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Abstract Cortical network structure has been extensively

characterized at the level of local circuits and in terms of

long-range connectivity, but seldom in a manner that inte-

grates both of these scales. Furthermore, while the con-

nectivity of cortex is known to be related to its architecture,

this knowledge has not been used to derive a comprehensive

cortical connectivity map. In this study, we integrate data on

cortical architecture and axonal tracing data into a consis-

tent multi-scale framework of the structure of one hemi-

sphere of macaque vision-related cortex. The connectivity

model predicts the connection probability between any two

neurons based on their types and locations within areas and

layers. Our analysis reveals regularities of cortical structure.

We confirm that cortical thickness decays with cell density.

A gradual reduction in neuron density together with the

relative constancy of the volume density of synapses across

cortical areas yields denser connectivity in visual areas

more remote from sensory inputs and of lower structural

differentiation. Further, we find a systematic relation

between laminar patterns on source and target sides of

cortical projections, extending previous findings from

combined anterograde and retrograde tracing experiments.

Going beyond the classical schemes, we statistically assign

synapses to target neurons based on anatomical recon-

structions, which suggests that layer 4 neurons receive

substantial feedback input. Our derived connectivity exhi-

bits a community structure that corresponds more closely

with known functional groupings than previous connectiv-

ity maps and identifies layer-specific directional differences

in cortico-cortical pathways. The resulting network can

form the basis for studies relating structure to neural

dynamics in mammalian cortex at multiple scales.

Keywords Macaque visual cortex � Cellular architecture �
Cortical layers � Multi-scale connectivity � Predictive
connectomics

Introduction

Connectivity maps allow insights into the structure of the

brain, for instance through graph-theoretical analyses

(Jouve et al. 1998; Rubinov and Sporns 2010), and help to

create hypotheses on neural processing strategies (Maun-

sell and Newsome 1987; Felleman and Van Essen 1991;

Nassi and Callaway 2009). For instance, experimental

knowledge about laminar patterns of connectivity (Felle-

man and Van Essen 1991; Markov et al. 2014b) in com-

bination with experimental studies on cortical activity (van
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Kerkoerle et al. 2014; Bastos et al. 2015a) have inspired

theories about hierarchical processing and communication

between cortical areas (Bastos et al. 2012, 2015b). Fur-

thermore, connectivity maps provide a structural basis for

dynamical models of the brain. They have been derived at

different levels of detail and for different species such as

the mouse (Oh et al. 2014) and macaque monkey (Stephan

et al. 2001; Bakker et al. 2012). Such maps inherently

possess uncertainties, for example, due to gaps in the

experimental data or deformations associated with the

mapping to standard brains. Consequently, there is an

ongoing need for improvement, gradual refinement, and

theoretical integration.

The connectivity of the brain is closely linked to its

cellular architecture. Systematic relations have been iden-

tified in cortex using the notion of architectural types

(Barbas 1986; Barbas and Rempel-Clower 1997), which

classify the distinctiveness of the laminar cortical archi-

tecture as well as the thickness of the granular layer

(Dombrowski et al. 2001). A set of connectivity features,

including the existence or absence of connections and

laminar patterns of cortico-cortical connections, are linked

to structural differences between areas (Barbas and Rem-

pel-Clower 1997; Hilgetag and Grant 2010; Hilgetag et al.

2016; Beul et al. 2017). The concept of architectural types

represents a discretization of a continuum of structural

features across areas (von Economo and Van Bogaert

1927). Types relate also to neuron density, as types with

low ordinal number have low overall neuron density. Sta-

tistical relationships between cortical architecture and

connectivity may have a developmental origin, with areas

of low type developing earlier and having a larger time

window for interconnecting with other areas (Barbas and

Garcı́a-Cabezas 2016; Beul et al. 2017). Regardless of the

underlying cause, such regularities help to fill gaps in

existing connectivity maps.

Network science describes the connectivity of neuronal

networks in different ways, for instance in terms of total

numbers of synapses, pairwise connection probabilities, or

in- and outdegrees of nodes, but also by more abstract

measures of connection strength (Hagmann et al. 2007;

Wedeen et al. 2008). Some of these different measures of

connectivity are related through neural population sizes, for

instance, average indegrees are obtained by dividing the

total number of synapses by the size of the target popula-

tion. Knowledge about the cellular architecture of the brain

thus allows researchers to translate between different

measures of connectivity. Furthermore, combining network

connectivity with a quantification of the cellular architec-

ture leads to a cellular-level network description, necessary

for dynamical model simulations at this resolution.

In the present study, we investigate the network of

vision-related areas of macaque cortex, a system that has

garnered intense interest in experimental studies (e.g.,

De Valois et al. 1982; Luck et al. 1997; van Kerkoerle

et al. 2014; Bastos et al. 2015a). The available experi-

mental data on the cellular architecture and connectivity of

the system are extensive, yet still incomplete. However,

structural relations and distances between areas expose

statistical regularities that we employ to bridge some of the

missing data.

The microcircuit model of Potjans and Diesmann

(2014), which constitutes a synthesis of local connectivity

data from electrophysiological and anatomical studies,

forms the basis for the intra-area connectivity in our net-

work. Although the data originate mainly from studies on

rat somatosensory and cat primary visual cortex, the

comprehensive collation of local connectivity by this

model is unparalleled for macaque cortex, let alone for the

individual areas we consider. Our choice is justified by

predominant similarities between the local cortical con-

nectivity in different species and areas, as formalized by

the concept of a ‘canonical microcircuit’ (Douglas et al.

1989; Douglas and Martin 2004). We nevertheless take into

account variability across areas as resulting from known

differences in laminar compositions and their degree of

connectivity.

The connectivity between areas in our model combines

information from a recent release of the CoCoMac con-

nectivity database (Stephan et al. 2001; Bakker et al. 2012)

with quantitative data on cortico-cortical connection den-

sities (Markov et al. 2014a) and laminar patterns (Markov

et al. 2014b). For long-distance connections, tracing data

are more reliable than diffusion MRI (Thomas et al. 2014),

which enters into most current multi-area modeling work

(Deco and Jirsa 2012; Sanz Leon et al. 2013; Kunze et al.

2016). The observed exponential fall-off of connection

density with spatial distance (Ercsey-Ravasz et al. 2013)

helps to estimate connection densities for area pairs where

quantitative data are lacking. The categorization of areas

into architectural types predicts cell densities and laminar

thicknesses in case of missing data. Such structural dif-

ferences between areas are in turn linked to and help fill in

laminar patterns of cortico-cortical projections. A unique

feature of our connectivity map is that it enables layer-

specific polysynaptic pathways to be characterized, as

synapse locations are statistically mapped (based on mor-

phological reconstructions; Binzegger et al. 2004) to the

locations of the target cell bodies forwarding the synaptic

input. In this study, we aim to derive a consistent picture of

the connectivity within and between vision-related areas

within one hemisphere of macaque cortex. A treatment of

callosal and subcortical connections therefore lies beyond

the scope of the current study, but represents an important

extension for a future revision of the model.
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Besides uncovering layer-specific pathways for routing

cortico-cortical communication, the resulting network

description reveals a modular structure that resembles a

functional categorization of areas. The derivations of the

connectivity and the numbers of neurons necessarily entail

choices which, given the available data, yield a compro-

mise between detail and conciseness. Due to these sim-

plifying assumptions and presently unexplained biological

variability, the entries of the resulting connectivity matrix

are only estimated up to a certain precision, and therefore

the individual entries should be interpreted with care. The

advantage of our approach is that it makes the assumptions

explicit, which enables their consequences to be studied in

a systematic manner. Furthermore, the matrix as a whole

already provides a multi-scale connectivity substrate for

the investigation of cortical dynamics via analytical theory

and numerical simulation in a way that an incomplete

matrix cannot, and various validations demonstrate the

plausibility of its community structure and layer-specific

pathways.

The remainder of this paper is organized as follows. In

the ‘‘Materials and methods’’ section, we provide an

overview of the processing of the experimental data con-

tributing to the model. In the ‘‘Results’’ section, we detail

the derivation of the network description including popu-

lation sizes and the multi-scale cortical connectivity. Sub-

sequently, we analyze the resulting connectivity map with

regard to community structure and emerging paths in the

network. In terms of source and target layers, we find that

feedforward paths follow a stereotypical pattern, also

shared by lateral paths, while feedback paths feature a high

degree of heterogeneity. However, in pathways passing

through several areas, the intermediate laminar patterns of

lateral paths more closely resemble those of feedback

paths. Finally, we discuss the implications of our results

and suggest future directions in the ‘‘Discussion’’ sec-

tion. Preliminary results have been published as preprint in

Schmidt et al. (2016).

Materials and methods

We consider a network comprising 32 areas of macaque

cortex involved in visual processing in the parcellation of

Felleman and Van Essen (1991), henceforth referred to as

FV91 (Supplementary Table S1). In each area, we consider

a microcircuit under 1mm2 of surface area because this is

the scale at which the intra-area connectivity is well

Population sizes

excitatory cell
inhibitory cell

6

5

4

2/
3
1

1mm 2

Cortico-cortical connectivity

Local connectivity

other background input

6

5

4

2/
3

1

1mm 2

Fig. 1 Overview of the model. Each area is modeled as the volume

under 1mm2 of cortical surface with area- and layer-specific

population sizes. The local connectivity inside each area is based

on the microcircuit model of Potjans and Diesmann (2014). Cortico-

cortical connectivity is area- and layer-specific. It is derived from

tracing data stored in the CoCoMac database (Stephan et al. 2001;

Bakker et al. 2012), quantitative retrograde tracing data from Markov

et al. (2014a, b) and reconstructed morphologies from Binzegger

et al. (2004). Microcircuit diagrams adapted from Potjans and

Diesmann (2014) (with permission). Large-scale network diagram

adapted from Kunkel et al. (2009). The dendritic morphologies in the

cortico-cortical connectivity illustration are extracted from Stepa-

nyants et al. (2008) (inhibitory L4 cell) and Mainen and Sejnowski

(1996) (L5 pyramidal cell), respectively (source: http://NeuroMorpho.

org; Ascoli et al. 2007)
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described by the data sources (Potjans and Diesmann

2014). We can thus derive a multi-scale connectivity graph

based on this local extent but not yet for entire areas where

further spatial features such as patchy connections emerge.

However, for completeness we do estimate the overall

connectivity to each area arising outside the network, i.e.,

the combined external inputs from outside the 1mm2 pat-

ches as well as from cortical and subcortical regions not

included in the model. These external inputs are relevant

for possible future extensions and for dynamical simula-

tions of the system, complementing the population sizes

and the internal connectivity map. Figure 1 provides an

overview of the derivation of the network model.

Each area contains an excitatory (E) and an inhibitory

(I) population in each of the layers 2/3, 4, 5 and 6 (L2/3,

L4, L5, L6), except for area TH, which lacks L4. Neurons

in the network receive inputs from four different sources:

synapses from within the 1mm2 patches, intra-area

synapses from outside the 1mm2 patches, cortico-cortical

synapses from other areas in the network, and synapses

from subcortical regions and cortical areas not included in

the network. We refer to these four types of synapses,

respectively, with the Roman numerals I–IV. In the fol-

lowing, we detail the data sources used to derive the

network structure of the model, that is, the population

sizes, the local and cortico-cortical (inter-area) connectiv-

ity and the external input. Table 1 lists all data sources

used in this study. Table 2 gives an overview of the

heuristics used to derive the model in combination with the

available experimental data. Table 3 summarizes all vari-

ables and parameters appearing in the calculations.

Population sizes

We estimate the number of neurons in each area and

population in three steps:

1. Layer-resolved neuronal volume densities for 14 areas

were provided by H. Barbas (personal communication;

for details see Supplementary Sec. ‘‘Neuron densi-

ties’’). We translate the neuronal densities to the FV91

scheme from the most representative area in the

original scheme (Supplementary Table S2). Architec-

tural types reflect the distinctiveness of the lamination

as well as L4 thickness, with agranular cortices having

the lowest and V1 the highest value. Table 4 of

Hilgetag et al. (2016) lists the architectural types,

which we translate to the FV91 scheme according to

Table 1 Overview of the data sources used

Data modality Sources

Layer-resolved neuronal volume densities Personal communication, H. Barbas and C.-C. Hilgetag

Architectural types Hilgetag et al. (2016, Table 4)

Total cortical thicknesses Hilgetag et al. (2016, Table 4)

Laminar thicknesses, estimated from micrographs O’Kusky and Colonnier (1982), Boussaoud et al. (1990), Rakic et al. (1991), Preuss

and Goldman-Rakic (1991), Rockland (1992), Felleman et al. (1997), Petrides and

Pandya (1999), Angelucci et al. (2002), Lavenex et al. (2002), Suzuki and Amaral

(2003), Rozzi et al. (2006), Eggan and Lewis (2007), Markov et al. (2014a)

Ratios of excitatory to inhibitory cell counts Binzegger et al. (2004)

Surface areas Computed with Caret (Van Essen et al. 2001) on the basis of each area’s representation

on the F99 cortical surface (Van Essen 2002)

Local microcircuit scheme Potjans and Diesmann (2014, Table 5), largest contributions from Binzegger et al.

(2004), Thomson and Lamy (2007)

Intrinsic fractions of labeled neurons (FLNi) Markov et al. (2011)

Average number of synapses per receiving neuron

(indegree) in monkey V1

Cragg (1967), O’Kusky and Colonnier (1982)

Binary connectivity matrix for cortico-cortical

connections

Stephan et al. (2001), Bakker et al. (2012), Suzuki and Amaral (1994a), Felleman and

Van Essen (1991), Rockland and Pandya (1979), Barnes and Pandya (1992)

Fractions of labeled neurons (FLN) Markov et al. (2014a)

Fractions of supragranular labeled neurons (SLN) Markov et al. (2014b)

Laminar source patterns of cortico-cortical connections

from retrograde tracing

Felleman and Van Essen (1991), Barnes and Pandya (1992), Suzuki and Amaral

(1994b), Morel and Bullier (1990), Perkel et al. (1986), Seltzer and Pandya (1994)

Laminar target patterns of cortico-cortical connections

from anterograde tracing

Jones et al. (1978), Rockland and Pandya (1979), Morel and Bullier (1990), Webster

et al. (1991), Felleman and Van Essen (1991), Barnes and Pandya (1992), Distler

et al. (1993), Suzuki and Amaral (1994b), Webster et al. (1994)

Statistical relations between synapse and cell body

locations in cat V1

Binzegger et al. (2004)
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Table 2 Table of the heuristics and regularities used to construct the model along with starting points for extensions, if applicable

Feature Heuristic Argument Starting points for extensions

Population

sizes

Neuron densities of areas with missing

data equal the mean neuron density for

areas of the same architectural type.

Neuron density varies systematically

with architectural type

Population

sizes

Areas MIP and MDP have architectural

type 5

Their neighboring area PO, similarly

involved in visual reaching (Johnson

et al. 1996; Galletti et al. 2003), is of

type 5 (Hilgetag et al. 2016)

Population

sizes

Total thickness and relative laminar

thicknesses for areas with missing data

are linearly predicted from the

logarithm of their overall neuron

density

This follows observed gradients. The

increase in relative L4 thickness with

log neuron density is consistent with

L4 thickness entering into the

definition of the architectural types

Population

sizes

The fraction of excitatory neurons in

each layer is identical across areas

This provides a simple rule across areas,

for lack of systematic area-specific

data

Beaulieu et al. (1992) report similar

values for layer-specific fractions of

inhibitory neurons in macaque V1.

Gabbott and Bacon (1996) report

layer-specific fractions of inhibitory

neurons in macaque medial prefrontal

cortex differing from the values of

Beaulieu et al. (1992)

Local

connectivity

We assume an underlying Gaussian

model for the local connection

probability

This ansatz provides consistency with

the derivations of Potjans and

Diesmann (2014)

Markov et al. (2011) report an

exponential decay of locally labeled

neurons with distance from the

injection site. With assumptions on cell

density, this enables deriving a non-

Gaussian distance-dependent

connection probability

Local

connectivity

Population pairs have the same relative

indegrees as in the model of Potjans

and Diesmann (2014)

This follows the notion of a canonical

microcircuit (Douglas et al. 1989;

Douglas and Martin 2004), for lack of

comprehensive species- and area-

specific data

Beul and Hilgetag (2015) suggest a

canonical microcircuit for agranular

cortical areas, which in our model

includes area TH

Local

connectivity

The relative amount of local synapses is

constant across areas

The fraction of labeled neurons intrinsic

to the injected area found by retrograde

tracing is approximately constant

Long-range

connectivity

All cortico-cortical connections originate

and terminate in the 1mm2 patches

covered by our model

Since we do not explicitly include spatial

dependence of connections, we opt for

a simple model for cortico-cortical

connections

Cortico-cortical connections exhibit

divergence and convergence (Colby

et al. 1988; Salin et al. 1989; Gattass

et al. 1997; Markov et al. 2014b)

Long-range

connectivity

All cortico-cortical connections are

excitatory

This simplification approximates the

finding that the large majority of

cortico-cortical projections are

excitatory

A small fraction of cortico-cortical

connections in monkey (Tomioka and

Rockland 2007) and other species

(McDonald and Burkhalter 1993;

Gonchar et al. 1995; Fabri and

Manzoni 1996, 2004; Tomioka et al.

2005; Pinto et al. 2006; Higo et al.

2007) are inhibitory

Long-range

connectivity

Neurons in all source areas form the

same number of synapses in each

target area

This assumption allows us to directly

translate FLN into synapse numbers

There is evidence that numbers of

cortico-cortical synapses per neuron

differ between feedback and

feedforward connections (Rockland

2003)

Long-range

connectivity

The probability for a postsynaptic

neuron to form a cortico-cortical

synapse in a specific layer is constant

across areas.

For lack of data in areas besides V1, we

take the computed values from the

Binzegger et al. (2004) data as

representative across the model
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Supplementary Table S2. To the previously unclassi-

fied areas MIP and MDP we manually assign type 5

matching their neighboring area PO, which is similarly

involved in visual reaching (Johnson et al. 1996;

Galletti et al. 2003), and was placed at the same

hierarchical level by Felleman and Van Essen (1991).

For areas not covered by the data set, we take the

average laminar densities for areas of the same

architectural type.

2. Total cortical thicknesses are given in Hilgetag et al.

(2016, Table 4) for the same areas for which neuron

densities were measured. Missing values are filled in

using a linear fit of total thickness versus logarithmized

overall neuron density, which reflects architectonic

differentiation similarly to architectural types, but has

the advantage of being continuous (Beul et al. 2017).

Quantitative data from the literature combined with

our own estimates from published micrographs (Sup-

plementary Table S3) determine relative laminar

thicknesses.

3. The fraction of excitatory neurons in each layer is

taken to be identical across areas. For the laminar

dependency, values from cat V1 (Binzegger et al.

2004) are used with 78% excitatory neurons in L2/3,

80% in L4, 82% in L5, and 83% in L6.

Local connectivity

The connection probabilities of the microcircuit model

(Potjans and Diesmann 2014, Table 5) form the basis for

the local circuit of each area. They provide an 8� 8 matrix

of population-specific connection probabilities that was

compiled from anatomical and electrophysiological studies

(with large contributions from Binzegger et al. 2004;

Thomson and Lamy 2007). We adapt this circuit to all 32

areas by preserving the relative indegrees between local

projections which leads to area-specific connection proba-

bilities. To determine the fraction of type I and II (i.e.,

within-area) synapses for each area, we use retrograde

tracing data from Markov et al. (2011) consisting of frac-

tions of labeled neurons (FLN) per area as a result of

injections into one area at a time. The measured FLN thus

determine the numbers of source neurons for each projec-

tion. The fraction intrinsic to the injected area, FLNi, is

approximately equal for all nine areas where this fraction

was determined, with a mean of 0.79. We assume that

source neurons on average establish the same number of

synapses in a given target area, independent of their loca-

tion (inside or outside the given area). Combining this with

the area-specific total numbers of synapses leads us to the

total numbers of local synapses, which we distribute as

further detailed in the ‘‘Results’’ section.

Cortico-cortical connectivity

We treat all cortico-cortical connections as originating and

terminating in the 1mm2 patches, ignoring their spatial

divergence and convergence. We determine whether a pair

of areas is connected based on the union of all connections

reported in the FV91 scheme in the CoCoMac database

(Stephan et al. 2001; Bakker et al. 2012; Suzuki and

Amaral 1994a; Felleman and Van Essen 1991; Rockland

and Pandya 1979; Barnes and Pandya 1992) (see Supple-

mentary Sec. ‘‘Processing of CoCoMac data’’ for details)

and all connections reported by Markov et al. (2014a).

Numbers of synapses between areas are determined on the

Table 2 continued

Feature Heuristic Argument Starting points for extensions

Long-range

connectivity

The probability for a synapse to be

established on a neuron of a given type

is proportional to the length of the

dendrites of the neuron type in the

given layer

This heuristic is a version of Peters’s

rule, which has been shown to have

reasonably wide validity at the

population level (Rees et al. 2016)

Long-range

connectivity

The relative number of synapses sent by

supragranular neurons is filled in based

on the logarithmic ratio of overall cell

densities in the two participating areas

This follows the observed relation

between SLN and the log ratio of

overall cell densities in combination

with interpreting ratios of labeled

neurons as ratios of formed synapses

Long-range

connectivity

The level of SLN predicts the type of

laminar termination pattern

This follows the observed relation

between SLN and termination pattern

Long-range

connectivity

Feedforward and feedback pathways are

not separate within layers: individual

neurons can send both types of

connections

This heuristic is used to avoid the added

complexity that would result from

further subdivisions of the neural

populations

A finer definition of laminar pathways

may be achieved via a dual

counterstream organization (Markov

et al. 2014b)
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basis of the retrograde tracing data from Markov et al.

(2014a). The data consist of fractions of labeled neurons

FLNAB ¼ NLNAB=
P

B0 NLNAB0 (analogous to the intrinsic

fraction of labeled neurons FLNi), with NLNAB the number

of labeled neurons in area B upon injection in area A. To

translate the data into numbers of synapses, we assume,

similarly to the assumption on intrinsically versus

extrinsically labeled neurons, that a neuron projecting to a

target area establishes the same number of synapses

regardless of the source area it is located in. Markov et al.

(2014a) used a parcellation scheme called M132 which is

also available as a cortical surface, both in native and in

F99 space, a standard macaque cortical surface included

with Caret (Van Essen et al. 2001). For each injection, we

Table 3 Variable and parameter definitions

Variable Explanation

A, B Area

i, j Population

v Layer

E Pool of excitatory neurons

I Pool of inhibitory neurons

S Surface area

D Cortical thickness

R Radius of a cortical area

R0 Radius of a 1mm2 area

N Number of neurons

c Fraction of excitatory neurons

q Volume density of neurons

Nsyn Number of synapses

qsyn Volume density of synapses

r Spatial width of Gaussian profile underlying the intrinsic connectivity

C0 Peak of Gaussian connectivity profile averaged across population pairs

C Connection probability averaged over all possible positions of two neurons

K(Kout) Average indegree (outdegree) (number of synapses per target/source neuron)

K(Kout) Relative average indegree (outdegree)

cA Area-specific conversion factor for indegrees

NLN Number of labeled neurons (as in Markov et al. 2011)

FLN Fraction of labeled neurons (as in Markov et al. 2011)

SLN Fraction of supragranularly labeled neurons (as in Markov et al. 2014b)

c Normalization constant of the decay of FLN over inter-area distance (see Eq. 10)

k Length constant of the decay of FLN over inter-area distance (see Eq. 10)

dAB Distance between areas A and B (see Eq. 10)

cB;b Overlap of area b in the M132 scheme and area B in the FV91 scheme

/ Dispersion parameter of the beta-binomial distribution governing the labeling of neurons in source areas

‘ Log ratio of neuron densities of two areas (see Eq. 1)

a0; a1 Fit parameters of the sigmoidal SLN relation (see Eq. 1)

cB Cell body

scc Cortico-cortical synapse

S Pool of supragranular layers (i.e., layer 2/3)

I Pool of infragranular layers (i.e., layers 5 and 6)

Ps Pattern of source layers

Pt Pattern of target layers

aðvÞ Qualitative connection strength for layer v from CoCoMac (see Supplementary Eq. 3)

Xj Fraction of synapses formed by neurons in source population j (see Supplementary Eq. 3)

Yv Fraction of synapses formed in target layer v (see Supplementary Eq. 3)

Zi Factor for redistributing synapses to ensure the E–I specificity of cortico-cortical connections (see Supplementary Eq. 3)
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identify the corresponding area in the FV91 parcellation

(Supplementary Table S4) by registering the coordinates of

the injection site to the F99 atlas available via the Scalable

Brain Atlas (Bakker et al. 2015). There are data for 11

visual areas in the FV91 scheme with repeat injections in

six areas, for which we take the arithmetic mean. To map

data on the source side from M132 to FV91, we count the

number of overlapping triangles on the F99 surface

between any given pair of regions and distribute the FLN

proportionally to the amount of overlap, using the F99

region overlap tool at the CoCoMac site (http://cocomac.g-

node.org). To fill in gaps in the FLN data, we exploit the

exponential decay of connection density with inter-areal

distance (Ercsey-Ravasz et al. 2013). Supplementary

Table S5 lists all distance values, which we compute as the

median of the distances between all vertex pairs of the two

areas in their surface representation in F99 space.

Layer-specific tracing results from the CoCoMac data-

base (Stephan et al. 2001; Bakker et al. 2012) and Markov

et al. 2014b help us determine the distribution of connec-

tions across source and target layers. On the source side,

the laminar projection pattern can be expressed as the

fraction of supragranular labeled neurons (SLN) in retro-

grade tracing experiments (Markov et al. 2014b). To map

the SLN from the M132 to the FV91 scheme, we use the

exact coordinates of the injections to determine the corre-

sponding target area A in the FV91 parcellation, and for

each pair of areas we take the mean SLN across injections.

At this point, the source areas are still in the M132 par-

cellation. To map the source areas from M132 to FV91, we

weight the SLN by the overlap cB;b between area b in the

former (M132) and area B in the latter (FV91) scheme and

the FLN,

SLNAB ¼
P

b cB;bFLNA;bSLNA;b
P

b cB;bFLNA;b
:

This weighting with the FLN reflects the fact that denser

connections more strongly determine the overall distribution

of labeled neurons across supra- and infragranular layers.

We estimate missing values based on a sigmoidal fit of SLN

versus the logarithmized ratio of overall cell densities of the

two areas (Fig. 5a). This is similar to the relation between

SLN and the hierarchical level differences found byMarkov

et al. (2014b), although there, the hierarchical ordering of

areas was obtained using the SLN data in the first place.With

this approach, the goodness of fit is difficult to evaluate,

because some degrees of freedom are used up to determine

the hierarchy itself. A relationship between laminar patterns

and log ratios of neuron densities was suggested by Beul

et al. (2017). Following Markov et al. (2014b), we use a

beta-binomial model, assuming the numbers of labeled

neurons in the source areas to sample from a beta-binomial

distribution (e.g., Weisstein 2005). This distribution arises

as a combination of a binomial distribution with probability

p of supragranular labeling in a given area, and a beta dis-

tribution of p across areas with dispersion parameter/. With

the probit link function g (e.g. McCulloch et al. 2008), the

measured SLNAB relates to the log ratio ‘AB of overall neuron

densities for each pair of areas as

gðSLNABÞ ¼ a0 þ a1‘AB; ð1Þ

where fa0; a1g are scalar fit parameters. We perform this fit

in the original scheme (M132) under the assumption that

mapping cell densities between schemes introduces fewer

errors than mapping SLN would. For mapping the cell den-

sities toM132we again employ the overlap tool ofCoCoMac

(see above) and compute the cell density of each area in the

M132 scheme as a weighted average over the associated

FV91 areas. For areas with identical names in both schemes,

we simply take the neuron density from the FV91 scheme.

We compute the SLN fit in R (R Core Team 2015) with the

betabin function of the aod package (Lesnoff and Lan-

celot 2012). In contrast to Markov et al. (2014b), who

exclude certain areas when fitting SLN versus hierarchical

distance in view of ambiguous hierarchical relations, we take

all data points into account to obtain a simple and uniform

rule. We also tested a logit link function and found nearly

identical results (Supplementary Fig. S1C).

As a further step, we combine SLN with tracing results

from CoCoMac (Felleman and Van Essen 1991; Barnes and

Pandya 1992; Suzuki and Amaral 1994b; Morel and Bullier

1990; Perkel et al. 1986; Seltzer and Pandya 1994). The

data sets complement each other: SLN provides quantitative

information on laminar patterns of outgoing projections for

about one quarter of the connected areas, distinguishing

only between supra- and infragranular layers. CoCoMac has

values for all six layers (which we denote by aðmÞ), but
limited to a qualitative strength ranging from 0 (absent) to 3

(strong) which we take to represent numbers of synapses in

orders of magnitude (for further details see Supplementary

Sec. ‘‘Processing of CoCoMac data’’). On the target side,

we determine the pattern of target layers Pt from antero-

grade tracer studies in CoCoMac (Jones et al. 1978;

Rockland and Pandya 1979; Morel and Bullier 1990;

Webster et al. 1991; Felleman and Van Essen 1991; Barnes

and Pandya 1992; Distler et al. 1993; Suzuki and Amaral

1994b; Webster et al. 1994) if available (29% coverage),

and otherwise determine it from the source pattern, as fur-

ther described in the ‘‘Results’’ section.

Anterograde tracing experiments characterize target

patterns of projections in terms of the locations of the

synapses, whereas the layer that forwards incoming input

depends on the location of the cell body. Therefore, to

characterize polysynaptic pathways, it is necessary to
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bridge the descriptions in terms of cell body and synapse

locations. To this end, we relate synapse to target cell body

locations using the following cat V1 data from Binzegger

et al. (2004), which are listed in the table in Fig. 9 of

Izhikevich and Edelman (2008): first, the probability

PðsccjcB
T
s 2 vÞ for a synapse in layer v on a cell of type

cB (e.g., a pyramidal cell with soma in L5) to be of cortico-

cortical origin (20th column in the table in Fig. 9 of

Izhikevich and Edelman 2008); second, the relative

occurrence PðcBÞ of the cell type cB (first column); and

third, the total numbers of synapses Nsynðv; cBÞ in layer

v onto individual cells of the given type (second column).

The latter do not equal the numbers of synapses onto the

neurons in our network; we rather use them as auxiliary

quantities in the calculation. Binzegger et al. (2004) dis-

tinguish 17 different cell types, which we map to the 8

cortical populations considered in our network based on the

laminar position of their cell body and their excitatory or

inhibitory nature (Supplementary Table S10). To transform

the data of Binzegger et al. (2004) from cat to macaque, we

adjust the occurrence of each cell type cB associated with a

population i according to the different relative population

sizes in cat and macaque V1. For this, we compute the

occurrence of population i in macaque V1, Pi;V1 ¼
Ni;V1=Ntotal;V1 and divide it by the sum of occurrences of all

cell types associated with population i in cat. The occur-

rence of cB is then multiplied by this factor:

PðcBÞ ! PðcBÞ � Pi;V1=
P

c0
B
2i Pðc0BÞ. The ‘‘Results’’ sec-

tion details the corresponding derivation.

Cortico-cortical feedback connections preferentially

target excitatory rather than inhibitory neurons, i.e., a dis-

proportionately high number of synapses is formed onto

excitatory neurons (Johnson and Burkhalter 1996; Ander-

son et al. 2011). We choose a fraction of 93% of connec-

tions targeting excitatory neurons, as an average over

experimental values ranging between 87 and 98%.

External input

Intra-areal synapses originating outside the 1mm2 patches

(type II) and those coming from outside vision-related

cortex, that is, non-visual and subcortical inputs (type IV)

are external inputs for our purposes. While they do not

form an intrinsic part of the system under consideration,

these inputs provide a more comprehensive picture of the

network and are relevant for investigations of the network

dynamics. Therefore, we estimate these inputs for com-

pleteness. As further explained in the results, we can esti-

mate the numbers of type II synapses to some extent from

local connectivity profiles, but the available data do not

allow us to faithfully determine the contribution from

remote intra-area connectivity (patchy connections) for all

areas. Furthermore, quantitative area-specific data on non-

visual and subcortical inputs are highly incomplete. For

these reasons, we jointly describe the type II and type IV

synapses using a simple scheme: for each area, we compute

the total number of external synapses as the difference

between the total number of synapses (determined from the

volume density of synapses) and those of type I and III and

distribute these such that all neurons in the given area have

the same indegree for external sources. Supplementary

Table S6 lists the resulting external indegrees. Overall,

external inputs amount to approximately 32% of the total

inputs to each neuron in the network.

Analysis methods

We investigate the community structure of the area-level

network with the map equation method (Rosvall et al.

2009). In this clustering algorithm, an agent performs

random walks between graph nodes according to their

degree of connectivity and a certain probability of jumping

to a random network node. We choose the probability for a

certain target node to be selected to be proportional to the

outdegree of the connection, and p ¼ 0:15 as the proba-

bility of a random jump. The algorithm detects clusters in

the graph by minimizing the length of a binary description

of the network using a Huffman code. To assess the quality

of the clustering, we compute a modularity measure which

extends a measure for unweighted, directed networks

(Leicht and Newman 2008) to weighted networks, analo-

gous to Newman (2004),

Q ¼ 1

m

X

A;B

Kout
AB �

P
B0 Kout

AB0 �
P

A0 KA0B

m

� �

dCA;CB ;

where Kout
AB and KAB respectively are the matrices of rela-

tive outdegrees and indegrees, m ¼
P

A;B Kout
AB and dCA;CB ¼

1 if areas A and B are in the same cluster and 0 otherwise.

Q ¼ 0 reflects equal connectivity within and between

clusters, while Q ¼ 1 corresponds to connectivity exclu-

sively within clusters.

To study paths in the network, we construct the

weighted and directed graph of the network connectivity at

the population level. While this graph only contains

anatomical information, to identify the paths that are most

relevant for activity propagation we take into account (1)

the relative weight of inhibitory compared to excitatory

synapses; and (2) the near-criticality of the brain (Robinson

et al. 2014; Priesemann et al. 2014). Following Potjans and

Diesmann (2014), we define the synaptic weight JE ¼
0:15mV for excitatory connections and JI ¼ � 4JE for

inhibitory connections. We then construct a weight matrix

G with elements gij ¼ Kij � jJj where J is chosen depending

on whether the source population is excitatory or

Brain Struct Funct (2018) 223:1409–1435 1417

123



inhibitory. This matrix is transformed into an approximate

gain matrix by scaling the matrix by a factor representing

the susceptibility of the target populations, i.e., the change

in output activity for a unit change in input. For simplicity,

we assume this susceptibility to be identical across popu-

lations. To reflect the near-criticality of the brain, we

choose it to be equal the reciprocal of the maximal real part

of the eigenvalues of G: G0 ¼ G= ReðkÞ½ �max, so that the

maximal real part of the eigenvalues of the resulting matrix

is Reðk0Þ½ �max¼ 1. This scaling is relevant because it

modulates the relative strengths of direct and indirect

paths: a larger value of Reðk0Þ½ �max increases the relative

weighting of indirect paths. The weight of the edge from

population j to i is then defined as g0ij. The distance between

two nodes in the graph is defined as the logarithm of the

reciprocal of the weight, dij ¼ logð1=wijÞ, so that summing

the distances reflects a multiplication of the corresponding

weights. We find the shortest paths between any two nodes

of the graph using the Bellman–Ford algorithm (Shimbel

1955; Ford 1956; Bellman 1958). This algorithm finds the

shortest paths emanating from vertex i on a graph with

N vertices in an iterative manner: it starts by assigning an

infinite path length to all other nodes k of the graph. Then,

it loops through all edges (j, k) of the graph, tests if the path

length pij plus the distance of the edge djk is smaller than

the currently stored path length pik, and, if so, assigns

pik ! pij þ djk. By repeating this N � 1 times for all edges,

the algorithm considers paths of increasing length at every

iteration and ultimately finds the shortest paths between

each pair of vertices. In contrast to Dijkstra’s algorithm, it

can deal with edges with negative distance values.

Fig. 2 Aspects of cortical architecture determining population sizes.

a Laminar neuron densities for the architectural types in the model.

Type 2, here corresponding only to area TH, lacks L4. We treat L1 as

containing synapses but no neurons. Data provided by H. Barbas

(personal communication). b Total thickness versus logarithmized

overall neuron density and linear least-squares fit

(r ¼ � 0:7; p ¼ 0:005). c Relative laminar thickness (see Supple-

mentary Table S3) versus logarithmized overall neuron density and

linear least-squares fits (L1: r ¼ � 0:51; p ¼ 0:08, L2/3:

r ¼ � 0:20; p ¼ 0:52, L4: r ¼ 0:89; p ¼ 0:0001; L5:

r ¼ � 0:31; p ¼ 0:36, L6: r ¼ � 0:26; p ¼ 0:43). Total cortical

thicknesses D(A) and overall neuron densities for 14 areas from

Hilgetag et al. (2016), Table 4. The overall densities are based on

Nissl staining for 11 areas and for 3 areas on NeuN staining. Laminar

neuron densities are based on NeuN staining for all 14 areas. Values

based on NeuN staining are linearly scaled to account for a systematic

undersampling as determined by repeat measurements in the 11

aforementioned areas

A

B

Fig. 3 Construction principles of the network connectivity. a Each

neuron receives four different types of connections. I: Intra-area

synapses from within the 1mm2 patch, II: Intra-area synapses from

outside the 1mm2 patch, III: Cortico-cortical synapses from vision-

related areas, IV: Synapses from subcortical and non-visual cortical

areas. b Average number of synapses per neuron across the 32 areas

of the network versus overall neuron density. The dashed line shows

the average indegree across all neurons of the network
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Results

In the following sections, we describe the definition of the

network structure. Our goal is to derive the probability

CiA;jB for two neurons in populations i; j of areas A; B in

the network to be directly connected by one or more

synapses. Each area is modeled as the volume under 1mm2

of cortical surface, since local connectivity at this scale has

been well characterized, whereas information about med-

ium-range connectivity within areas is highly incomplete.

The neurons of a specific cell type, excitatory (E) or

inhibitory (I), in a particular area and layer (2/3, 4, 5 or 6)

form a population in our network. For each pair of popu-

lations, we assume a uniform connection probability

between neurons. Assuming that synapses between two

populations are randomly distributed, allowing for multiple

contacts between neurons, the probability of at least one

synapse between two neurons is (Potjans and Diesmann

2014, Eq. 1)

CiA;jB ¼ 1� 1� 1

NiANjB

� �N
syn

iA;jB

: ð2Þ

For small connection probabilities, this reduces approxi-

mately to the number of synapses divided by the sizes of

the source and target populations. To determine the con-

nection probabilities in the network from Eq. (2), we thus

need to know the population sizes N and the number of

synapses Nsyn between any pair of populations. In the

following, we make use of the concept of average indegree,

which is defined as the average number of synapses per

receiving neuron,

KiA;jB ¼
N

syn
iA;jB

NiA

: ð3Þ

Henceforth, we refer to the average indegree for a pair of

populations also simply as ‘indegree’. Outdegrees (also as

average) are defined analogously as

Kout
iA;jB ¼

N
syn
iA;jB

NjB

: ð4Þ

Figure 1 provides an overview of the derivation of the

network structure.

Area-specific laminar compositions

We here derive the number of neurons in each population

of the network from measured and estimated neuron den-

sities, laminar thicknesses, and proportions of excitatory

and inhibitory neurons. Overall neuron density and L4

neuron density increase with architectural type (Fig. 2a).

Since we assign neuron densities to areas with missing data

according to their architectural types, the same trends are

present throughout the model. Total cortical thickness

decreases with increasing logarithmized overall neuron

density, log q, providing thickness estimates for the 18

areas not included in the empirical data set (Fig. 2b). The

ratio of L4 thickness and total cortical thickness increases

with log q, which predicts the relative L4 thickness for

areas with missing data (Fig. 2c). Since the relative

thicknesses of the other layers show no notable change

with log q, we fill in missing values using the mean of the

known data for these quantities and then normalize the sum

of the relative thicknesses to 1 (Supplementary Table S7).

For deriving the local connectivity, as an intermediate

step we require the full surface areas (Supplementary

Table S8) to sample the tails of the Gaussian connectivity

profiles, and not just the 1mm2 patches. For this purpose,

we approximate each brain area as a flat disk with radius R

and surface area SðRÞ ¼ pR2, so that the number of neurons

in population i of area A is

NiAðRÞ ¼ qA;viSðRÞDA;vi �
cvi if i 2 E
1� cvi if i 2 I

�

ð5Þ

where vi denotes the layer of population i, DA;vi the

thickness of layer vi, and E; I the pool of excitatory and

inhibitory populations, respectively. Supplementary

Table S9 gives the population sizes corresponding to the

1mm2 area size we consider.

A comprehensive picture of network connectivity

Each neuron receives synapses of four different origins

(Fig. 3a): those originating inside the 1mm2 microcircuit

(type I), the remaining intra-areal synapses (type II), cor-

tico-cortical synapses from other vision-related areas (type

III), and synapses from outside vision-related cortex (type

IV).

For combined local and long-range connections, we

assume a constant volume density of synapses across areas

(Harrison et al. 2002). Experimental values for the average

indegree in monkey V1 vary between 2300 (O’Kusky and

Colonnier 1982) and 5600 (Cragg 1967) synapses per

neuron. We take the average (3950) as representative for

V1, resulting in a synapse density of

qsyn ¼ 8:3� 108 synapses
mm3 , not far from the value of 6:3�

108 synapses
mm3 measured in rat somatosensory cortex (Mark-

ram et al. 2015). This constant synapse density diversifies

the areas in terms of their connectivity due to their different

neuron densities. Combined with decreasing cell density

along the gradient of architectural types (Fig. 2a), the

constant synapse density leads to an increase in the average

indegree of neurons in low-type areas compared to high-

type areas (Fig. 3b). Primary visual cortex V1 has the

lowest average indegree of � 3950 synapses per neuron
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while neurons in the area with the lowest architectural type,

TH, receive on average � 14,000 synapses. The average

indegree does not strictly increase with the overall neuron

density due to differences in the area-specific laminar

composition. Averaged across all areas, a neuron in the

network receives approximately 9800 synapses.

We base the fraction of intra-areal synapses (types I? II)

on fractions of labeled neurons intrinsic to the injected area

(FLNi) in retrograde tracing experiments by Markov et al.

(2011). Since the reported values are approximately constant

across injected areas, we use the mean value of 0.79 for all

32 areas of the network. This leads us to the assumption that

79% of the synapses to a neuron are intra-areal (types I and II

combined) and the remaining 21% stem from sources out-

side of the areas (types III and IV combined).

In the following two subsections, we explain the inte-

gration of the different data sources to yield the area- and

population-specific numbers of synapses of types I and III.

Scalable scheme of local connectivity

Our network structure does not include distance dependence

of connections within each population. However, to distin-

guish between synapses of type I and II, we take the

underlying probability C for a given neuron pair to establish

one or more contacts to decay with distance according to a

Gaussian with standard deviation r ¼ 297 lm (Potjans and

Diesmann 2014). We approximate each brain area as a flat

disk with radius R. The radius determines the cut-off of the

Gaussian and hence lets us determine the ratio between the

numbers of type I and type II synapses. The average con-

nection probability is obtained by integrating over all pos-

sible positions of the two neurons (cf. Supplementary Eq. 1).

Averaged across population pairs in cat V1, C0 is 0.143

(computed fromEq. 8 and Table S1 in Potjans andDiesmann

2014). Note that Potjans and Diesmann (2014) only vary the

position of one neuron, keeping the other neuron fixed in the

center of the disk (Eq. 9 in that paper). In adjusting the local

connectivity to the area-specific surface areas in our model,

we thus need to take into account the method for integrating

the Gaussian profiles. Since mean synaptic inputs are pro-

portional to the indegrees, we consider indegrees a defining

characteristic of the local circuit. Themodel assumes that the

relative indegrees between population pairs are like those in

cat V1 adjusted for surface area and integration method.

Thus, the different population sizes and cortical thicknesses

in the macaque areas compared to cat V1 do not affect the

relative indegrees across population pairs, but they are still

relevant for the absolute numbers of synapses and thereby

for the connection probabilities. Henceforth, we denote

connection probabilities computed with the approach of

Potjans and Diesmann (2014) with the subscript PD14 and

use primes for all variables referring to a network with the

cortical thickness and relative population sizes of the

microcircuit model of Potjans and Diesmann (2014). The

same variables without primes refer to the corresponding

quantities in the macaque areas.

The parameters of the microcircuit model are reported for

a 1mm2 patch of cortex, corresponding to R ¼
ffiffiffiffiffiffiffiffi
1=p

p
mm,

which we call R0. For each source population j and target

population i, we first translate the connection probabilities

of the 1mm2 model to a variable radius R via

C0
ijðRÞ ¼ C0

ij;PD14 R0ð Þ
�C0ðRÞ

�C0
PD14 R0ð Þ ; ð6Þ

with �C0
PD14ðR0Þ ¼ 0:066. Equation (6) reflects the local

connection probabilities as they would be in an area with

surface area pR2, taking into account all possible pairs of

neuron positions rather than fixing one neuron in the center,

but before adjustment for the area-specific population sizes

and the total number of local synapses. To preserve relative

indegrees, we set

Kij;AðRÞ
Kkl;AðRÞ

¼
K 0
ijðRÞ

K 0
klðRÞ

8i; j; k; l;

which is equivalent to scaling all indegrees by an area-

specific conversion factor cAðRÞ,

Kij;AðRÞ ¼ cAðRÞK 0
ijðRÞ 8i; j: ð7Þ

The conversion factor cAðRÞ is larger for areas with smaller

neuron densities because of the assumption of a constant

volume density of synapses. As explained in the Supple-

mentary Sec. ‘‘Local connectivity’’, it is computed as

cAðRÞ ¼
N

syn;tot
A ðRÞ

P
i;j NiAðRÞK 0

ij

FLNi

*
K 0
ijðRÞ

K 0
ijðRfullÞ

+

ij

; ð8Þ

with FLNi the fraction of labeled neurons intrinsic to the

injected area (Markov et al. 2011) andNsyn;totðRÞ ¼ qsynpR
2D

withD the total thickness of the given area and Rfull the radius

of a disk with full area-specific surface S(A) (Supplementary

Table S8). Choosing R ¼ R0 in Eqs. (8) and (7) yields the

numbers of local synapses:

N
syn;I
ij;A ¼ cAðR0ÞK 0

ijðR0ÞNiAðR0Þ: ð9Þ

Modeling each area as a 1mm2 patch leads to connections

outside R0=r ¼
ffiffiffiffiffiffiffiffi
1=p

p
mm=297 lm ¼ 1:9 times the stan-

dard deviation of the Gaussian falling outside the patch. The

corresponding inputs are treated as external input (type II

synapses). To determine their total number for an area, we

use Eq. (9) with R ¼ Rfull, sum over all population pairs of

the area, and subtract the total number of type I synapses.

Our assumptions lead to a scalable scheme of the local

circuit over a continuous range of modeled sizes so that
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local type I synapses increase at the cost of external type II

synapses. However, when going beyond the 1mm2 scale,

one would have to take into account patchy connectivity

within areas, i.e., spatial clustering of remote intra-area

connections, which would refine the trade-off of type I and

type II synapses.

Layer-specific heterogeneous cortico-cortical connectivity

Population-specific numbers of modeled cortico-cortical

synapses are determined in three steps: (1) deriving the

area-level connectivity; (2) distributing synapses across

layers; (3) assigning synapses to target neurons.

Two areas are connected if the connection is in the

CoCoMac database (Stephan et al. 2001; Bakker et al.

2012) or was reported by Markov et al. (2014a). CoCoMac

provides a binary connectivity matrix with a density of

45% (Fig. 4a). Markov et al. (2014a) quantitatively mea-

sured connection densities and found a number of previ-

ously unknown connections (Fig. 4b) leading to a total of

62% of all pairs of areas being connected. The data set of

Markov et al. (2014a) consists of fractions of labeled

neurons FLNAB in area B upon injection in area A. To

Fig. 4 Combination of binary and quantitative tracing data into an

area-level connectivity map. a Binary connectivity from CoCoMac.

Black, existing connections; white, absent connections. b Fractions of

labeled neurons (FLN) from Markov et al. (2014a) mapped from their

parcellation scheme (M132) to that of Felleman and Van Essen (1991).

c Connection densities decay exponentially with inter-area distance.

Black line, linear regression with logðFLNÞ ¼ ln 10ð Þ�1� ln c� kdð Þ
(c ¼ 0:045; k ¼ 0:11mm�1; p ¼ 10�19; cf. Eq. (10)). d Area-level

connectivity of the model, based on data in a–c, expressed as relative

indegrees for each target area
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Fig. 5 Layer- and population-specific cortico-cortical connection

patterns. a Fraction of source neurons in supragranular layers (SLN)

versus logarithmized ratio of the overall neuron densities of the two

areas. SLN from Markov et al. (2014b), neuron densities from

Hilgetag et al. (2016). Black curve, fit using a beta-binomial model

(Eq. (1); a0 ¼ � 0:152; a1 ¼ � 1:534; / ¼ 0:214). b Laminar target

patterns of synapse locations in relation to the SLN value of the

source pattern. Target patterns are taken from the CoCoMac database

(Felleman and Van Essen 1991; Barnes and Pandya 1992; Suzuki and

Amaral 1994b; Morel and Bullier 1990; Perkel et al. 1986; Seltzer

and Pandya 1994) and SLN data from Markov et al. (2014b) mapped

to the FV91 scheme. c Illustration of the procedure (Supplementary

Eq. 3) for distributing synapses across layers and populations. A

source neuron from population j in area B sends an axon to layer v of

area A where a cortico-cortical synapse sCC is formed at the dendrite

of a neuron from population i. The dendritic morphology is from

Mainen and Sejnowski (1996) (source: http://NeuroMorpho.org;

Ascoli et al. 2007). d Laminar patterns of cortico-cortical connections

in the feedback, lateral, and feedforward direction, measured as the

indegree of the population pairs divided by the sum of indegrees over

all pairs, and then averaged across area pairs with the respective

connection type (Kij ¼ hKiA;jB=
P

i0 ;j0 Ki0A;j0BiA;B). The categorization

into feedback, lateral, and feedforward types follows the SLN value

as in b
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estimate values for the areas not included in the data set,

we use the exponential decay of cortico-cortical connec-

tivity with distance between areas (Ercsey-Ravasz et al.

2013),

FLNAB ¼ c � exp � kdABð Þ: ð10Þ

A linear least-squares fit of the logarithm of the FLN yields a

decay rate of k ¼ 0:11mm�1 with high significance

(Fig. 4c). The data of Markov et al. (2014a) expose an

exponential distribution of axon lengths, independent of a

parcellation of cortical space into areas. Analogously to

Ercsey-Ravasz et al. (2013), we here employ this distribution

as a descriptive model for the connection density between

areas, which consequently depends on the parcellation

scheme and potentially increases the variance of the data (see

also Horvát et al. 2016). The total number of synapsesNsyn;AB

between each pair of areas is assumed to be proportional to the

number of labeled neurons NLNAB and thus to FLNAB,

Nsyn;ABX

B0
Nsyn;AB0

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼Nsyn;tot;A

¼ NLNABP
B0 NLNAB0

¼ FLNABP
B0 FLNAB0

:

This corresponds to individual neurons in each source area

(including area A itself) on average establishing the same

number of synapses in the target area A. For each target

area, the FLN in the network should add up to the total

fraction of connections from vision-related cortical areas,

which is not known a priori. For normalization, we con-

sider also non-visual areas, for which distances are avail-

able and for which we can hence also estimate the FLN.

The total fraction of all connections from subcortical

regions averages 1.3% in eight cortical areas (Markov et al.

2011). This allows us to normalize the FLN from all cor-

tical areas as
P

B FLNAB ¼ 1� FLNi � 0:013, where the

sum includes both modeled and non-modeled cortical

areas. Combining the binary information on the existence

of connections with the connection densities gives the area-

level connectivity matrix with indegrees spanning five

orders of magnitude (Fig. 4d).

The distribution of cortico-cortical synapses across

layers is based on layer-specific tracing results from

CoCoMac and Markov et al. (2014b). We model cortico-

cortical connections as purely excitatory, a good approxi-

mation to experimental findings (Salin and Bullier 1995;

Tomioka and Rockland 2007). If available, CoCoMac data

define the set of source layers; otherwise we include all

layers except layer 4 in the source pattern. The synapses

are distributed across the source layers according to the

fractions of supragranular labeled neurons (SLN) from

Markov et al. (2014b). Markov et al. (2014b) do not dis-

tinguish between the infragranular layers 5 and 6, so that

between these source layers we either distribute synapses

based on labeling density estimates from CoCoMac if

available, or in proportion to the sizes of their excitatory

populations. Since SLN data are not available for all con-

nections, we supplement them with statistical estimates. To

this end, we exploit a sigmoidal relation between the log-

arithmized ratios of cell densities of the participating areas

and the SLN of their connection (as suggested by Beul

et al. 2017). Following Markov et al. (2014b), we use a

beta-binomial model for the fit, which employs a beta-

binomial distribution of source neurons (Fig. 5a). The

apparent deviation of the fit is caused by the high disper-

sion of the data. Surrogate data generated from the fitted

distribution show the same apparent asymmetry around the

sigmoidal curve as the experimental data, but for low

dispersion, the surrogate data closely follow the fitted curve

(Supplementary Fig. S1).

Combining target patterns from the CoCoMac database

with source patterns from the data sets of Markov et al.

(2014b), we find that synaptic target patterns depend on

SLN (Fig. 5b). Figure 5b shows the accumulated layer-

specific numbers of projections. The termination patterns

vary substantially between individual connections. Overall,

connections with high SLN preferentially form synapses in

the granular layer 4 while low SLN is associated with

termination patterns avoiding layer 4, and intermediate

SLN with an approximately uniform distribution of

synaptic locations across the six layers of cortex. This

result refines the classification of Felleman and Van Essen

(1991), in which all projection types can have a bilaminar

origin, by showing that the termination pattern depends on

the type of bilaminar origin (low, medium, or high SLN).

We use this finding to derive target patterns where

CoCoMac is incomplete. The systematic dependence of

target on source patterns enables us to define classes of

laminar projection patterns based on source patterns alone

(cf. Markov et al. 2014b), instead of jointly considering

source and target patterns as done in earlier work

(Felleman and Van Essen 1991; Hilgetag et al. 2000). We

denote projections with low, intermediate, and high SLN

respectively as feedback, lateral, and feedforward projec-

tions. We take SLN\0:35 to correspond to feedback

projections, SLN[ 0:65 to feedforward projections and

SLN 2 ½0:35; 0:65� to lateral projections. The corre-

sponding termination patterns Pt for connections without

laminar information in CoCoMac are

f4g for SLN[ 0:65

f1; 2=3; 5; 6g for SLN\0:35

f1; 2=3; 4; 5; 6g for SLN 2 ½0:35; 0:65�;

and we distribute synapses among the layers in the termi-

nation pattern in proportion to their thickness. Repetition of
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the analysis while varying the boundaries does not lead to

qualitative differences (Supplementary Fig. S5). This

confirms that the exact definition of the SLN boundaries

between distinct laminar termination patterns does not

critically influence the identified pathways.

The inclusion of layer 1 in the set of synaptic target

layers is necessary for assigning synapses to neurons with

cell bodies in the other layers, which enables characterizing

polysynaptic paths. We statistically map synapse to cell

body locations by taking into account the dendritic extent

of the different cell types (Fig. 5c). For this, we compute

the conditional probability Pðijscc 2 vÞ for the target neu-

ron to belong to population i if a cortico-cortical synapse

scc is in layer v (Supplementary Table S11), based on

morphological reconstructions of cat V1 neurons

(Binzegger et al. 2004). This probability equals the sum of

probabilities that a synapse is established on the different

Binzegger et al subpopulations making up our populations,

Pðijscc 2 vÞ ¼ P
[

cB2i
cBjscc 2 v

 !

¼
X

cB2i
PðcBjscc 2 vÞ;

ð11Þ

where

PðcBjscc 2 vÞ ¼ PðcB
T
scc 2 vÞ

Pðscc 2 vÞ :

The numerator gives the joint probability that a cortico-

cortical synapse is formed in layer v on cell type cB,

PðcB
\

scc 2 vÞ ¼ Nsyn;CCðv; cBÞPðcBÞP
v0;c0

B
Nsyn;CCðv0; c0BÞPðc0BÞ

; ð12Þ

and the denominator is the probability of a cortico-cortical

synapse in layer v, computed by summing over cell types,

Pðscc 2 vÞ ¼
X

cB

PðcB
\

scc 2 vÞ:

Nsyn;CCðv; cBÞ represents the number of cortico-cortical

synapses in layer v on cell type cB in the data set of

Binzegger et al. (2004),

Nsyn;CCðv; cBÞ ¼ PðsccjcB
\

s 2 vÞNsynðv; cBÞ:

Note that this does not equal the (population-specific)

number of cortico-cortical synapses in our model, but is

only used to compute the probability of targeting a par-

ticular cell type in a particular layer according to Eq. (12).

These equations lead to laminar connectivity patterns

which differ from the synaptic laminar patterns (Fig. 5c).

The resulting laminar distributions of target cell bodies are

nevertheless distinct between feedforward, lateral, and

feedback projections (Fig. 5d). While feedback projections

establish synapses outside L4, they also reach L4 neurons

that have apical dendrites in the supragranular layers.

Assigning synapses according to the neuron morphologies

even results in L4 excitatory neurons receiving more

feedback than L2/3 neurons, since the total length of the

apical dendrites of L4 pyramidal cells in L2/3 exceeds that

of the dendrites of L2/3 neurons. Similarly, infragranular

neurons receive a small amount of feedforward input via

their apical dendrites in L4.

Furthermore, we take into account that in cortico-corti-

cal feedback connections, a disproportionately high num-

ber of synapses is formed onto excitatory neurons (Johnson

and Burkhalter 1996; Anderson et al. 2011). For each

feedback connection in the model, we redistribute the

synapses across the excitatory and inhibitory target popu-

lations and determine Zi such that 93% of synapses in each

cortico-cortical projection are established on excitatory

neurons.

Combining the considerations above, we obtain the

number of cortico-cortical (type III) synapses from exci-

tatory population j of area B to population i of area

A (cf. Fig. 5c), as summarized in mathematical form in

Supplementary Eq. 3.

This concludes the derivation of the network connec-

tivity (Supplementary Fig. S3). We summarize the

heuristics used to complete the experimental data along

with starting points for more detailed derivations in

Table 2. Averaged across all populations and areas, neu-

rons receive 50.1% of their inputs from local neurons

within the same 1mm2 patch, 18.1% from cortico-cortical

inputs, 28.5% from neurons local to the area but outside of

the 1mm2 patch, and 3.3% from neurons in non-visual

cortical and non-cortical regions. The latter two contribu-

tions are treated as external inputs in the context of this

study.

Combining the numbers of synapses with the population

sizes makes it possible to translate between different

measures of connectivity. For instance, connectivity is

often described in terms of connection probabilities (cf.

Eq. 2). Other frequently used measures are the in- and

outdegrees of the connections, respectively corresponding

to the number of synapses that a neuron in the target

(source) population receives (sends) (cf. Eqs. 3, 4). Time-

averaged spiking rates, a first-order dynamical measure,

depend to a large extent on the indegrees of the connections

to the target population. On the other hand, for measuring

and interpreting correlation, a second-order measure, the

probability of the connection is the most relevant. Figure 6

shows a subset of the network connectivity expressed in

terms of indegrees and in terms of connection probabilities.

Note the differences between the measures, for instance

when comparing the connections 2/3E!4E and 2/3I!4E

in both areas. The indegrees of the two connections are
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substantially different, while the connection probability is

very similar since it takes into account the fact that 4E

contains more neurons than 4I. This dependence on pop-

ulation size also leads to differently shaped distributions of

indegrees and connection probabilities, connection proba-

bilities being more broadly distributed than indegrees.

Area-level community structure relates to functional

organization

We test if the network follows known organizing principles

by analyzing the community structure in the weighted and

directed graph of area-level connectivity. The map

equation method (Rosvall et al. 2009) applied on the out-

degrees reveals six clusters (Fig. 7). We test the signifi-

cance of the corresponding modularity Q ¼ 0:38 by

comparing with 1000 surrogate networks conserving the

total outdegree of each area by shuffling its targets. This

yields Q ¼ �0:03� 0:03, indicating the significance of the

clustering. The anatomical community structure shows a

correspondence with known functional groupings. Two

large clusters comprise ventral stream areas along with

parahippocampal areas TH and TF, and dorsal stream

areas, respectively. The grouping of areas TF and TH with

ventral stream areas is reasonable in view of the involve-

ment of these parahippocampal areas in object and spatial

Fig. 6 Population sizes matter for connectivity. Connectivity within

and between areas V1 and V2 computed as pairwise indegrees (left)

and connection probabilities (right). The latter are defined as the

probability of � 1 synapse between any pair of source and target

neurons, and can be obtained in linear approximation from the former

by dividing by the size of the source population. The histograms show

the occurrence of values in the bins defined by the color scales
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memory processes (Bachevalier and Nemanic 2008;

Nemanic et al. 2004) and was also obtained for the binary

connection matrix of Felleman and Van Essen (1991)

containing about half of the connections present in our

weighted connectivity matrix (Hilgetag et al. 2000). The

polysensory dorsal stream areas STPp and STPa have

strong recurrent connections and are thus grouped outside

of the large dorsal stream cluster. Ventral areas VOT and

PITd are grouped with early visual area VP and dorsal area

MSTd. Early visual areas V1 and V2 form a separate

cluster, as do the two frontal areas FEF and 46. Nonethe-

less, the clusters are heavily interconnected (Fig. 7). The

basic separation into ventral and dorsal clusters matches

that found for the binary connection matrix of Felleman

and Van Essen (1991) (Jouve et al. 1998; Hilgetag et al.

2000), but there are also important differences. For

instance, our clustering groups area 7a with the dorsal

instead of the ventral stream, better matching the

scheme described by Nassi and Callaway (2009), and early

visual areas V1 and V2 as well as frontal areas 46 and FEF

are placed in separate clusters, respectively, in line with the

differential functional properties of these areas and their

non-unique association with the dorsal and ventral streams.

The community structure is robust against excluding a

small percentage (� 10%) of the experimental data of

Markov et al. (2014a) that underlie the fit of the expo-

nential relation between connection densities and inter-

areal distance and estimating the connection densities of

these connections from the fit (Supplementary Fig. S4).

Furthermore, the community structure is robust against

adding a random fluctuation to the estimated FLN on the

order of the spread of the experimental data around the fit

in Fig. 4a (Supplementary Fig. S4).

Path analysis of the connectivity graph

To investigate the implications of the derived connectivity

for the communication between areas, we detect the

shortest paths between pairs of areas in the network (see

‘‘Materials and methods’’). The shortest paths between

cortical areas follow distinct patterns depending on the

structural and hierarchical relation between the areas. The

Fig. 7 Community structure of the network. Clusters in the

connectivity graph, indicated by the color of the nodes: lower visual

areas (green), dorsal stream areas (red), superior temporal polysen-

sory areas (light red), mixed cluster containing areas VP, VOT, PITd

and MSTd (light blue), ventral stream (dark blue), and frontal areas

(purple). Black, connections within clusters; gray, connections

between clusters. Line thickness encodes logarithmized outdegrees.

Only edges with relative outdegree [ 10�3 are shown. For visual

clarity, clusters are spatially segregated and inside clusters, areas are

positioned using a force-directed algorithm (Kamada and Kawai

1989)
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laminar patterns of the shortest paths between directly

connected areas depend on the hierarchical relation

between the areas (Fig. 8a). In the feedforward direction,

shortest paths predominantly start in 2/3E and end in 4E, as

expected from the layer-specific connectivity (Fig. 5).

Lateral shortest paths similarly mostly originate in 2/3E

and terminate in 4E. Feedback paths, on the other hand,

mostly start in the infragranular layers 5 and 6 and target

neurons in layers 4 and 5.

Taking all pairs of areas into account regardless of

whether they are directly connected, a similar picture

emerges (Fig. 8b). Since SLN are only available for

directly connected areas, we here group pairs of areas

according to the difference between their architectural

types. We call pathways from structurally differentiated to

less differentiated areas ‘high-to-low-type’, those in the

opposite direction ‘low-to-high-type’ and those between

structurally similar areas ‘horizontal’. High-to-low-type

pathways as well as horizontal pathways follow the

23E!4E pattern. Low-to-high-type pathways, on the other

hand, are more uniformly distributed with most paths

starting in 5E or 6E, and ending in 4E or 5E. These

observations consider only the first and last populations of

the entire path. However, 45% of the shortest paths take a

detour via one or multiple intermediate areas. Even if the

two areas are directly connected, the direct connection is

not the shortest (strongest) path in 10% of the cases. In

intermediate areas, the shortest paths involve one or two

populations. From high-type to low-type areas, these intra-

area paths are mostly from 4E to 2/3E (Fig. 8c), in line

with the start-end pattern shown in Fig. 8b, but a sub-

stantial fraction passes through 2/3E and 5E only. Indirect,

horizontal paths mostly involve a relay via 5E, and to a

lesser extent 2/3E and the 4E!2/3E pattern. Similarly,

connections from low-type to high-type areas are mostly

forwarded by the 5E population only. These results suggest

Fig. 8 Population specificity organizes paths hierarchically and

structurally. a Population-specific patterns of shortest paths between

directly connected pairs of areas categorized according to their

hierarchical relation as defined by fractions of supragranular labeled

neurons (SLN). Arrow thickness indicates the relative occurrence of

the particular pattern. The symbols mark excitatory (blue triangles)

and inhibitory (red circles) populations stacked from L2/3 (top) to L6

(bottom). b Population-specific patterns of shortest paths between all

pairs of areas categorized according to the difference between their

architectural types. Arrow thickness indicates the occurrence of the

particular pattern. c Occurrence of population patterns in areas that

appear in the intermediate stage in the shortest path between two areas
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that directionally distinct paths in the population-level

connectivity open up communication channels for specifi-

cally targeted cortico-cortical communication across sets of

areas. We test the robustness of these findings against

altering the SLN thresholds used for the hierarchical cat-

egorization of connections and against pruning of the SLN

data underlying the network construction, including the

sigmoidal fit (Fig. 5a). We found no qualitative variations

in the paths between areas, meaning that our findings are

independent of moderate variations in the underlying data

and heuristics (Supplementary Fig. S5 and Supplementary

Fig. S6). Furthermore, the laminar patterns of shortest

paths remain qualitatively unchanged when only connec-

tions with available experimental SLN data are included in

the analysis (Supplementary Fig. S7).

Discussion

The present study integrates data on cortical architecture,

geometry, and connectivity into a comprehensive uni-

hemispheric network description of the vision-related areas

of macaque cortex. A number of simplifying assumptions

and heuristics that are based on established and novel

statistical regularities complement the measurements in

view of the sparseness of quantitative species- and area-

specific data. Our study thus represents a compromise

between detail and conciseness, where avenues for future

improvements are explicitly identified. The multi-scale

network description consists of a population-, layer- and

area-specific connectivity map together with neural popu-

lation sizes, which resolve ambiguities in connectivity

measures. In the derived connectivity, we find multiple

clusters reflecting the anatomical and functional partition

of visual cortex into early visual areas, ventral and dorsal

streams, and frontal areas, showing that the network con-

struction yields a meaningful structure. The laminar reso-

lution of the model, along with a statistical mapping of

synapse to target cell body locations, enables a novel

characterization of direct and indirect paths across neural

populations in the cortex. Our findings stand up to vali-

dation with varied network models defined based on

moderately pruned connectivity data and models where the

employed heuristics are relaxed.

The cortico-cortical connectivity is based on axonal

tracing data collected in a new release of CoCoMac

(Bakker et al. 2012) combined with recent quantitative and

layer-specific retrograde tracing experiments (Markov

et al. 2014b, a). The projections revealed by these axonal

tracing data are complex and not strictly sequential,

including bypass connections such as those from V1 to V4

bypassing V2 (Nakamura et al. 1993). To translate FLN

data into connection densities, we assume that the number

of synapses established in the target area does not differ

across projecting areas. Implicitly, other studies that

interpret FLN in terms of connection strengths (e.g., Mar-

kov et al. 2013; Goulas et al. 2014) make the same

assumption. There is, however, evidence that the number of

cortico-cortical synapses per neuron in a projection

depends on its direction (Rockland 2003).

We fill in missing data using relationships between

laminar source and target patterns (Felleman and Van

Essen 1991; Markov et al. 2014b) and architectural dif-

ferentiation (Hilgetag et al. 2016; Beul et al. 2017), an

approach for which Barbas (1986) and Barbas and Rempel-

Clower (1997) laid the groundwork. To estimate missing

data on connection densities, we use the exponential decay

of FLN with inter-areal distance, which relies on the

exponential distribution of axon lengths combined with the

parcellation of cortical space into areas (Ercsey-Ravasz

et al. 2013). For simplicity, we here assume an isotropic

distribution of connection densities, in line with Ercsey-

Ravasz et al. (2013), but data from hamster cortex suggest

that axons may extend further along the mediolateral axis

than along the anterior–posterior axis (Cahalane et al.

2011).

The use of axonal tracing results avoids the pitfalls of

tractography based on diffusion MRI data, which strongly

depends on parameter choices (Thomas et al. 2014), has

limited spatial resolution, cannot sense the direction of

connections, and has been found to both underestimate

(Calabrese et al. 2015b) and overestimate (Maier-Hein

et al. 2016) cortical connectivity. A recent study compar-

ing dMRI-based tractography on macaque cortex with

retrograde tracing data shows that tractography after

removal of false positives and false negatives is modestly

informative about connection strengths (Donahue et al.

2016). Since axonal tracing data need to be combined

across individuals whereas dMRI maps are obtained in

individual brains, the two approaches are complementary.

The local connectivity of our network customizes that of

the microcircuit model of Potjans and Diesmann (2014)

according to the specific architecture of each area, taking

into account neuronal densities and laminar thicknesses.

Although the model of Potjans and Diesmann (2014) is

based on data from rat and cat cortex, it serves as a pro-

totype for the local circuits in our study due to the lack of

similarly comprehensive quantitative data on pairwise

connection probabilities in macaque cortex. Future revi-

sions of the model can refine the analysis by incorporating

additional knowledge on the local structure of macaque

cortex as it becomes available, for instance information on

cell morphologies in different areas (e.g., Gilman et al.

2017). Neuronal densities decrease from high to low-type

visual areas, resulting in an apparent caudal-to-rostral

gradient (Charvet et al. 2015). Combined with the
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assumption of a constant volume density of synapses

(O’Kusky and Colonnier 1982; Cragg 1967) this yields

higher indegrees in low-type areas. This trend matches an

increase in dendritic spines per pyramidal neuron (Elston

and Rosa 2000; Elston 2000; Elston et al. 2011). We thus

clarify how volume densities of neurons and synapses

together determine such an increase in per-neuron con-

nectivity along the architectonic gradient of visual areas.

Total cortical thickness decreases with overall neuron

density (cf., von Economo and Van Bogaert 1927;

la Fougère et al. 2011; Cahalane et al. 2012). Similarly,

total thicknesses from MR measurements decrease with

increasing architectural type (Wagstyl et al. 2015), which

has a strong positive correlation with cell density (Hilgetag

et al. 2016). Laminar and total cortical thicknesses are

determined from micrographs, which has the drawback that

this approach covers only a small fraction of the surface of

each cortical area. For absolute, but not relative, thick-

nesses, another caveat is potential shrinkage and oblique-

ness of sections. It has also been found that laminar and

total thicknesses depend on the sulcal or gyral location of

areas, which is not offset by a change in neuron densities

(Hilgetag and Barbas 2006). However, regressing our rel-

ative thickness data against cortical depth of the areas

registered to F99 revealed no significant trends of this type

(Supplementary Fig. S2). Laminar thickness data are sur-

prisingly incomplete, considering that this is a basic

anatomical feature of cortex. Total thicknesses have

already recently been measured across cortex (Calabrese

et al. 2015a; Wagstyl et al. 2015), and could complement

the data set used here covering 14 of the 32 areas. How-

ever, when computing numbers of neurons, using histo-

logical data may be preferable, because shrinkage effects

on neuronal densities and laminar thicknesses partially

cancel out.

We statistically assign cortico-cortical synapses to target

neurons based on anatomical reconstructions (Binzegger

et al. 2004). This assumes that the anatomical strength of a

connection between two different types of neurons depends

on the product of the average number of synapses formed

by the source neuron in a particular layer and the dendritic

density of the target neurons in that layer, an extended

version of Peters’s rule (Braitenberg and Schüz 1991).

Axo-dendritic overlap predicts connectivity to some extent,

but the actual multiplicity and synaptic strength of con-

nections between individual neurons show large variations

(Shepherd et al. 2005; Kasthuri et al. 2015). However,

Rees et al. (2016) review existing literature and conclude

that using Peters’s rule at the level of cell types instead of

individual cells can deliver a reasonable approximation to

cortical circuitry. On the target side, the assignment of

synapses based on dendritic extent yields laminar cell body

distributions for feedforward and feedback projections that

mostly follow the classical scheme for laminar synapse

distributions of Felleman and Van Essen (1991). However,

in our network, layer 4 neurons receive substantial feed-

back input, stressing the importance of distinguishing

between synapse and cell body positions, as previously

pointed out by De Pasquale and Sherman (2011). This

prediction can be tested for example with glutamate

uncaging in the source area combined with patch-clamp

recording in the target area (Covic and Sherman 2011), or

via axonal tracing combined with morphological recon-

struction of the target neurons (Porter 1997). Covic and

Sherman (2011) found feedback onto layer 4 neurons in

mouse auditory cortex; however, such a pattern remains to

be shown in primates. This finding would shed a new

perspective on the role of L4 neurons in cortical process-

ing. In predictive coding for instance, L4 neurons are

hypothesized to process forward prediction errors using

their feedforward inputs, while layer 5 pyramidal cells

process feedback predictions via their apical dendrites in

the supragranular layers (Bastos et al. 2012). With L4

neurons receiving additional feedback via dendrites

reaching into layer 2/3, their role could be more intricate

and involve processing of both feedforward and feedback

signals.

Our analysis includes target patterns from the CoCoMac

database, which enables us to link target patterns to

quantitatively defined laminar projection patterns of bil-

aminar origin, refining the classification of Felleman and

Van Essen (1991). Markov et al. (2014b) combined their

source patterns from retrograde tracing with target patterns

from previous anterograde tracing studies in different

species and distinguished feedback and feedforward con-

nections further into hierarchically short-range and long-

range projections, respectively. They found subtle differ-

ences in target patterns, e.g., that feedforward connections

from high-type visual areas terminate in layers 3B and 4 of

intermediate areas, but exclusively in layer 4 in low-type

areas. However, the anterograde data used by Markov et al.

(2014b) cover target patterns for connections in only a

small subset of visual areas. Our data from CoCoMac

include target patterns for all visual areas with 29% cov-

erage of all connections in our network, but do not allow us

to draw conclusions on such a fine classification into

hierarchically short-range and long-range connections.

Future work could test if a revised version of the full

CoCoMac dataset using a finer layer distinction supports

the findings of Markov et al. (2014b). Laminar specificity

of cortico-cortical connections is important because it can

support complementary channels for feedforward and

feedback communication in cortex (Bastos et al. 2015b). In

particular, anatomical segregation of communication

channels likely plays a role in enabling directional differ-

ences in oscillation frequencies associated with inter-area
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communication (van Kerkoerle et al. 2014; Bastos et al.

2015a; Michalareas et al. 2016). This segregation can

occur even in single cells that combine feedback and

feedforward processing on their apical and basal dendrites

(Körding and König 2001; Urbanczik and Senn 2014),

again stressing the importance of taking cell morphologies

into account.

The connectivity of neuronal networks can be described

in terms of different measures, each highlighting a specific

aspect of the network and relating differently to its

dynamics. For instance, in mean-field descriptions of net-

work dynamics, indegrees tend to be most directly related

to stationary firing rates, while fluctuations around this

stationary state depend on the population size, and there-

fore, correlations are determined by a combination of

indegrees and connection probabilities (Brunel 2000;

Helias et al. 2013). On the other hand, outdegrees relate

more directly to the overall influence of each node. Our

network description consisting of population sizes and

numbers of synapses for each connection allows us to

translate between these measures, showing how they differ

in their relative strength across connections. Using the

appropriate connectivity measures can facilitate the inter-

pretation of observed dynamics.

The population-level connectivity enables us to identify

the most prominent laminar projection patterns in shortest

paths between areas. While pathways from high-type to

low-type areas and horizontal pathways (between struc-

turally similar areas) both follow a stereotypical pattern

originating in the supragranular layers and targeting layer

4, projections from low-type to high-type areas feature a

richer repertoire of layer-specific paths. At relay stages in

indirect paths, horizontal pathways more closely resemble

low-to-high-type pathways. These findings suggest that

areas of equal architectural type communicate via similar

pathways as connections from structurally more differen-

tiated to less differentiated areas in terms of their start-end

pattern, but that these pathways are often relayed via

pathways similar to those from structurally less differen-

tiated to more differentiated areas. The hypothesis that

dynamical interactions follow these anatomical paths

could be tested in experiments as well as numerical sim-

ulations. The anatomical paths in our model are fairly

independent of whether they are categorized based on

SLN or the architectural types. An exception is that a

significant number of low-to-high-type paths originate in

supragranular layers, while the origin of feedback paths is

strongly dominated by the infragranular layers. Still, these

similarities suggest that functional signatures of connec-

tions categorized based on the structural gradient are

similar to those observed for hierarchical projections (van

Kerkoerle et al. 2014; Bastos et al. 2015a; Michalareas

et al. 2016).

We here concentrate on aspects of cortical structure for

which substantial datasets are available, leaving aside

insights on specific details in individual areas for which the

available information is highly incomplete. Our algorith-

mic approach makes the network amenable to the inte-

gration of additional details, such as more diverse neuronal

populations (Defelipe et al. 1999; Binzegger et al. 2004;

Markram et al. 2015), additional area specificity of local

circuits (Beul and Hilgetag 2015), connectivity patterns

beyond pairwise connection probabilities (Song et al.

2005; Kasthuri et al. 2015; Markram et al. 2015), or spatial

properties of connectivity (Colby et al. 1988; Salin et al.

1989; Gattass et al. 1997; Markov et al. 2014b). The cor-

tico-cortical connectivity may be further refined by incor-

porating a dual counterstream organization of feedforward

and feedback connections (Markov et al. 2014b), by

including different numbers of cortico-cortical synapses

per neuron in feedforward and feedback directions

(Rockland 2003), and by incorporating cortico-cortical

projection patterns on the single-cell level as found in

mouse V1 (Han et al. 2017). It is also worth investigating

whether the preferential targeting of excitatory neurons by

feedback projections is part of a more gradual reduction in

inhibition–excitation ratio from feedforward to feedback

projections, as is the case for optogenetically determined

EPSCs (D’Souza et al. 2016).

In this study, we concentrate on the network of vision-

related areas within one hemisphere of cortex, thereby

leaving aside callosal and subcortical connections as well

as connections with other cortical areas. Since most tracing

studies concentrate on one hemisphere, knowledge about

callosal connections is sparse; however, tracing data from

mouse cortex (Goulas et al. 2017) and rhesus monkey

prefrontal cortex (Barbas et al. 2005) suggest similar

construction principles to those of ipsilateral connections,

which can be used to inform a future revision of the model.

The integration of thalamo-cortical loops is an important

extension of the model, but in view of the added com-

plexity beyond the scope of the current study. Since the

corresponding connectivity has been measured for parts of

cortex only, it would be necessary to fill gaps in the data by

empirical regularities similar to those used in the present

study, possibly employing more advanced graph-theoreti-

cal techniques similar to Jouve et al. (1998). This would

help ensure the realism of graph-theoretical properties of

the connectivity matrix not tested for in the present study,

and would enhance the reliability of individual entries of

the matrix that are currently only first-order estimates.

Our study can thus be the starting point for iterative

refinement and more detailed descriptions of cortical con-

nectivity, contributing to a better understanding of cortical

structure. It also provides the basis for numerical simula-

tions that investigate the relation between structure and
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dynamics (Schmidt et al. 2016; Schuecker et al. 2017). In

contrast to previous simulation studies, which are based on

binary or coarsely weighted tracing data or on diffusion

MRI (Honey et al. 2007; Knock et al. 2009; Deco et al.

2009), the weighted and directed graph resulting from our

integration of axonal tracing data enables studying the

activity supported by the highly heterogeneous connectiv-

ity of cortex.
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Jülich Supercomputing Centre (2015) JUQUEEN: IBM Blue Gene/Q

supercomputer system at the Jülich Supercomputing Centre.
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