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ABSTRACT Since the emergence and dissemination of Zika virus (ZIKV) in late
2015, our understanding of the biology, transmission, clinical disease, and potential
sequelae associated with infection has markedly expanded. Over the past 2 years,
the number of diagnostic assays for ZIKV has increased from none in 2015 to 5 sero-
logical assays and 14 molecular assays in 2017, all with emergency use authorization
granted through the U.S. Food and Drug Administration. Here we provide an update
on ZIKV, addressing what we have collectively learned since the outbreak began, in-
cluding a summary of currently available diagnostic assays for this virus.
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espite multiple outbreaks of Zika virus (ZIKV) in the Pacific Islands between 2007

and 2014, this mosquito-borne flavivirus did not garner international attention
until mid-2015, when it was detected for the first time in Brazil among 24 patients
presenting with a dengue virus (DENV)-like illness (1). Public alarm with respect to ZIKV
heightened in late 2015, following reports of increased rates of congenital microceph-
aly and fetal central nervous system (CNS) defects among ZIKV-infected pregnant
women in Brazil (2). This led the World Health Organization (WHO) to declare the emerging
ZIKV outbreak a public health emergency of international concern in February 2016. A
causal relationship between in utero ZIKV infection and the development of birth defects,
including severe microcephaly, was officially established soon thereafter (3).

Over the past 2 years, our knowledge about ZIKV, including its biology, pathogen-
esis, and modes of transmission, has expanded considerably, as has our appreciation of
the clinical manifestations associated with infection and the importance of accurate
and timely diagnosis. Between 2015 and the writing of this article, over 3,200 articles
related to ZIKV were published, compared to 175 publications between 1952 and 2014.
This minireview is intended to provide an update on what we have learned regarding
ZIKV and to describe the current state of diagnostic testing for this mosquito-borne
public health threat (4).

UPDATE ON THE EPIDEMIOLOGY, TRANSMISSION, AND CLINICAL DISEASE
ASSOCIATED WITH ZIKA VIRUS

Emergence of ZIKV in the Americas. Two lineages (i.e., African and Asian) and
three genotypes (West African, East African, and Asian) of ZIKV have circulated in Accepted manuscript posted online 31
tropical and semitropical countries in the Eastern Hemisphere since the 1950s (5). The January 2018
precise event or time frame associated with the introduction of the Asian ZIKV lineage (SELET NS £ i) U2 DEgiosile
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Sprint competition (August), both in Rio De Janeiro, Brazil (6). More recently, phyloge- Editor Colleen Suzanne Kraft, Emory University
netic studies of multiple ZIKV genomes collected from Brazilian patients, alongside Copyright © 2018 American Society for
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molecular clock analyses, suggest that the initial introduction of ZIKV occurred during _
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of passengers to Brazil from regions in the Pacific Islands where ZIKV was circulating (7).
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Locally acquired cases of ZIKV have been documented throughout the Caribbean
Islands and in all but two countries (i.e., Chile and Uruguay) in North America and Latin
America since the outbreak began (8). According to the Pan American Health Organi-
zation (PAHO) and the WHO, over 1 million individuals in those regions have been
infected with ZIKV since 2015 and 20 cases have resulted in death, excluding those
related to congenital infections or Guillain-Barré syndrome (GBS) (9). In the United
States, over 5,500 symptomatic ZIKV cases have been reported to the Centers for
Disease Control and Prevention (CDC) since 2015, with the height of the outbreak
occurring in July and August 2016 (10). The number of cases increases to more than
37,000 when U.S. territories are included, among which Puerto Rico was most affected,
with nearly 35,000 infected individuals. Notably, in 2017, ZIKV infection rates declined
dramatically both in the United States and in all other countries affected by the
outbreak.

Transmission. The principal route of ZIKV transmission to humans is via mosqui-
toes, with Aedes aegypti mosquitoes being considered the most competent species (11).
As a result, the vast majority (>90%) of ZIKV cases in the United States have been
associated with travel to regions with ongoing ZIKV circulation among mosquito
populations. Aedes sp. mosquitoes are also endemic in the United States, being found
primarily in the Southeast, Mid-Atlantic, and Central Midwest regions, ranging from
Texas to New Jersey; therefore, the risk of ZIKV introduction into the continental United
States continues to be a significant public health concern (12). This risk was realized in
July 2016, when the first cases of autochthonous ZIKV transmission were reported in
Miami, Florida, followed by confirmation of locally acquired ZIKV in Brownsville, Texas,
in November 2016 (13, 14). Over 200 locally acquired cases have been confirmed in
both of those states. As a result of intense mosquito control efforts, autochthonous
mosquito-borne transmission of ZIKV in the continental United States has been signif-
icantly reduced, with only 4 cases presumed to be acquired via this route reported to
the CDC in 2017.

Although it is less frequent, we now know that ZIKV transmission may also occur
through vector-independent routes. Vertical transmission of ZIKV, from mother to fetus,
has now been well documented, with over 95 live-born infants in the United States
being confirmed to have ZIKV-associated congenital defects (3, 10). Transmission of
ZIKV through sexual contact, a characteristic unique to ZIKV among the flaviviruses, has
also been established and was the mode of acquisition for over 50 patients in the
United States (10, 15). Infection with ZIKV via transfusion of infected blood products
remains of significant concern, as 1.1% and 2.8% of asymptomatic blood donors in
Puerto Rico and French Polynesia, respectively, were positive for ZIKV during their
respective outbreaks (16-18). In August 2016, this led the U.S. Food and Drug Admin-
istration (FDA) and the American Association for Blood Banks to implement deferral of
blood donation for 28 days among individuals returning from travel to regions in which
ZIKV is endemic, in addition to requiring that all blood products be screened for ZIKV
using a molecular assay. To date, no blood-product-transmitted infections have been
reported in the United States. While ZIKV infections associated with solid organ
transplants have likewise not been documented, the risk exists. There are no specific
ZIKV tests recommended for donor screening, with current protocols focusing on
assessments of donor travel history, epidemiological risk factors, and symptoms (19).
Finally, ZIKV infection through secondary nonsexual contact has also been reported,
although the specific modes of transmission have not yet been determined (20, 21). Of
note, recent studies suggest prolonged viral shedding in a variety of body fluids,
including tears, although the risk of transmission following contact with these fluids
remains unclear (22).

Pathogenesis and clinical disease. The pathogenesis of ZIKV, particularly the
neurotropic nature of the virus, continues to be characterized. ZIKV has a predilection
for fetal neural progenitor and neural retinal cells, with infection resulting in marked
inflammation, reduced cellular proliferation, and apoptosis (23). It is estimated that
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approximately 1 of 3 infants infected with ZIKV in utero will develop fetal abnormalities,
which can include severe sequelae such as blindness, dramatic loss of brain paren-
chyma, ventriculomegaly, and microcephaly (24). Mouse models have shown that ZIKV
can also infect and destroy adult neural progenitor cell niches, which are important for
neural plasticity and learning (25). Acute flaccid paralysis (AFP) as a result of ZIKV
infection has also been reported, with some geographic regions reporting 2.5- to
40-fold increases in AFP rates during ZIKV outbreaks (26). AFP can result from either
direct injury to the spinal cord (e.g., myelitis) or a postinfectious, immune-mediated,
demyelinating process (e.g., GBS). While the precise mechanism of ZIKV-induced AFP
continues to be defined, a recent systemic review by the WHO Zika Causality Working
Group determined that sufficient evidence does exist to indicate that ZIKV can trigger
GBS (24, 27).

ZIKA VIRUS DIAGNOSTIC ASSAYS

Due to the infrequency of ZIKV infections prior to 2016, there were no commercially
available assays for detection of the virus; diagnostic testing for ZIKV was offered only
through the CDC and select research laboratories in the United States. This changed
rapidly in the United States following declaration of the ZIKV outbreak as a public
health emergency by the U.S. Secretary of Health and Human Services (HHS) in August
2016. This declaration allowed assay manufacturers to apply for and receive emergency
use authorization (EUA) from the FDA for unapproved assays related to ZIKV diagnostics
(28). The overarching goal of the EUA process is to “... support emergency prepared-
ness and response and foster the development and availability of medical products for
use in these emergencies” (29). For EUA to be granted, test developers must provide
certain device performance data (e.g., analytical sensitivity and specificity in the desired
specimen type) to the FDA and are obligated to advance the product toward traditional
FDA approval. The FDA is charged with periodic review of the EUA with respect to assay
performance, while laboratories performing assays under EUA must be Clinical Labo-
ratory Improvement Amendments (CLIA) certified to perform high-complexity testing
and are required to follow the procedure specified by the EUA without variation (29).
Although the CDC deactivated its emergency response to ZIKV on 29 September 2017,
the Secretary of HHS has not yet terminated the public health emergency declaration.
Currently, there are 5 serological assays and 14 molecular assays for ZIKV with FDA EUA
(Tables 1 and 2). Despite the availability of those commercial assays, as well as assays
without FDA EUA, diagnostic testing for ZIKV remains limited in many resource-strained
regions in which ZIKV is endemic. Specimens from such regions are often sent inter-
nationally for testing, leading to delays in the receipt of results, which may negatively
affect clinical care. Point-of-care assays for ZIKV that meet the WHO ASSURED (afford-
able, sensitive, specific, user-friendly, rapid and robust, equipment-free, and deliver-
able) criteria are needed to help meet the ZIKV diagnostic challenges in resource-
limited countries (30).

ZIKA VIRUS AND THE HUMORAL IMMUNE RESPONSE

For the majority of symptomatic patients, IgM class antibodies to ZIKV are detect-
able approximately 1 week following infection, although recent studies suggest that
seroconversion may occur earlier for one-third of patients (31, 32). While anti-ZIKV
antibody titers subsequently decrease, IgM to ZIKV may still be detectable more than
2 months following infection for over 80% of individuals (31). Such seropersistence is
consistent with the antibody responses following infection with other flaviviruses,
including West Nile virus (WNV) and DENV, for which modeling studies suggest that the
mean time to IgM seronegativity ranges from 5 to 6 months (33, 34). IgG class
neutralizing antibodies (NAs) develop soon after the IgM response and can persist for
years to decades following infection. The NA response to ZIKV is specific in patients
without prior exposure to flaviviruses; however, NA specificity decreases in patients for
whom ZIKV infection occurs in the setting of past exposure to a closely related
flavivirus, such as DENV, which shares significant homology with ZIKV at key epitopes
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and antigenic determinants (32). This presents a diagnostic dilemma for patients living
in regions in which both ZIKV and DENV are endemic, where correct identification of
the infecting virus may result in significantly different management strategies. A recent
comparison of four enzyme-linked immunosorbent assay (ELISA)-based ZIKV serological
assays utilizing well-characterized, sequential serum specimens collected from a Nica-
raguan cohort indicated variations in assay sensitivity depending on prior exposure to
DENV, compared to specimens obtained from flavivirus-naive individuals (35). Diagnos-
tic assays that are able to discriminate between primary and secondary ZIKV or DENV
infections are needed. Toward that goal, multiple studies using different approaches,
including anti-ZIKV 1gG avidity testing using a novel plasmonic gold nanotechnology
platform, blockade-of-binding testing, or use of multitest serological algorithms, have
suggested that, with refinement, such differentiation may be possible in the future
(36-38).

Similar to other flaviviruses, the ZIKV envelope (E) glycoprotein is a major antigenic
determinant that is able to elicit a strong humoral immune response. Structurally, the
E glycoprotein is divided into three domains (El to Elll), among which NAs to Elll appear
to provide the greatest power for discrimination between ZIKV and DENV, as they share
only 29% amino acid (AA) homology at this domain, compared to 35% and 51% AA
homology at El and Ell, respectively (39, 40). Among the five anti-ZIKV IgM serological
assays with FDA EUA, two are based on detection of IgM reactivity to the ZIKV E
glycoprotein and the remaining three were developed using ZIKV nonstructural protein
1 (NS1) as the target antigen (Table 1). ZIKV NS1, an essential viral protein released from
infected cells, shares 51% to 53% AA homology with NS1 from the four DENV serotypes
(40). Despite this high level of similarity, structural studies suggest significant electro-
static differences at key antigenic epitopes within the ZIKV and DENV NS1 proteins,
possibly leading to decreased antibody cross-reactivity and greater specificity among
ZIKV-NS1-based serological assays (41).

The reference standard for detection of NAs to flaviviruses remains the plaque
reduction neutralization test (PRNT), which, although technically challenging to per-
form, with a turnaround time (TAT) of days to weeks and a requirement for live viral
cultures, offers the highest achievable level of specificity. PRNT is performed by serially
diluting patient serum and incubating aliquots with live ZIKV or other closely related
viruses (e.g., DENV), followed by overlay of this mixture onto a virus-susceptible cell
monolayer. Any resulting plaques, suggesting the presence of live virus and thus the
absence of NAs, are quantified and compared to the number of plaques in virus-only
control wells in order to establish the dilution at which a 90% reduction in plaques
occurs in the patient sample (PRNT,,) (42). PRNT,, titers are subsequently compared
between ZIKV and DENV to determine the specificity of the NAs (if present), although
interpretive challenges exist with this method, as discussed below. Studies to improve
on the classic PRNT technique are ongoing, including most recently the use of
luciferase-labeled viruses to decrease the TAT while maintaining the accuracy of the
classic PRNT (43). Importantly, however, while ZIKV testing guidance established by the
CDC has been fluid, with multiple revisions over the past 2 years, the recommendation
that positive results from anti-ZIKV IgM screens be confirmed by supplemental testing
with the PRNT has remained constant (44).

PERFORMANCE OF SEROLOGICAL ASSAYS FOR DETECTION OF ANTIBODIES TO
ZIKA VIRUS

There are currently five serological assays with FDA EUA available for detection of
IgM class antibodies to ZIKV. However, peer-reviewed studies independently assessing
the performance characteristics of the assays are limited and are available primarily for
the CDC ZIKV IgM antibody capture (MAC)-ELISA and the InBios ZIKV Detect MAC-ELISA
(InBios International, Inc., Seattle, WA), both of which detect antibodies to the ZIKV E
protein, and most recently for the Liaison XL Zika capture assay (DiaSorin Inc., Stillwater,
MN), a ZIKV NS1-based chemiluminescent microparticle IgM capture immunoassay
(32, 45-48) (Table 1). Compared to PRNT and/or real-time reverse transcriptase PCR
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(rRT-PCR) for ZIKV, recent studies evaluating the CDC ZIKV MAC-ELISA show high rates
of positive agreement, ranging from 83.3% to 100% for samples collected approxi-
mately 1 week to 85 days post symptom onset (PSO), which is consistent with the
reported positive agreement rate of 94% in the assay instructions for use (IFU) (45, 47,
49). Negative agreement rates for this assay are low, however, ranging from 30.9% to
47.1%, with nearly 50% of serum samples confirmed for anti-DENV antibodies by PRNT
also being positive by the CDC ZIKV MAC-ELISA. This underscores the importance of
follow-up confirmatory testing for sera reactive by the CDC ZIKV MAC-ELISA with the
ZIKV PRNT, which, according to CDC guidelines, remains a recommended follow-up test
for all samples reactive by any anti-ZIKV IgM serological assay (44). The clinical inter-
pretation of PRNT results may be challenging, however. Lanciotti and colleagues found
that, while PRNT was highly specific for ZIKV in the setting of primary flavivirus
infection, PRNT specificity for ZIKV diminished in patients with prior DENV exposure
(32). More specifically, a =4-fold difference in PRNT,,, titers for ZIKV versus DENV was
observed for only three of seven patients with secondary ZIKV infections (32). As a
result, for a significant number of individuals with prior DENV infections, anti-ZIKV IgM
reactivity results may remain unconfirmed by PRNT, a limitation that is particularly
problematic during the diagnostic assessment of pregnant women (46).

Performance of the InBios ZIKV MAC-ELISA has been evaluated by three studies,
which reported performance characteristics comparable to those of the CDC ZIKV
MAC-ELISA, with positive and negative agreement rates ranging from 87.5% to 100%%
and from 95.7% to 98.5%, respectively (46, 48, 50). When evaluated against ZIKV and
DENV PRNT results, the InBios ZIKV MAC-ELISA showed excellent sensitivity, 100%
across studies, but variable specificity, ranging from 20% to 74% in sera confirmed for
the presence of NAs to DENV (Table 1). Notably, these specificity values differ from the
92.5% specificity reported in the InBios ZIKV MAC-ELISA IFU. To date, a single study has
been published evaluating the Liaison XL Zika capture IgM assay, which showed
sensitivity and specificity values of 85% and 56%, respectively, in sera confirmed by
PRNT for NAs to ZIKV and DENYV, values that differ notably from those reported in the
assay IFU (Table 1) (48). The remaining two serological assays with FDA EUA are both
based on detection of antibodies to the ZIKV NS1 antigen and include the ADVIA
Centaur Zika test (Siemens Healthcare Diagnostics, Tarrytown, NY), a chemiluminescent
microparticle IgM capture immunoassay, and the DPP Zika IgM assay system (ChemBio
Diagnostic Systems, Medford, NY), an immunochromatographic assay read by an
automated reader. Notably, the only available performance characteristics for these
assays are derived from the manufacturers’ package inserts. Using unspecified ZIKV IgM
serological assays with FDA EUA as the comparator methods and specimens collected
at least 8 days PSO, the manufacturers report high positive and negative agreement
rates, ranging from 90.2% to 95.1% and from 95.9% to 98.2%, respectively (Table 1).

Finally, multiple groups have assessed the Euroimmun anti-ZIKV IgM and IgG ELISAs
(Lubeck, Germany), both of which are based on the ZIKV NS1 antigen, although neither
assay has received FDA EUA. All reports suggest that the Euroimmun ZIKV IgM ELISA
provides limited sensitivity, ranging from 54% to 79%, in sera collected within 30 days
PSO from patients with ZIKV infections confirmed by rRT-PCR or PRNT (45, 47, 48, 51,
52). Interestingly however, the majority of those studies showed that combined inter-
pretation of results from both the Euroimmun anti-ZIKV IgM and IgG ELISAs increased
sensitivity to over 88% in this same patient cohort. The specificity of the Euroimmun
ZIKV ELISAs, particularly for patients with prior exposure to closely related flaviviruses
such as DENV, WNV, or Japanese encephalitis virus, has repeatedly been shown to be
high, over 95%, although L'Huillier and colleagues suggested more frequent cross-
reactivity among patients seropositive for DENV (45, 47, 48, 53). Overall, while these
emerging data are encouraging and the availability of such assays has greatly improved
the accessibility to diagnostic testing for ZIKV, expanding beyond the capacity of public
health laboratories and the CDC, thorough assessment of these and future diagnostic
assays for ZIKV is needed to fully understand their diagnostic accuracy.
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PERFORMANCE OF MOLECULAR ASSAYS WITH FDA EUA FOR DETECTION OF
ZIKA VIRUS RNA

The pace of molecular test development for detection of ZIKV RNA and concomitant
acquisition of FDA EUA for such assays has increased rapidly, although with limited
peer-reviewed studies independently assessing their performance. Highly conserved
regions of the ZIKV RNA genome, such as the flanking 5" and 3’ noncoding regions
(NCRs), are often used as the rRT-PCR primer and probe sequence targets; however,
other regions, such as the E, NS1, NS3, NS5, membrane junction, and partial envelope
regions, have also been used successfully to develop ZIKV rRT-PCR assays (4, 17).

The first molecular test to receive FDA EUA was the CDC Trioplex rRT-PCR assay,
which was designed for qualitative simultaneous detection of ZIKV, DENV, and chikun-
gunya virus in serum, whole blood (WB), urine, cerebrospinal fluid (CSF), and amniotic
fluid (Table 2). This assay targets the ZIKV E gene and, according to the IFU, shows high
positive and negative agreement rates in serum (100% and 98.2%, respectively),
compared to a matched monoplex rRT-PCR assay targeting the ZIKV NS3 gene, and has
a lower limit of detection (LLoD) of 1.93 X 10* genome copy equivalents in serum
(Table 2) (54). ZIKV RNA can be detected in serum, urine, and WB as early as the day of
symptom onset and throughout the first 7 days of ilness, although sensitivity is highest
throughout this time frame in the latter specimen source (90.9% to 96.2%). While the
specificity of the CDC Trioplex rRT-PCR assay is high (>98%), false-positive results have
been documented, and a cautionary statement regarding this was notably included in
the most recent CDC guidance document for ZIKV (44).

The Aptima ZIKV assay (Hologic Inc., San Diego, CA) employs transcription-mediated
amplification (TMA) and targets the ZIKV NS1 and NS4/NS5 genes for detection of ZIKV
RNA in serum and urine. With specimens collected from travelers to and residents in
regions in which ZIKV is endemic, in addition to spiked specimens, the Aptima ZIKV
TMA assay demonstrated positive, negative, and overall agreement rates of 94.7%,
94.8%, and 94.8%, respectively, compared to the CDC Trioplex method (55). The LLoDs
for the assay in serum and urine samples were determined to be 11.5 and 17.9 genome
copy equivalents/ml, respectively, similar to the LLoD in plasma of 5.9 copies/ml
reported in the assay IFU.

The Altona RealStar Zika rRT-PCR kit (Altona Diagnostics GmbH, Hamburg, Germany)
targets the ZIKV NS1 gene and has EUA approval for testing of serum, plasma, and
urine. Similar to the Aptima ZIKV TMA assay, the Altona RealStar ZIKV rRT-PCR dem-
onstrated high positive and negative agreement rates (95.5% and 91.8% respectively),
compared to a ZIKV rRT-PCR assay targeting the E gene, in urine and serum samples
(56). These results were mirrored by a similar study performed at the Public Health
Ontario Laboratory in Canada, primarily using serum samples from returning travelers,
which showed a positive agreement rate of 91.4% and a negative agreement rate of
97.1%, compared to rRT-PCRs for ZIKV RNA (57). The 95% LLoD was calculated to be
0.61 copies/ul and 0.15 PFU/ml by these studies (57).

The final ZIKV rRT-PCR assay with current peer-reviewed literature is the Abbott
RealTime ZIKV RT-PCR, which targets the prM and NS3 genes and can be performed
with WB, plasma, serum, and urine samples, using the mSample RNA preparation
system kit and automated m2000sp and m2000rt instruments (Abbott Molecular Inc.,
Des Planes IL). Compared to the Altona RealStar ZIKV rRT-PCR, the Abbott ZIKV rRT-PCR
demonstrated positive and negative agreement rates of 96.5% and 71.4% in serum
samples and 72.4% and 71.4% in urine samples, respectively, with LLoD values of 30
copies/ml for serum samples and 40 copies/ml for urine and plasma samples, as
reflected in the assay IFU (58).

Impact of specimen source on detection of ZIKV RNA. The specimen types most
frequently cited for ZIKV RNA detection have been plasma or serum, with viral titers of
5.0 X 10° to 3.7 X 10° copies/ml (mean of 9.9 X 10* copies/ml) being determined with
the CDC Trioplex ZIKV rRT-PCR for serum samples collected within the first 7 days PSO
(59). A 2016 longitudinal study of travelers returning from the Caribbean region or
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Central or South America showed prolonged detection of ZIKV in WB samples, com-
pared to plasma or serum samples, with median durations of ZIKV viremia of 22 days
versus 10 days. Comparison of the last ZIKV-rRT-PCR-positive samples for those patients
showed that viral loads were 2.7 to 3.9 log copies/ml in WB and 2.2 to 2.8 log copies/ml
in plasma, suggesting that WB may be a more sensitive ZIKV source than other blood
fractions (60). While WB appears to be the optimal specimen type for ZIKV rRT-PCR,
challenges associated with its long-term storage and extraction have limited the
widespread validation of this sample type for molecular applications.

Multiple studies have shown that, due to the longevity of ZIKV shedding and the
ease of specimen collection, urine is an advantageous specimen type for ZIKV RNA
detection (61). ZIKV RNA was reliably detected 7 to 20 days PSO for 93% of patients in
one study, with viral loads ranging from 3.8 X 103 to 2.2 X 108 copies/ml using rRT-PCR
assays targeting the ZIKV prM and E genes (17, 62). Notably, recent studies have shown
more frequent detection and significantly longer persistence of ZIKV RNA in serum
versus urine, with median times to clearance of 14 days (95% confidence interval [Cl],
11 to 17 days) for serum and 8 days (95% Cl, 6 to 10 days) for urine (31, 63). The stability
of ZIKV RNA in urine samples stored under different conditions (e.g.,, maintained at
room temperature, refrigerated at 4°C, or frozen at —80°C) was recently evaluated by
Tan and colleagues, with results indicating significant degradation of RNA even during
storage at —80°C (64). On the basis of those findings, the authors suggest optimal
specimen storage at 4°C, with the addition of a nucleic acid stabilizer to minimize the
risk of RNA degradation and false-negative results. Notably, testing for ZIKV RNA in
urine, with a paired serum sample, is a part of the ZIKV testing guidelines outlined by
the CDC, and urine is an approved specimen source for all but two of the current ZIKV
molecular assays with FDA EUA (44).

The use of saliva as a specimen source for detection of ZIKV RNA has also been
evaluated, due to the ease of collection, particularly for neonates and young children.
One study, conducted through the Florida Department of Health, showed that ZIKV
RNA could be detected in saliva as early as 1 day PSO and up to 19 days later, although
sensitivity was highest within 5 days PSO (62). Importantly, however, despite the ease
of sample acquisition, the inconsistencies in sample collection methods and possible
challenges associated with specimen processing, as well as the finding that all patients
positive for ZIKV in saliva were also positive in other specimen types (e.g., serum or
urine), negate the use of this specimen type for routine ZIKV diagnostic assays (65).

Detection of ZIKV RNA in semen has been considered during assessment of fetal
infection risks. Among 23 male patients reporting a self-limited, mild illness consistent
with ZIKV infection, 56.5% had detectable ZIKV at high copy numbers (threshold cycle
of <30 cycles) in semen specimens collected within 28 days PSO (66, 67). Other reports
indicated a maximum period of RNA detection in semen of 4 to 6 months, with
propagation in culture up to 69 days PSO (31, 68). Importantly however, as RNA from
noninfectious virus may be detected by molecular techniques, routine evaluation of
semen for ZIKV as a means to determine preconception risk is not recommended.
Rather, couples are encouraged to delay conception until 6 months after the last
possible exposure of the male partner to ZIKV, until there is a better understanding of
viral clearance from this source (44).

Evaluation of products of conception (e.g., amniotic fluid, placenta, and fetal tissue)
can be invaluable for identification of neonatal ZIKV infection; however, the perfor-
mance of molecular assays with these specimen types has not been fully characterized.
A prospective study of eight pregnant women on the island of Martinique found that
ZIKV RNA was detectable in five of eight postmortem fetal brain tissue specimens but
was variably detected in placental tissue, amniotic fluid, fetal blood, or maternofetal
circulation at the time of delivery or upon termination of pregnancy, possibly due to
the transient nature of ZIKV viremia in these specimen types (69). Although one
meta-analysis established that ZIKV RNA could be detected in breast milk and in the
blood of two of three infants, evidence could not fully support ZIKV transmission solely
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via breastfeeding, and none of the three infants suffered any long-term complications
of ZIKV infection (70).

CONCLUSIONS

Significant strides have been made over the past 2 years with respect to our

understanding of ZIKV, including the biology of the virus, the multiple and unique
modes of transmission, the clinical disease, and the potentially devastating sequelae
associated with neonatal infection. The rapidity with which diagnostic assays were
developed and made available via FDA EUA to public health and clinical laboratories
was a testament to the dedication, collaborative efforts, and ingenuity of both research-
ers and assay developers. A variety of monoplex and multiplex ZIKV assays, utilizing
multiple amplification methods and unique detection chemistries, were recently re-
viewed (61). There remains, however, a need for further peer-reviewed studies inde-
pendently assessing the clinical performance of ZIKV diagnostic assays (both molecular
and serological) in clinical settings. This need will continue as new diagnostic assays
continue to be developed, including novel methods such as paper-based sensors for
detection of ZIKV RNA using a chromatographic output, loop-mediated amplification
(LAMP) assays performed on a microchip with results visualized using smartphone
optical imaging systems, and CRISPR-Cas13b fluorescence detection (61, 71, 72). Al-
though they were not reviewed in detail here, the CDC guidelines and algorithms for
the diagnosis of ZIKV, including patient testing criteria, selection of diagnostic method
(i.e., molecular versus serological), timing of specimen collection, specimen source, and
frequency of testing, have been fluid over the past year and may be amended again as
we learn more about this virus. Despite this, these recommendations have been
invaluable to clinicians, epidemiologists, and laboratorians, providing guidance for the
diagnosis, management, and surveillance of this infectious agent, which was entirely
unknown to the vast majority of medical professionals prior to 2015. As the ZIKV
pandemic continues to evolve, continuing collaborations between clinicians, research-
ers, laboratorians, and assay manufacturers will be essential in order to optimize the
detection of ZIKV and the management of infected patients.
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