,34]. The distribution of free energies of folding 

predicted by the Potts model can be interpreted using the energy landscape theory of protein 

folding [35,36], and it has been shown that the Potts model gives results consistent with 

energy landscapes predicted from physiochemical considerations [31••]. Other studies have 

sought to better understand the physical origin of individual Potts model parameters. The 

value of certain coupling parameters can be rationalized from charge–charge interactions 

modulated by distance [37], and using lattice models the relationship between the coupling 

terms {J} and pairwise interaction strengths in the native folded state has been shown to be 

modulated by the effect of competing non-native (decoy) folds and interactions [38].

Epistasis and fitness

The relationship between conformational free energy and H(S) is mediated by effects related 

to protein (and organismal) fitness, and fitness may be affected by other protein properties 

such as enzyme efficiency and the specificity for interactions with other proteins in signaling 
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networks [39]. This motivates another avenue of research using Potts models in which the 

Potts Hamiltonian is used to probe protein fitness.

The Potts Hamiltonian is a mapping of sequences to statistical scores in which sequences 

with lower Potts statistical energy are more probable, generating a landscape termed the 

‘prevalence landscape’ [40,41,42••, 43••]. Recent studies have demonstrated that 

experimental measurements of fitness differences are empirically well correlated with the 

change in Potts statistical energy ΔH for sequences from large protein families [30••,34]. 

Potts models have also been used to interrogate the fitness landscapes of viral systems, most 

notably HIV proteins escaping immune pressure [40,41,42••,44] or HIV enzymes evolving 

under drug pressure [45•]. These studies have demonstrated linear relationships between 

Potts energy and experimental measurements of viral fitness, and these combined with the 

previously mentioned studies provide strong evidence that there exists a correspondence 

between the Potts prevalence landscape and the protein fitness landscape.

Interpreting the meaning of individual Potts model parameters in terms of evolutionary 

quantities is complicated by the nontrivial differences between the evolution of viruses and 

protein families to which the Potts model has been applied, such as the strength of selection, 

mutation rate, effective population size and population dynamics [46,47]. A systematic 

comparison of the implications of these features on model building is lacking. For proteins 

evolving nearly neutrally the suggestive relationship between the evolutionary fitness 

landscape and the prevalence landscape described by statistical physics (with several 

caveats) [48] reinforces the observed correlations between large experimental fitness 

datasets and Potts statistical energies in studies of protein families [30••,34]. In viral systems 

the Potts model parameters have been related to parameters in viral evolution models, such 

as Eigen’s model of quasispecies, showing that there exist complex mappings from Potts 

prevalence landscape parameters to those of the fitness function [41,40]. Other work has 

incorporated the Potts Hamiltonian as a fitness function in population genetics simulations; a 

recent study has demonstrated that the relationship between in vivo fitness of HIV proteins 

targeted by the immune system and Potts equilibrium predictions of fitness can be improved 

by creating a dynamical model combining the Potts Hamiltonian with Wright-Fisher 

evolutionary simulations [43••]

A key aspect of the Potts model in this application is its ability to model epistasis, the 

intuitively understandable phenomenon that the effect of a mutation is modulated by the 

background sequence in which it is acquired, because of the collective effects of pairwise 

couplings. Experimental technologies like deep mutational scanning [49–52] have allowed 

for the full mapping of the genotype space located one or two mutations from the native 

sequence to the phenotype space, yielding insights into the local fitness landscape around the 

native sequence. However, the size of the sequence space increases exponentially as the 

number of sites included in high throughput mutagenesis increases, and thus only a tiny 

portion of the mutational landscape and the associated epistatic effects can be sampled. 

Organizing principles discovered through statistical modeling are needed to interpret the 

massive amounts of data becoming available (see Figure 2).
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A central premise of Potts spin glass models applied to biological systems is the assumption 

that modeling pair correlations is both necessary and sufficient to describe higher order 

correlation patterns beyond pairs [53]. For Potts models of protein sequence variation, this 

includes mutation patterns up to and including whole sequences, including those with many 

simultaneous mutations and those not observed in the multiple sequence alignment. This 

makes the Potts model a capable probe for exploring the regional mutational landscape 

around the native sequence, pushing the size of the surveyable sequence space to much 

larger landscapes than are currently accessible experimentally. A vivid illustration of the 

predictive power of spin models of protein sequence variation is the successful prediction of 

the occurrence of HIV protease sequences in a second curated database which were not 

present in the one used to parameterize the Ising model [37]. Another study has recently 

demonstrated that deleterious mutations in HIV-1 protease needed to escape drug pressure 

become advantageous in the context of specific sequence backgrounds that are observed 

when a sufficient number of mutations have accumulated [45•] and become more 

advantageous (or entrenched [54–56]) as additional mutations accumulate in the presence of 

these formerly deleterious mutations. Fit variants with multiple resistance mutations are less 

likely to revert to wildtype in infected individuals not undergoing antiretroviral therapy, and 

thus pose a significant risk to transmit resistance.

The use of (a properly parameterized) Potts model to survey the prevalence landscape far 

from the native sequence is justifiable given the model’s ability to capture higher order 

correlations in the input dataset. While the model is trained on pair correlations, studies have 

demonstrated the model’s ability to reproduce marginal probability distributions higher than 

2nd order, typically showing the preservation of 3-body or 4-body correlation statistics [20•,

37,38,42••,43••,57]. These studies have also demonstrated that the distribution of observed 

hamming distances from a reference sequence can be accurately modeled by the Potts 

Hamiltonian, and studies demonstrating the accurate prediction of higher order marginal 

distributions are forthcoming [45•]. Further, these results indicate that models without pair 

couplings, often termed independent models because they model the effect on fitness of each 

site individually, are poor predictors of these experimental quantities, meaning the 

incorporation of pairwise epistatic terms are necessary to accurately model a mutation’s 

impact on fitness [30••,34,37,45•]. Potts models provide an unprecedented glimpse into the 

fitness landscape around naturally observed protein sequences which is not yet achievable 

with current mutagenesis experiments.

Inverse inference methods

Inferring the maximum likelihood set of parameters of the Potts model Jij(si, sj) given the 

MSA statistics 〈sisj〉 is a significant computational challenge, and a variety of methods have 

been developed to solve it including message passing [13,37], mean field approximations 

[17,58], pseudolikelihood methods (PLM) [59,60], Monte Carlo methods [6,20•,29•,42••], 

and adaptive cluster expansion (ACE) [57]. These have each been implemented with 

particular applications in mind, generally either contact prediction or fitness mapping 

(prediction of statistical energies), potentially at the expense of other uses.
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Many inference techniques were developed for protein contact prediction. The accuracy of 

the Potts model’s estimate of probabilities P(S) and 〈sisj〉, and the value of the individual 

residue-dependent parameters Jij(si, sj) are not directly relevant in this application, and 

relaxing the requirements on their accuracy allows stronger approximations to be made. 

Message passing, used in some of the earliest studies, assumes the interaction network is 

mostly ‘loop-free’, making the computation of 〈sisj〉 given trial {J} computationally efficient 

so that the maximum likelihood values {J} may be solved for iteratively. This method has 

been superseded by mean-field methods, which using the weak-coupling limit relate the 

Jij(si, sj) and the correlation coefficients Cij(si, sj) = 〈sisj〉 – 〈si〉〈sj〉 by a simple and efficient 

matrix inversion [61]. This method has proven particularly popular because of its speed. 

Pseudolikelihood methods, which approximate the likelihood function and maximize 

likelihood by gradient descent, have been shown to give more accurate contact prediction at 

moderately higher computational cost [62]. While these methods reliably distinguish the 

most strongly interacting position-pairs from the rest, they generally do not correctly model 

sequence statistics, including the univariate and bivariate statistics the model is based on 

[57]. A benchmarking study comparing statistics of an input MSA to MSAs generated from 

models inferred from the input by different methods shows that mean-field methods 

underestimate the amount of sequence diversity and generate overly fit sequences, while 

PLM tends to generate models giving less stable sequences than in the original dataset [38].

In evolutionary applications other methods are favored which more faithfully model the 

dataset sequence statistics, including Monte Carlo methods, which solve for 〈sisj〉 given trial 

{J} by Monte Carlo sampling of sequences from the model and solve for the optimal {J} 

iteratively, as well as Cluster Expansion techniques which recursively solve sub-networks of 

the full problem, allowing uncorrelated sub-networks to be left out of the computation. 

These methods are much more computationally intensive than mean-field and 

pseudolikelihood methods, but can accurately model the bivariate (and higher) statistics of 

the dataset and the distribution of sequence probabilities of the MSA as described in the 

previous section, though the ACE method may generate models with sequences with slightly 

higher statistical energies than the original data-set [38]. Studies using Monte Carlo methods 

have also shown that low-dimensional (Principal Component) representations of the inferred 

Potts model landscape match those of the dataset [20•,41]. Monte Carlo methods have been 

used for the purpose of contact prediction, as well [20•,29•,33].

In addition to the Potts model inference itself, data preprocessing steps can have a significant 

influence on the inferred model. The Potts model is an equilibrium model assuming each 

sequence in the dataset is generated by an independent process according to the distribution 

P(S), however in practice MSAs are constructed from datasets with experimental and 

phylogenetic structure [20•]. For MSAs constructed from large cross-species alignments a 

correction should be applied for over-counting of sequences or organisms which received 

more experimental focus or which are phylogenetically related. Current methods to account 

for this are rudimentary, involving simple sequence similarity cutoffs, and it has been 

suggested that a more rigorous approach is desirable [20•,63]. In HIV datasets, in contrast, 

corrections are applied to sequences originating from the same individual but otherwise such 

phylogenetic filtering is not performed, because evidence suggests HIV data is not distorted 

by phylogenetic effects [9,43••,64].
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Extensions to the Potts Hamiltonian have also been proposed, such as inclusion of higher 

order terms [32,65,66], inclusion of population-genetics terms [67] to account for 

phylogenetic structure. Other studies examine how to combine data from multiple data 

sources or inference methods [68,69].

Concluding remarks

Potts statistical models of protein sequence variation are being used to map the 

conformational energy and fitness landscapes of proteins with impressive results, but the full 

potential of this modeling is just beginning to be tapped. Through constraints imposed by 

evolution so as to maintain the fitness of the organism, pair and higher order correlations are 

induced in the sequence patterns that are captured by the models, even though the Potts 

Hamiltonian only includes pair interaction energy terms. Potts modeling can be used to 

interrogate epistatic effects whereby the probability of observing a particular mutation in a 

protein sequence depends strongly on the background. There are many opportunities and 

challenges to pursue; they include establishing closer synergies between protein 

conformational free energy landscapes and Potts model evolutionary landscapes, clarifying 

the relationship between Potts model parameters and physical free energy terms, and 

incorporating population genetics concepts into preprocessing steps which are performed on 

MSAs, as well as the interpretation of the model itself.
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Figure 1. 
The Potts model can be used to predict sequence-dependent conformational landscapes. 

(Left) Coevolutionary (Potts) interaction score map (upper triangle), and crystal structure 

contact frequency map (lower triangle, 6 Å cutoff) for the kinase family, showing high 

correspondence [29•]. Interactions predicted to be relevant to a conformational transition in 

kinases between a ‘DFG-out’ (cyan) and a ‘DFG-in’ (magenta) conformation are 

highlighted. (Right) Crystal structure of the two conformations (pdb-id 1IEP and 2GQG) 

illustrating the change in the activation loop (colored red/blue), showing C-α to C-α 
contacts relevant to the transition predicted by the Potts model (cyan/magenta, as in the 

contact map). The Potts model gives a sequence-dependent score Jij(si, sj) for each 

interaction.
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Figure 2. 
The effect of a mutation depends on the background in which it’s acquired. Shown in (a) are 

two sequences (gray annulus) with a focal residue p (black), and different background 

mutations (orange). Stabilizing (blue, J < 0) and destabilizing (red, J > 0) couplings between 

the focal residue and the background mutations are shown. The effect of mutation at the 

focal residue (p to p′, black to purple) is dependent on the couplings between the mutation 

and the background sequence. Certain backgrounds are more accommodating than others of 
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this particular mutation, which leads to higher observed fitness (b). Potts statistical energy H 
is well correlated with experimentally observed fitness measurements.
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