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Abstract

Spatial organization is a hallmark of all living systems. Even bacteria, the smallest forms of 

cellular life, display defined shapes and complex internal organization showcasing a highly 

structured genome, cytoskeletal filaments, localized scaffolding structures, dynamic spatial 

patterns, active transport, and occasionally intracellular organelles. Spatial order is required for 

faithful and efficient cellular replication, and offers a powerful means for the development of 

unique biological properties. Here, we discuss organizational features of bacterial cells and 

highlight how bacteria have evolved diverse spatial mechanisms to overcome challenges cells face 

as self-replicating entities.

INTRODUCTION

The second law of thermodynamics dictates that isolated systems evolve toward greater 

entropy. Organisms, however, are not isolated systems. They exchange energy and matter 

with the environment, driving them far from thermodynamic equilibrium. As a result, living 

systems can achieve a stable organized state. Spatial organization is, in fact, evident at all 

levels of biological complexity.

Bacterial cells are no exception. Spatial order is readily apparent in the highly reproducible 

cell geometries observed in the bacterial world, ranging from spherical and rod shapes to 

helical, branched and complex spiny morphologies. Geometrical order in bacterial shapes 

has been known for a long time, first unveiled by Antonie van Leeuwenhoek at the dawn of 

microscopy over three centuries ago. However, an appreciation for the internal organization 

of bacterial cells only emerged in the last 15-20 years, spurred by advances in imaging 

techniques. In fact, as we will illustrate, bacteria exhibit many of the cell biological 

complexities once thought to be unique to eukaryotic cells. Granted, apart from notable 
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exceptions, bacteria lack the membrane-enclosed organelles that help organize the interior of 

eukaryotic cells. Instead, bacteria have adopted an open plan architectural design of their 

cytoplasmic space where spatial organization arises in the absence of membrane boundaries.

The first glimpses of intracellular organization in bacteria came with the discoveries that 

bacterial cells can cluster chemoreceptors at specific locations (Alley et al., 1992; Maddock 

and Shapiro, 1993), possess cytoskeletal structures (Bi and Lutkenhaus, 1991; Jones et al., 

2001; van den Ent et al., 2001; Williamson, 1974), feature protein oscillations (Hu and 

Lutkenhaus, 1999; Raskin and de Boer, 1999b), and spatially organize and actively segregate 

chromosomal regions (Glaser et al., 1997; Gordon et al., 1997; Teleman et al., 1998; Webb 

et al., 1997). These pioneering works were followed by a wealth of studies showcasing the 

diversity of cell biology among bacterial species and demonstrating the pervasive role of 

spatial order in many aspects of bacterial life. Cellular organization has emerged as an 

integral element of the cellular processes that must take place for bacteria to successfully 

self-replicate in their environment. Bacteria are famous (or infamous) for their proliferative 

potential. They are also experts in cellular specialization, which has allowed them to 

colonize almost every corner of the Earth. While much of this colonization success stems 

from diversification of metabolic functions, diversification of cellular organization is also an 

important contributing factor.

Because of space constraints, we are unable to describe the vast array of exciting cell 

biological observations that have been reported in bacteria. This review is not meant to be 

exhaustive. Our goal is to describe, with illustrative examples, organizational features and 

self-organizing properties under two different contexts. First, we will discuss the bacterial 

architecture in the context of the universal tasks that cells must perform to achieve efficient 

and faithful self-replication. Second, we will discuss spatial organization in the context of 

specialized biological functions that bacteria have evolved to survive and thrive in their 

ecological niches.

SHAPING THE CELL

Bacterial cells generally adopt well-defined physical shapes. Cell geometry impacts various 

aspects of bacterial physiology, such as nutrient uptake, motility, colonization, and 

pathogenesis (Kysela et al., 2016; Yang et al., 2016). Another critical, but often 

unappreciated, aspect of cell shape is that it provides geometric features that bacteria use to 

establish the intracellular organization necessary for various cellular processes, as we will 

discuss throughout the review. Thus, reproducing a specific cell geometry is a crucial task 

that bacteria must accomplish at every division cycle.

Cell shape is typically endowed by the peptidoglycan (PG), a major component of the cell 

wall, that consists of glycan strands crosslinked by peptides. This meshwork, also referred to 

as the sacculus, encases the cytoplasmic membrane and bears stress generated from 

cytoplasmic turgor pressure. A loss of PG integrity (e.g., following exposure to β-lactam 

antibiotics) results in loss of cell shape and eventually lysis. Isolated PG sacculi generally 

preserve the morphological features of the cells from which they were purified, indicating 

that the morphology of a cell is dictated by the morphogenesis of the PG sacculus.
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Cell division: duplicating round shapes or generating new cell poles

How do PG sacculi obtain their forms? This spatial problem is solved through cellular 

organization, usually using cytoskeletal elements and scaffolding structures that spatially 

regulate PG synthesis and remodeling. For instance, part of cell geometry is generated 

during the cell division process, which involves septal (inward) PG synthesis. In spherical 

and ovoid bacteria, septal PG growth plays an important role in reproducing the round shape 

of the cell at every generation, though the cell cycle pattern of PG growth can vary among 

species (Figure 1Ai) (Monteiro et al., 2015; Turner et al., 2010; Wheeler et al., 2011; Zhou 

et al., 2015; Zhou et al., 2016).

Apart from a few known exceptions (Jeske et al., 2015; Liechti et al., 2016; Ouellette et al., 

2012; Pilhofer et al., 2013), the orchestration of PG synthesis during division is entrusted to 

the highly conserved FtsZ protein. FtsZ is a GTPase and a structural tubulin homolog that 

polymerizes upon GTP binding (Bramhill and Thompson, 1994; de Boer et al., 1992; 

Erickson et al., 1996; Lowe and Amos, 1998; Mukherjee et al., 1993; Mukherjee and 

Lutkenhaus, 1994; RayChaudhuri and Park, 1992). FtsZ polymers attach to the cytoplasmic 

membrane through auxiliary proteins, such as FtsA (Pichoff and Lutkenhaus, 2005), and 

accumulate at the site of division, where they form a ring-like structure (Z-ring) (Figure 1A) 

(Bi and Lutkenhaus, 1991; Levin and Losick, 1996; Ma et al., 1996).

The structure of the Z-ring (continuous vs. discontinuous) and the exact arrangement of FtsZ 

polymers within the ring (length, number, orientation, etc.) are the subject of intense debate 

and may vary between species (Fu et al., 2010; Holden et al., 2014; Jennings et al., 2011; Li 

et al., 2007; Rowlett and Margolin, 2014; Si et al., 2013; Strauss et al., 2012; Szwedziak et 

al., 2014; Yao et al., 2017). It is, however, well accepted that the Z-ring provides a scaffold 

for the recruitment of a number of other division proteins, including components of the PG 

synthesis machinery that build septal PG during Z-ring constriction (den Blaauwen et al., 

2017; Typas et al., 2011).

The Z-ring scaffold is a dynamic structure (Strauss et al., 2012; Stricker et al., 2002). FtsZ 

polymers move circumferentially around the septal plane (Bisson-Filho et al., 2017; Yang et 

al., 2017). This motion is achieved by treadmilling, a GTP-hydrolysis-dependent process in 

which FtsZ monomers are added at one end of the polymer while being removed from the 

other end. FtsZ treadmilling, which is also observed in vitro (Loose and Mitchison, 2014), is 

thought to position and distribute PG synthases around the septal plane (Bisson-Filho et al., 

2017; Yang et al., 2017).

How the Z-ring constricts and coordinates PG synthesis inward remains an open question. In 

vitro reconstitution experiments have demonstrated that FtsZ filaments alone can pinch the 

membrane of tubular liposomes (Osawa et al., 2008; Osawa and Erickson, 2013; Szwedziak 

et al., 2014). Thus, an attractive possibility is that FtsZ filaments locally pinch the 

cytoplasmic membrane, perhaps through filament motion, sliding, or bending (Erickson and 

Osawa, 2017; Lan et al., 2009; Li et al., 2007; Szwedziak et al., 2014). Membrane 

invagination would help redirect PG synthesis inward, and reiteration of this process would 

produce concentric PG rings of decreasing size.
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Cell elongation: reproducing rod shapes

Rod-shaped bacteria must add a phase of PG growth during which the cylindrical portion of 

the cell elongates. This can be achieved by inserting new PG material while maintaining the 

cell width constant. In many rod-shaped bacteria, this process is regulated by the ATPase 

MreB, a structural homolog of actin that polymerizes upon ATP binding (Jones et al., 2001; 

van den Ent et al., 2001).

How MreB polymers spatially control PG morphogenesis is not fully understood. Inside 

cells, MreB filaments bind to the cytoplasmic face of the membrane (Dempwolff et al., 

2011; Salje et al., 2011) and connect to the PG synthesis machinery through transmembrane 

proteins, such as RodZ and MreC/D (Typas et al., 2011). MreB filaments, which are largely 

oriented orthogonal to the long axis of the cell (Olshausen et al., 2013; Ouzounov et al., 

2016), move along the cell circumference together with the PG machinery (Figure 1Bi) 

(Dominguez-Escobar et al., 2011; Garner et al., 2011; van Teeffelen et al., 2011). MreB 

motion is unlikely to result from treadmilling because MreB forms antiparallel double-

stranded filaments in vitro (van den Ent et al., 2014), indicating that both ends are 

equivalent. Instead, circumferential motion depends on PG synthesis (Dominguez-Escobar et 

al., 2011; Garner et al., 2011; van Teeffelen et al., 2011), suggesting that the processivity of 

PG synthetic enzymes sustains MreB motion. Presumably, the orientation of the MreB 

filaments helps direct the addition of circular (likely discontinuous) bands of PG oriented 

perpendicular to the cell length. What sets the width of these PG hoops remains unclear. It 

does not require a preexisting shape template, as rod shape can arise from spherical PG-

deficient cells following restoration of PG synthesis (Kawai et al., 2014; Lederberg, 1956; 

Miller et al., 1968).

At the cellular scale, the spatial distribution of MreB dictates where new PG will be added. 

Several patterns have been reported for rod-shaped bacteria. For example, in Bacillus subtilis 
and Escherichia coli, MreB filaments are distributed throughout the cylindrical portion of the 

cell. As a result, PG material is inserted along the entire cell cylinder, in a growth mode 

referred to as “dispersed” or “lateral” PG synthesis (Figure 1Bi). What prevents PG growth 

at the poles? The answer is likely related to cell geometry. For instance, the conical shape of 

anionic phospholipids (e.g., cardiolipin) favors their accumulation in the curved membrane 

of cell poles (Mukhopadhyay et al., 2008; Renner and Weibel, 2011), which presumably 

repels MreB filaments, as they tend to avoid anionic phospholipids (Kawazura et al., 2017). 

On a finer scale, MreB filaments accumulate at the inner curvature of cell bends (Ursell et 

al., 2014), potentially due to their circumferential motion (Wong et al., 2017). The resulting 

local accumulation of PG material (Ursell et al., 2014) or PG-strain-dependent growth 

(Wong et al., 2017) is thought to help straighten the cell cylinder from accidental bends 

(Figure 1Bi).

While the lateral mode of PG synthesis is common among rod-shaped species, cell 

elongation can also derive from PG growth in more confined cellular regions, as in Borrelia 
species (Jutras et al., 2016). In Caulobacter crescentus, MreB localization and addition of 

PG material shift during the cell cycle from a dispersed distribution along the cell body to a 

narrow central zone in an FtsZ-dependent manner (Figure 1Bii) (Aaron et al., 2007; Figge et 

al., 2004; Gitai et al., 2004).
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Given the function of MreB in PG morphogenesis, it is not surprising that most spherical 

bacteria do not possess an MreB homolog (Pinho et al., 2013). However, some rod-shaped 

bacteria also lack MreB. Examples include members of Mycobacteriaceae and Rhizobiales. 

These bacteria display a “polar” or “subpolar” mode of growth. For example, Agrobacterium 
tumefaciens elongates from the “new” pole, which was formed by the last division (Figure 

1Biii) (Brown et al., 2012). In Mycobacterium smegmatis, PG incorporation occurs at both 

polar regions, although possibly at a different rate (Figure 1Biii) (Aldridge et al., 2012; 

Joyce et al., 2012; Kang et al., 2008; Meniche et al., 2014; Santi et al., 2013; Thanky et al., 

2007). Polar growth also occurs in the mycelium-forming bacterium Streptomyces 
coelicolor (Flardh, 2003). This bacterium possesses MreB, yet it uses an MreB-independent 

mechanism to direct polar cell wall growth (Mazza et al., 2006). This mechanism relies on 

DivIVA, another type of polymerizing protein that self-assembles into a matrix at the 

incipient growing tips (Figure 1Biii) (Flardh, 2003) with the help of the intermediate 

filament-like proteins, FilP and Scy (Fuchino et al., 2013; Holmes et al., 2013).

Curvature generation: producing crescent, sigmoid, and helical shapes

Various bacteria form curved rods or spirals. One way to curve a rod is by physically 

bending it, a strategy that the Lyme disease-causing spirochete Borrelia burgdorferi has 

adopted. This pathogen forms long cells with a flat-wave morphology. The curved 

morphology is mechanically imparted by the flagella located between the cytoplasmic and 

outer membranes where flagella wrap around the PG (Charon et al., 2009; Dombrowski et 

al., 2009; Goldstein et al., 1996; Goldstein et al., 1994; Motaleb et al., 2000). The stiffness 

of the helical flagella relative to that of the cell cylinder causes the cell to deform into a flat-

wave shape (Figure 1Ci). Flagellar rotation propagates waves of cell deformations along the 

cell length, propelling the cell forward. A flagellar mutant loses the ability to swim and 

becomes rod-shaped, showcasing the moonlighting skeletal function of the flagella.

Bending the PG to shape the cell is an unusual strategy. More commonly, bacterial curved 

morphologies are imprinted into the PG fabric itself. Cell curvature can be achieved during 

growth by adding more PG material to one lateral wall relative to the other (Figure 1Cii). 

Studies in curved bacteria suggest that anisotropy in PG growth between lateral walls can be 

achieved with the help of self-assembling proteins, such as crescentin in C. crescentus and 

CrvA in Vibrio cholerae (Ausmees et al., 2003; Bartlett et al., 2017). These proteins 

spontaneously polymerize into filaments in vitro (i.e., without the need of nucleotides) and 

form static structures that are asymmetrically localized inside the cell. Evidence suggests 

that these structures generate curvature by mechanically reducing PG synthesis on the side 

of the cell where the protein structure attaches (Figure 1Cii) (Bartlett et al., 2017; Cabeen et 

al., 2009), though the precise mechanism is not fully understood. Perhaps the elastic 

property of the filamentous structure locally opposes the stretching of the PG fabric exerted 

by the turgor pressure (Cabeen et al., 2009). Reduced mechanical stress on the PG on one 

side of the cell relative to the other presumably causes an anisotropy in PG growth.

The commonalities between crescentin and CrvA illustrate an interesting case of convergent 

evolution, as these proteins have important distinguishing features. Like traditional 

cytoskeletal proteins, crescentin is cytoplasmic. Furthermore, crescentin is a coiled-coil rich 
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protein that shares the domain organization, the biochemical properties and the in vivo 

dynamics of eukaryotic intermediate filament proteins (Ausmees et al., 2003; Cabeen et al., 

2011; Charbon et al., 2009). CrvA, on the other hand, is periplasmic, and shares little 

similarity to intermediate filament proteins (apart from two relatively short coiled-coil 

regions) or to other known cytoskeletal proteins (Bartlett et al., 2017).

Some bacteria combine cytoskeletal and PG-modifying functions to curve their PG fabric. 

For example, Helicobacter pylori uses cytoplasmic intermediate filament-like proteins 

(coiled-coil-rich proteins Ccrp59, Ccrp1143, Ccrp58 and Ccrp1142) to curve its cells 

(Specht et al., 2011; Waidner et al., 2009), presumably through anisotropic PG growth. In 

addition, this bacterium modulates its helical twist through the activity of PG crosslink 

hydrolases (Sycuro et al., 2010). The PG-relaxing activity of these enzymes affects the 

material properties of the load-bearing PG mesh. Modeling shows that if these alterations are 

spatially ordered (e.g., along a helical path), they will lead to curved morphologies under 

turgor pressure.

Expansion of shape complexity

Spatial regulation of PG morphogenesis can yield a wide diversity of cell shapes (Kysela et 

al., 2016), though the underlying mechanisms are poorly understood. In some cases, it 

involves cytoskeletal proteins unique to the bacterial world, such as bactofilins (Lin and 

Thanbichler, 2013). This is illustrated in C. crescentus, which adopts an exotic shape by 

forming a long, thin cell extension (stalk) at a cell pole (Figure 1D). Full extension of the 

polar stalk partially depends on bactofilins BacA and BacB (Kuhn et al., 2010). These two 

proteins self-assemble into a sheet-like structure at the cell pole where a PG synthase is 

recruited (Figure 1D). Studies of stalk morphogenesis have also provided insight into how 

morphological transitions may arise during evolution. For instance, changes in the regulation 

and protein sequence of a morphogen (SpmX) are thought to have driven the evolution of 

stalk positioning from polar (C. crescentus) to subpolar (Asticcacaulis excentricus) and 

bilateral (Asticcacaulis biprosthecum) (Jiang et al.,2014).

2. PACKING AND DECODING THE GENOME

Cell geometry defines the intracellular space. An important challenge that all cells face is to 

pack their oversized genome into this limited space without compromising DNA processes. 

The contour length of a bacterial chromosome is ~1,000 times larger than the micrometer-

sized cell (Figure 2Ai; see also Box 1). To overcome this packing problem, bacteria 

condense their chromosome(s) into a spatially ordered, yet pliable, three-dimensional (3D) 

structure composed of domains within domains (Badrinarayanan et al., 2015; Dame and 

Tark-Dame, 2016; Wang and Rudner, 2014).

Chromosome organization

How do the compaction and domain organization of the bacterial chromosome come about? 

Physics offers a partial explanation. First, polymer dynamics predicts that even without a 

cell envelope or other physical confinement, the chromosome should spontaneously shape 

into a globule (Figure 2Ai), accounting for an ~100-fold compaction (see Box 1). Second, 
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the high macromolecular crowding of the cytoplasm results in additional compacting forces 

on the DNA polymer through excluded volume effects (see Box 1) (Cunha et al., 2001; 

Murphy and Zimmerman, 1997; Odijk, 1998). Third, torsional stress leads to supercoiling, 

i.e., DNA folding into superhelices (plectonemes) (Figure 2Ai, see Box 1). Various DNA-

related activities mitigate or enhance these physical effects. For example, topoisomerases 

and RNA polymerases modulate torsional stress, thus affecting DNA supercoiling.

Biochemical factors also play important roles in compacting and spatially organizing the 

chromosome. While bacteria lack histones, they produce various nucleoid-associated 

proteins (NAPs), which are DNA-binding proteins that generate local and long-distance 

changes in chromosome organization (Figure 2Aii). The presence and abundance of specific 

NAPs depend on the species and the growth phase of the culture (e.g., exponential vs. 

stationary phase) (Dorman, 2014). Some NAPs (e.g., FIS in E. coli and IHF in B. subtilis) 

change DNA geometry locally by generating kinks in the DNA polymer (Figure 2Aii) (e.g., 

Thompson and Landy, 1988). Other NAPs (e.g., H-NS in E. coli) bridge different DNA 

segments and stabilize domains by simultaneously binding to multiple sites (Figure 2Aii) 

(e.g., Dame et al., 2006). NAPs can have multiple functions. For example, H-NS and HU 

have also been reported to make a “polymeric coat” on stretches of DNA (Figure 2Aii), 

locally altering the bending rigidity of the DNA (e.g., Amit et al., 2003; Sagi et al., 2004; 

van Noort et al., 2004). Other, less abundant DNA-binding proteins organize specific DNA 

regions on a smaller scale. For example, MatP organizes the terminus (ter) region of the E. 
coli chromosome (Mercier et al., 2008). In vitro observations suggest that MatP creates a 

cross-connected DNA globule around ter through bivalent bridging of multiple high-affinity 

binding sites (Figure 2Aii) (Dupaigne et al., 2012).

The chromosome is also actively shaped by the Structural Maintenance of Chromosome 

(SMC) complex, which forms a structure that encircles DNA (Figure 2Aiii) (Gruber, 2014; 

Kleine Borgmann and Graumann, 2014; Nolivos and Sherratt, 2014). Typically, the SMC 

complex consists of the ATPase SMC and the auxiliary proteins ScpA and ScpB 

(Mascarenhas et al., 2002; Soppa et al., 2002). E. coli lacks these proteins, but forms an 

analogous and distantly related complex made of MukB, MukE and MukF (Yamazoe et al., 

1999). In B. subtilis, Streptococcus pneumoniae and C. crescentus, the SMC complex 

preferentially loads onto the chromosome at the parS sequence near the origin of replication 

(ori) (Gruber and Errington, 2009; Minnen et al., 2011; Sullivan et al., 2009; Tran et al., 

2017), in a process that requires ATP binding and probably ATP hydrolysis (Wilhelm et al., 

2015). The loaded SMC complex then translocates to distal DNA in an ATP hydrolysis-

dependent manner (Figure 2Aiii) (Minnen et al., 2016). The current model in B. subtilis 
suggests that continuous loading of SMC complexes, followed by their active translocation 

from ori to ter, “zips” and thereby aligns the chromosome arms (Figure 2Aiii) (Marbouty et 

al., 2015; Wang et al., 2017; Wang et al., 2015). SMC complexes are also thought to mediate 

intra-arm contact (e.g., Marbouty et al., 2015), which, with active translocation, would result 

in DNA loop extrusion (Figure 2Aiii).

Together, physical and biochemical factors shape the chromosome into a domain-within-a-

domain structure (Figure 2Ai), which was recently mapped at high resolution in 

chromosome conformation capture experiments (Le et al., 2013; Marbouty et al., 2014; 
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Marbouty et al., 2015; Val et al., 2016; Wang et al., 2015). At the cellular scale, the 

chromosome maintains a general linear arrangement inside the cell, such that the 

cytoplasmic position of each gene locus can be predicted based on its chromosomal 

coordinate (Figure 2Ai) (David et al., 2014; Vallet-Gely and Boccard, 2013; Viollier et al., 

2004; Wiggins et al., 2010). The orientation of the chromosome during the non-replicating 

phase can, however, vary. In the “longitudinal” arrangement, ori and ter are located at 

opposite cell ends, with the left and right chromosomal arms side-by-side (Figure 2Ai) 

(Deghelt et al., 2014; Fogel and Waldor, 2005; Harms et al., 2013; Jensen and Shapiro, 

1999; Srivastava et al., 2006; Teleman et al., 1998; Vallet-Gely and Boccard, 2013). In this 

arrangement, the left and right arms are thought to wrap around each other (Umbarger et al., 

2011). In the “transverse” arrangement, ori and ter are in the middle of the cell, with the left 

and right arms at opposite ends (Figure 2Ai) (Nielsen et al., 2006; Niki et al., 2000; Wang et 

al., 2006). Some bacteria can switch between longitudinal and transverse arrangements 

depending on the cell cycle stage and the growth conditions (Bates and Kleckner, 2005; Cass 

et al., 2016; Niki et al., 2000; Wang et al., 2014a).

Chromosomal organization and compaction result in a discrete, albeit dynamic, coiled 

structure whose shape depends on the geometry of the cell (Fisher et al., 2013; Hadizadeh 

Yazdi et al., 2012). This compacted DNA structure is called the nucleoid.

Spatial organization of gene expression

The nucleoid and cell geometry are the most salient features of bacterial cell architecture. 

These two cellular features serve as foundational elements from which other aspects of 

cellular organization can develop.

To start with, the nucleoid and cell geometry help spatially organize the transfer of genetic 

information from DNA to proteins. This is best studied in rod-shaped bacteria, where the 

nucleoid is centrally located in the cytoplasm leaving the cell poles largely free of DNA 

(Figure 2Bi). The open plan of the bacterial cytoplasm means that ribosomes have direct 

access to the DNA. Free ribosomes diffuse through the nucleoid (Sanamrad et al., 2014) and 

load onto nascent mRNAs, such that translation initiates during transcription. However, as 

translation proceeds, polysomes (mRNAs loaded with multiple ribosomes) relocate outside 

of the nucleoid, resulting in ribosome accumulation at the poles (Figure 2Bi), as shown in E. 
coli, B. subtilis and Lactococcus lactis (Bakshi et al., 2012; Lewis et al., 2000; van 

Gijtenbeek et al., 2016). The partial physical separation between the nucleoid and ribosomes 

suggests that transcription and translation are partially separated in space, despite the lack of 

a nuclear envelope.

mRNA degradation is also under spatial control. The major component of the degradation 

machinery (RNase E in E. coli and RNase Y in B. subtilis) is enriched at the cytoplasmic 

membrane (Figure 2Bi) (Lehnik-Habrink et al., 2011; Liou et al., 2001). This membrane 

localization indicates that even though mRNA degradation can begin on nascent mRNAs 

during transcription (Morikawa and Imamoto, 1969; Morse et al., 1969), most of mRNA 

degradation likely occurs near the membrane, away from the nucleoid. In E. coli, mRNAs 

encoding inner membrane proteins are found in greater abundance near the membrane; 

accordingly, they have shorter lifetimes relative to mRNAs located elsewhere (Moffitt et al., 
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2016). Some mRNAs have also been shown to localize to specific regions where their 

protein products are needed (dos Santos et al., 2012; Nevo-Dinur et al., 2011). Thus, in spite 

of their open plan layout, bacteria spatially regulate processes involved in the transfer of 

genetic information (transcription, translation and mRNA degradation), drawing a parallel to 

eukaryotic biology.

What accounts for the physical separation between polysomes and the condensed 

chromosome meshwork? In the prevailing model, this separation has been, at least in part, 

attributed to excluded volume effects (Castellana et al., 2016; Mondal et al., 2011). This 

explanation makes physical sense: the DNA polymer avoids the cell boundary to maximize 

conformational entropy, and the polysomes occupy the available space outside the DNA to 

maximize translational entropy. But apparent contradictions are found in bacteria such as C. 
crescentus, which exhibits a fundamentally different spatial organization of gene expression. 

In this bacterium, DNA and ribosomes are spread throughout the cytoplasm, and RNase E 

appears to associate (directly or indirectly) with the DNA instead of the membrane (Figure 

2Bii) (Briegel et al., 2006; Montero Llopis et al., 2010). The same physical laws, including 

excluded volume effects, should apply to C. crescentus. Yet, we do not see the DNA of C. 
crescentus at the center of the cell with polysomes enriched at the cell poles, as in the 

prevailing model. Solving this mystery will help us understand the evolutionary constraints 

and physiological consequences of spatially organizing gene expression.

PARTITIONING THE CELLULAR CONTENT

Decoding the genome creates biomass, and biomass must be properly partitioned between 

daughter cells at every generation. In this respect, the small size of bacterial cells presents a 

big advantage, as diffusion—a passive process driven by thermal fluctuations—is an 

effective means of molecular transport over short distances. For freely-diffusing 

components, diffusion will randomize position, and for any component in high-copy 

number, random distribution will ensure that each daughter cell gets about half of the 

cellular components at division. However, diffusion alone is not a reliable means of 

partitioning low-copy-number cellular components, as the probability that a daughter cell 

receives zero copies increases exponentially with decreasing copy number (see Box 1). The 

solution, here again, is intracellular organization: bacteria have evolved means of spatially 

ordering low-copy-number cellular components inside cells to ensure their proper 

partitioning between daughter cells. Development of this spatial order generally depends on 

either the nucleoid or cell geometry, as exemplified below.

Bipolar distribution of low-copy-number components

In rod-shaped bacteria, one way to ensure inheritance of a low-copy-number factor upon 

division is by segregating copies to opposite ends of the cell. This strategy is used by a 

subset of low-copy-number plasmids whose segregation mechanisms are based on active 

transport and dynamic cytoskeletal filaments made of distant actin or tubulin homologs 

(Fink and Aylett, 2017; Gayathri and Harne, 2017). This is illustrated by the ParM/R system 

encoded by the low-copy-number E. coli plasmid R1 (Moller-Jensen et al., 2003). ParM is 

an actin homolog that polymerizes into a bipolar spindle comprised of two or more 
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antiparallel filaments (Bharat et al., 2015). In an interesting evolutionary twist, the ParM 

structure behaves more like microtubules than actin filaments by displaying dynamic 

instability, switching from steady elongation to rapid shrinking (Figure 3Ai) (Garner et al., 

2004). This dynamic property provides a “search-and-capture” mechanism, as shrinking 

stops when one end of the ParM filaments becomes bound by the plasmid via the ParR 

protein (Garner et al., 2007; Gayathri et al., 2012). Disassembly from the other filament end 

is prevented through antiparallel pairing with another ParM filament (Gayathri et al., 2012). 

With both ends unable to disassemble, the bipolar spindle continues growing, pushing sister 

plasmids apart (Figure 3Ai). The rod-shaped geometry of the cell plays a critical role in this 

mechanism. Through elongation, the spindle naturally orients itself along the long axis of 

the cell, leading to plasmid translocation toward opposite cell poles.

Other segregation mechanisms that depend on actin- or tubulin-like proteins have been 

described (Fink and Lowe, 2015; Ni et al., 2010; Polka et al., 2014), which differ in their 

mechanism of generating polymer instability. For example, in the case of the Bacillus 
thuringiensis pBtoxis plasmid system, filaments of the tubulin-like protein TubZ do not 

display dynamic instability. Instead, they treadmill (Fink and Lowe, 2015; Larsen et al., 

2007). In the case of the B. subtilis plasmid pLS32 system (Becker et al., 2006), the actin-

like protein AlfA polymerizes into stable bundles of filaments (Polka et al., 2009; Popp et 

al., 2010), and their destabilization is driven by the accessory protein AlfB (Polka et al., 

2014).

It is also worth noting that some cellular components (e.g., chemoreceptor arrays) 

preferentially localize at the cell pole membranes (Figure 3Aii). Any mechanism underlying 

such bipolar localization could work as a potential partitioning mechanism because each 

daughter cell inherits a cell pole from the mother cell. Such mechanisms do not necessarily 

involve protein filaments. We will present several examples in a later section (see 

“Functionalization of the cell poles”).

Equidistant distribution of low-copy-number components

Segregating low-copy-number components to opposite ends of the cell is not the only way to 

achieve proper partitioning. Equidistant distribution of component copies along the long axis 

of the cell will also ensure equal inheritance between daughter cells (Figure 3Aiii). Such 

spatial patterning has been reported for low-copy-number plasmids (Adachi et al., 2006; 

Ebersbach et al., 2006; Lioy et al., 2015; Sengupta et al., 2010), storage granules in C. 
crescentus, Pseudomonas aeruginosa and Pseudomonas putida (Galan et al., 2011; Henry 

and Crosson, 2013; Racki et al., 2017), cytoplasmic chemotaxis protein clusters in 

Rhodobacter sphaeroides (Thompson et al., 2006), and carboxysomes (protein organelles for 

carbon fixation) in Synechococcus elongatus (Savage et al., 2010).

The best studied system driving such a striking spatial pattern is the ParA/B partitioning 

system, which is expressed by a large number of low-copy-number plasmids (Gerdes et al., 

2000). Note that ParA/B systems are also expressed by many bacterial chromosomes (Livny 

et al., 2007), as discussed later. How do ParA/B systems regularly space plasmids? Once 

again, the mechanism involves active transport of plasmids. However, here, the active 

transport does not appear to involve cytoskeletal filaments (Hwang et al., 2013; Lim et al., 
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2014; Vecchiarelli et al., 2013). Furthermore, the plasmids travel within the nucleoid volume 

(Le Gall et al., 2016). A large body of work has revealed that ParA/B-dependent transport 

relies on the following core biochemical features of the DNA-binding protein ParB and the 

P-loop ATPase ParA (Baxter and Funnell, 2014). ParB associates with the plasmid cargo 

through the recognition of a specific DNA sequence, whereas ParA binds to the nucleoid 

non-specifically in an ATP-bound dimeric form. The ParB-decorated cargo diffuses until it 

interacts with one or more nucleoid-bound ParA dimers, resulting in a complex. Each ParA-

ParB interaction is transient because ParB stimulates ParA ATPase activity, releasing freely 

diffusible ParA monomers. Following nucleotide exchange and redimerization, ParA rebinds 

to the nucleoid, restarting the cycle (Figure 3Bi). Iteration of this cycle leads to the ParB-

decorated cargo being “pulled” by a retracting ParA concentration gradient (Figure 3Bii) 

(Fogel and Waldor, 2006; Hatano et al., 2007; Ringgaard et al., 2009). These correlated 

dynamics lead to oscillatory behaviors of the plasmid and ParA waves across the nucleoid 

when a single plasmid cargo is present (Figure 3Bii). When multiple plasmids are present, 

the correlated dynamics between ParA and the ParB-decorated plasmids create depletion 

zones of ParA between approaching plasmids (Surovtsev et al., 2016). This depletion 

presumably causes plasmids to change direction each time they come close to each other, 

resulting in localized motion and equidistant distribution of plasmids on time average 

(Figure 3Biii).

A key question remains: how does ParA “pull” the ParB-decorated plasmids? Computational 

simulations suggest that ParA/B biochemistry and plasmid diffusion alone cannot account 

for the observed active transport and patterning—a translocating force is required (Figure 

3Bi) (Ietswaart et al., 2014; Surovtsev et al., 2016). Indeed, all recent mathematical models 

that reproduce the active motion and spatial patterning observed in vivo include a non-

Brownian, ParA-dependent force (Hu et al., 2017; Ietswaart et al., 2014; Jindal and Emberly, 

2015; Sugawara and Kaneko, 2011; Surovtsev et al., 2016; Walter et al., 2017). But what is 

the source of the force? In some models, motion is proposed to be driven by 

“chemophoresis” (or “proteophoresis”) in which the force originates from ParB and ParA 

binding in a chemical (ParA) gradient (Sugawara and Kaneko, 2011; Walter et al., 2017). 

Such a force is predicted by theoretical thermodynamic considerations (Sugawara and 

Kaneko, 2011), though the scale of this force inside cells remains to be determined. In other 

models, motion is driven by an elastic force originating from chromosomal fluctuations (Hu 

et al., 2017; Surovtsev et al., 2016). The compacted chromosome behaves as an elastic body, 

with chromosomal loci (and therefore anything bound to them) experiencing an elastic force 

on the scale of 0.04 pN (see Box 1) (Surovtsev et al., 2016; Wiggins et al., 2010). 

Importantly, this chromosomal force is on the same scale as the translocating force plasmids 

experience inside cells (see Box 1). The chromosomal elastic force would act on the plasmid 

cargo whenever it interacts with the nucleoid via ParA/ParB interaction.

Chromosome segregation

A low-copy-number component that all cells must partition without fail is the chromosome. 

Unlike in eukaryotes, bacterial chromosome segregation happens simultaneously with DNA 

replication, and can be divided into three major steps: a) separation and translocation of the 

freshly duplicated ori regions, b) segregation of the bulk of the chromosome, and c) 
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separation of the ter regions (Badrinarayanan et al., 2015; Bouet et al., 2014; Wang and 

Rudner, 2014). Here again, intracellular organization facilitates proper chromosome 

segregation. This is particularly apparent in the first and last steps of chromosome 

segregation, which will therefore be the focus of our discussion.

Segregation of the ori regions dictates the directionality of chromosome segregation and sets 

up the final configuration of the chromosome. In some bacteria, ori translocation is driven or 

assisted by a chromosomally-encoded ParA/B system that is closely related to the ParA/B 

plasmid system described above. For example, in V. cholerae (for the large chromosome) 

and C. crescentus, one of the replicated ParB-bound ori regions stays at one pole while the 

other moves to the opposite pole in the wake of a retracting ParA wave over the nucleoid 

(Figure 3Biv) (Fogel and Waldor, 2006; Ptacin et al., 2010; Schofield et al., 2010; Shebelut 

et al., 2009). The translocated ParB-bound ori is then anchored to the pole through a direct 

interaction between ParB and a pole-organizing element, PopZ in C. crescentus (Bowman et 

al., 2008; Ebersbach et al., 2008) and HubP in V. cholerae (Yamaichi et al., 2012). In 

Actinobacteria such as Corynebacterium glutaminicum, the polar anchor for the ParB-bound 

ori likely is DivIVA (Donovan et al., 2012).

The correlated localization dynamics between the ParB-bound ori region and the ParA 

waves are visually similar to one leg of the single-plasmid oscillation described above 

(Figure 3Bii). The underlying mechanism is likely similar: the ParB-bound ori region 

harnesses the chemophoretic force and/or the chromosomal elastic force through iterative 

interactions with nucleoid-bound ParA to propel itself along the ParA gradient (Lim et al., 

2014; Sugawara and Kaneko, 2011). Remarkably, the ParA and ParB localization patterns 

can differ among species. For instance, instead of being anchored at the cell poles, ParB-

bound ori displays a near-midcell position in M. smegmatis or a subpolar position in M. 
xanthus during the non-replicating phase (Ginda et al., 2017; Harms et al., 2013; Iniesta, 

2014; Trojanowski et al., 2015). Furthermore, instead of localizing to the nucleoid, ParA is 

largely confined to the large DNA-free regions between the cell poles and the nucleoid in M. 
xanthus (Harms et al., 2013; Iniesta, 2014). These differences suggest a diversification in 

ParA/B-dependent mechanisms, highlighting the importance of studying different bacterial 

models.

Other bacteria, such as E. coli, lack parA and parB genes (Livny et al., 2007). In these cases, 

other non-exclusive physical phenomena play a role in the translocation of the chromosomal 

ori regions. Polymer dynamics in confined space predicts that duplicated ori regions will 

naturally separate from each other by entropic forces (Youngren et al., 2014), especially if 

these ori regions are condensed into compact domains (e.g., via NAP and SMC activity) 

(Marko, 2009). In B. subtilis, self-condensation and disentanglement of ori-proximal loops 

may also be actively driven by SMC complexes that load close to ori via the ParB homolog 

(Spo0J) and then thread left and right chromosomal segments presumably by a loop-

extrusion mechanism (Gruber and Errington, 2009; Marbouty et al., 2015; Sullivan et al., 

2009; Wang et al., 2017). Inactivation of SMC leads to interconnected sisters ori (Gruber et 

al., 2014; Wang et al., 2014b). A “snap-release” mechanism has been proposed for ori 
segregation in E. coli, based on the observation that sister ori regions remain in close 

proximity for an extended amount of time before they abruptly separate (Bates and 
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Kleckner, 2005; Joshi et al., 2011). Release of accumulated mechanical stress, perhaps due 

to the entropic repulsion of polymer segments, is thought to drive the sister ori regions apart 

(Fisher et al., 2013). Similar physical phenomena are thought to also underlie bulk 

chromosome segregation (Fisher et al., 2013; Hadizadeh Yazdi et al., 2012; Hong and 

McAdams, 2011; Hong et al., 2013; Jun and Mulder, 2006; Junier et al., 2014; Lampo et al., 

2015; Marko, 2009; Youngren et al., 2014).

To ensure that chromosomes are fully segregated before division completes, DNA “pumps” 

made of proteins such as FtsK (SpoIIIE during B. subtilis sporulation) actively translocate 

DNA from one daughter cell compartment to the other (Figure 3C) (Aussel et al., 2002; 

Lesterlin et al., 2008; Sharp and Pogliano, 2002). FtsK associates with the division 

machinery at the growing septum (Wang and Lutkenhaus, 1998; Yu et al., 1998) and 

recognizes specific sequences on the chromosome (Bigot et al., 2006; Bigot et al., 2005; 

Levy et al., 2005; Lowe et al., 2008; Pease et al., 2005). The ori-to-ter orientation of these 

recognition sites sets the directionality of DNA translocation relative to the septum (Figure 

3C). Effectively, FtsK transforms the orientation of the replicating chromosome and the 

geometry of the dividing cell into a directed translocation of chromosomal DNA across the 

division plane.

DIVIDING AT THE RIGHT PLACE

Speaking of the division plane, another critical event that occurs at every generation is the 

selection of the division site. While some bacteria divide asymmetrically, most divide in the 

middle of the cell. But how is the midcell point identified? This inherently geometrical 

problem is, not surprisingly, solved through intracellular organization. Selection of the 

division site occurs through positive and/or negative spatial regulation of Z-ring assembly 

(Monahan et al., 2014; Rowlett and Margolin, 2015). Positive regulation involves protein 

complexes or cell-wall markers that recruit FtsZ to the middle of the cell. In contrast, 

negative regulation generally involves protein patterns that restrict FtsZ ring formation 

everywhere except the cell midpoint. Bacteria often have multiple redundant mechanisms of 

Z-ring positioning (Bailey et al., 2014; Rodrigues and Harry, 2012), and the mechanisms 

themselves vary among species. However, a recurring theme is, again, the reliance on the 

nucleoid or cell geometry to provide spatial cues, as illustrated by three examples below.

Negative regulation by nucleoid occlusion

The Z-ring preferentially assembles in DNA-free-regions through a phenomenon known as 

“nucleoid occlusion”. Unrelated DNA-binding proteins, SlmA in E. coli and Noc in B. 
subtilis, contribute to nucleoid occlusion (Bernhardt and de Boer, 2005; Wu and Errington, 

2004). SlmA depolymerizes FtsZ polymers (Cabre et al., 2015; Cho et al., 2011; Du and 

Lutkenhaus, 2014) or prevents FtsZ polymers from coalescing into a Z-ring (Tonthat et al., 

2011; Tonthat et al., 2013). Noc is thought to interact with both the nucleoid and the 

cytoplasmic membrane to form large membrane/DNA complexes that physically occlude Z-

ring assembly and cell constriction (Adams et al., 2015). These inhibitory activities are 

spatially regulated by the intracellular arrangement of the chromosome. While Noc and 

SlmA bind across the chromosome, their binding sites are specifically depleted in the ter 
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domain (Figure 4A) (Cho et al., 2011; Tonthat et al., 2011; Wu et al., 2009). This uneven 

distribution of binding sites helps prevent assembly of the functional Z-ring in the middle 

region of the cell until segregation of replicated ori regions leaves the ter region at midcell 

(Figure 4A).

Negative regulation by the E. coli Min system

E. coli uses cell geometry and a reaction-diffusion mechanism to establish a pole-to-pole 

oscillating wave of the FtsZ polymerization inhibitor MinC (Hu and Lutkenhaus, 1999; 

Raskin and de Boer, 1999a). Oscillations of MinC from one end of the cell to other results in 

a minimum of MinC concentration and inhibitory activity at the middle of the cell on time 

average, thereby confining Z-ring assembly to that location. MinC oscillations are driven by 

the antagonistic relationship between two other Min proteins, the P-loop ATPase MinD and 

its regulator MinE (Kretschmer and Schwille, 2016; Rowlett and Margolin, 2015). While 

details vary among current models (Bonny et al., 2013; Park et al., 2011; Vecchiarelli et al., 

2016; Wu et al., 2016), the core features of the oscillatory mechanism are as follows (Figure 

4B). MinD associates with the cytoplasmic membrane upon ATP binding and dimerization. 

Membrane-associated MinD recruits MinE. This is followed by enhanced binding of MinD 

to the membrane. MinE antagonizes MinD’s membrane binding by stimulating its ATPase 

activity, causing the release of MinD monomers into the cytoplasm. Following nucleotide 

exchange and diffusion, MinD redimerizes and rebinds to the membrane. The antagonism 

between MinD and MinE, coupled with the positive feedback of MinD binding to the 

membrane, drives oscillations of MinD and MinE between the most distant locations of the 

cell, the cell poles (Figure 4B). The FtsZ inhibitor MinC rides on the oscillatory waves 

simply by interacting with MinD.

Positive regulation by the Myxococcus xanthus Pom system

M. xanthus uses another P-loop ATPase, PomZ, but, in this case, for positive regulation of Z-

ring formation (Schumacher et al., 2017; Treuner-Lange et al., 2013). PomZ is a ParA-like 

protein. Thus, instead of binding to the membrane like MinD, PomZ binds to the nucleoid 

upon ATP binding and dimerization (Figure 4C). PomZ dimers also associate with a protein 

cluster of PomX and PomY, which synergistically stimulates PomZ monomerization. After 

fast cytoplasmic diffusion and nucleotide exchange, PomZ reforms dimers and rebinds to the 

nucleoid. As a result, the PomX/Y cluster acts as a localized sink for PomZ dimers while the 

nucleoid serves as a broadly distributed source, resulting in a diffusive flux of PomZ dimers 

into the PomX/Y cluster (Figure 4C). When the cluster is away from midcell, the fluxes on 

each side of the cluster are unequal, resulting in a higher accumulation of PomZ dimers on 

one side of the cluster relative to the other. This asymmetry results in active translocation of 

the cluster toward the higher concentration of PomZ dimers. The translocating force likely 

emanates from chemophoresis or the elastic properties of the chromosome, as discussed 

above for the ParA/B system involved in DNA segregation. The asymmetry and the force 

vanish when the PomX/Y cluster reaches the middle of the nucleoid (i.e., midcell) because 

the fluxes of PomZ dimers from each side of the cluster become equivalent (Figure 4C) 

(Schumacher et al., 2017). Stabilization of the cluster at midcell stimulates Z-ring assembly 

through an unknown mechanism.
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SPECIALIZING THE CELL

As illustrated in the sections above, spatial organization of the bacterial cell is an integral 

element of processes required for cellular replication. Often, different bacteria have evolved 

different spatial mechanisms to complete the same task. Over the course of evolution, 

diversification of cellular organization has also offered ways for bacteria to expand their 

metabolic capability and evolve new phenotypic traits. In some cases, cell specialization has 

come from the functionalization of specific cellular regions, in particular, the cell poles. In 

others, the development of new biological properties has been associated with cellular 

compartmentalization, generally through the formation of endomembranes and intracellular 

organelles.

Functionalization of the cell poles

While the vast majority of bacterial proteins have dispersed distribution in the cell, some 

proteins accumulate at one or both cell poles in diverse non-spherical bacteria. These pole-

localized proteins are involved in a variety of functions including chemotaxis, motility, 

pathogenesis, cell differentiation, cell-cycle regulation, energy production, and secretion. 

Polar localization can offer various benefits. For example, in the aquatic bacterium C. 
crescentus, polar protein localization establishes cellular asymmetry and creates regulatory 

hubs that coordinate developmental programs with cell cycle progression (Kirkpatrick and 

Viollier, 2012; Lasker et al., 2016). During each cell cycle, C. crescentus produces two 

distinct daughter cells: a motile cell with pili and a flagellum for exploring new territories, 

and a sessile cell with an appendage (stalk) and an adhesin (holdfast) for colonizing the local 

environment. In this organism, temporally orchestrated localization of regulatory and 

signaling proteins at a specific pole couples the synthesis or activation of polar organelles 

(flagellum, pili, holdfast, and stalk) with DNA replication, chromosome segregation or cell 

division (Figure 5Ai). Functionalization of each cell pole with distinct regulatory pathways 

is necessary to accommodate the polar morphogenesis and the dimorphic lifestyle of this 

bacterium.

Another striking example of cell specialization through pole functionalization is the actin-

based motility that propels diverse intracellular pathogens in the cytosol of eukaryotic host 

cells, allowing them to spread to neighboring cells (Figure 5Aii). In these pathogens, 

polymerization of the host actin occurs at one cell pole and is usually promoted by an 

asymmetrically distributed actin-organizing protein, such as ActA in Listeria 
monocytogenes, IcsA/VirG in Shigella flexneri, BimA in Burkholderia pseudomallei and 

Sca2 in Rickettsia parkeri (Goldberg et al., 1993; Haglund et al., 2010; Kocks et al., 1993; 

Stevens et al., 2005).

How is polar localization achieved? Some bacteria first reduce the problem by relying on 

pole-organizing proteins. For example, B. subtilis DivIVA, C. crescentus PopZ, and V. 
cholerae HubP recruit multiple proteins at the poles either by interacting directly with them 

or by self-assembling into a multivalent scaffolding matrix (Bowman et al., 2008; Ebersbach 

et al., 2008; Holmes et al., 2016; Lenarcic et al., 2009; Ramamurthi and Losick, 2009; 

Yamaichi et al., 2012). But how do pole-organizing proteins (or other polar proteins that do 
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not use their help) accumulate at the pole in the first place? Various physical mechanisms 

relying on cell geometry (cell pole shape) or the nucleoid have been proposed.

Such a mechanism is based on protein interaction with lipids, like cardiolipin, that 

preferentially accumulate at curved polar membranes due to their conical shape (Figure 5Bi) 

(Lin and Weibel, 2016; Mukhopadhyay et al., 2008), as mentioned earlier. Another 

geometry-dependent mechanism is based on proteins directly sensing membrane curvature. 

For example, a transmembrane protein oligomer can gauge the curvature of the membrane 

when the curvature radius of the membrane is on the same scale as the intrinsic curvature of 

the protein oligomer, as shown for cone-shaped trimers-of-dimers of the B. subtilis 
chemoreceptor TlpA (Figure 5Bii) (Strahl et al., 2015). Similar membrane curvature 

recognition by bent oligomers may underlie DivIVA localization (Lenarcic et al., 2009; 

Oliva et al., 2010; Ramamurthi and Losick, 2009). Since the cell poles of E. coli do not 

display the sharp corners of B. subtilis cell poles, they lack membranes with a curvature 

radius small enough to recruit individual oligomers. One model proposes that curvature 

sensing and polar localization of E. coli chemoreceptors are achieved through the clustering 

of trimers-of-dimers (Figure 5Biii) (Draper and Liphardt, 2017), potentially with the help of 

the Tol-Pal complex (Santos et al., 2014). The requirement for clustering is an example of 

spatial pattern emerging from collective interactions, a concept usually referred to as 

collective phenomena in physics. Another model for the polar accumulation of E. coli 
chemoreceptors does not involve membrane curvature; instead, it is based on the idea that 

large chemoreceptor clusters act as a sink for diffusing smaller clusters through 

agglomeration (Figure 5Biv) (Thiem and Sourjik, 2008; Wang et al., 2008). Small clusters 

can develop into a new large one only when the cell grows sufficiently for the cluster to be 

out of range of the sink (the old large cluster). Since one of the cell poles is always the most 

distant location from any arbitrary position in the cell, a large cluster will develop there.

For the polar matrix-assembling PopZ protein in C. crescentus, theoretical and experimental 

evidence suggests that nucleoid-dependent size exclusion effects are at play (Ebersbach et 

al., 2008; Laloux and Jacobs-Wagner, 2013; Saberi and Emberly, 2010). In C. crescentus, the 

nucleoid spreads throughout most of the cell (Figure 2Bii), limiting the volume available for 

large structures, such as the PopZ matrix, to the DNA-free cell tips (Figure 5Bv). When 

there is a pre-existing matrix (from the previous division cycle), PopZ self-affinity dictates 

continuous growth of this matrix. To break this pattern and nucleate PopZ assembly at the 

opposite pole, C. crescentus is thought to exploit the local accumulation of the ParA protein 

during chromosomal ori segregation (Laloux and Jacobs-Wagner, 2013). ParA would recruit 

PopZ oligomers through direct interaction, seeding the assembly of a new pole-organizing 

matrix right on time to attach the segregating ori region. Other molecular factors may be 

involved in regulating PopZ localization (Berge et al., 2016; Ptacin et al., 2014).

In diverse rod-shaped bacteria, the two poles are not functionally equivalent. This is readily 

obvious in any bacterium that exhibits unipolar features or properties (e.g., Figure 5Ai-ii). 

Pole identity is generally defined by the age of the pole: the “new” pole results from the 

latest division whereas the “old” pole originates from an earlier division. Little is known 

about how pole identity is achieved and reset at every division. In C. crescentus, TipN, a 

“birthmark” protein, regulates flagellar biosynthesis and marks the new pole until the end of 
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the cell cycle, when it relocates to the division site to mark the new pole of the daughter cells 

at birth (Huitema et al., 2006; Lam et al., 2006). TipN relocation to the developing poles is 

dependent on the Tol-Pal complex, which bridges the cell envelope layers during division 

(Yeh et al., 2010). In Agrobacterium tumefaciens, PopZ plays a similar birthmark function to 

mark the location of polar growth at the new pole (Grangeon et al., 2015).

The functional identity of the pole is not always associated with its age. Powerful examples 

are the motility systems of M. xanthus, in which the identity of the pole (leading vs. lagging) 

is associated with the direction of cell motion on surfaces (Schumacher and Sogaard-

Andersen, 2017). This soil bacterium has two motility systems that are important for 

individual and social cell behaviors such as chemotaxis, group predation, and multicellular 

development. The so-called S-motility system relies on type IV pili, which are protein 

filaments that extrude from the leading pole. Cycles of pili extension, surface attachment, 

and retraction result in cell motion (Figure 5Aiii). The A-motility machinery, which consists 

of the cell envelope Agl-Glt complex, also assembles at the leading pole (Figure 5Aiii). Its 

active translocation toward the lagging pole, combined with its adhesion to the underlying 

surface at focal adhesion sites, results in propulsion of the cell in the opposite direction 

(Faure et al., 2016; Mignot et al., 2007). When the A-motility machinery reaches the lagging 

pole, it disassembles. Upon sensing environmental cues through the Frz chemosensory 

system, both the Agl-Glt complex and the type IV pili switch their polarity axis (Keilberg et 

al., 2012; Zhang et al., 2012). The leading pole becomes the lagging one, and vice versa, 

resulting in a reversal of motility direction (Figure 5Aiii). The leading-lagging polarity 

control system consists of three proteins, MglA, MglB and RomR, which simultaneously 

switch pole location to direct cell motion reversal (Figure 5Aiii) (Keilberg et al., 2012; 

Leonardy et al., 2010; Mauriello et al., 2010; Miertzschke et al., 2011; Treuner-Lange et al., 

2015; Zhang et al., 2010; Zhang et al., 2012). MglA is a Ras-like GTPase that recruits the 

motility engines when bound to GTP. MglA-GTP is excluded from the lagging pole by the 

GTPase-activating protein (GAP) MglB and is recruited to the leading pole by the response 

regulator RomR. The involvement of a small GTPase and a GAP in the polarity of a 

bacterial motility system draws a remarkable parallel to the cell polarity role of small 

GTPases and GAPs in eukaryotic cell migration (Artemenko et al., 2014).

Compartmentalization of the cytoplasm

A number of diverse species deviate from the conventional open plan of the bacterial 

cytoplasm by forming endomembranes and specialized intracellular compartments that 

confer unique biological properties. For example, green sulfur bacteria (phylum Chlorobi) 
and filamentous anoxygenic phototrophs (phylum Chloroflexi) build intracellular organelles 

known as chlorosomes comprised of a lipid monolayer and a proteinaceous baseplate 

(Figure 5Ci) (Nielsen et al., 2016). These chlorosomes serve as ultra-efficient light-

harvesting antennae that allow the organism to perform photosynthesis in near complete 

darkness (Beatty et al., 2005; Manske et al., 2005). But perhaps the bacterial organelle most 

similar to a eukaryotic membrane-enclosed organelle is the anammoxosome found inside 

anaerobic ammonium oxidizing planctomyces (Figure 5Cii) (Neumann et al., 2014). The 

purpose of this compartment is to catalyze anaerobic ammonium oxidation and to prevent 

the extremely toxic and unstable intermediate hydrazine (a rocket fuel propellant!) from 
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reacting with the cytoplasmic milieu. Hydrazine readily diffuses across most biological 

membranes. However, the anammoxosome membrane is rich in ladderane lipids (lipids 

containing fused cyclobutane rings), which creates an exceptionally dense membrane that 

limits hydrazine diffusion (Sinninghe Damste et al., 2002).

Another remarkable example of specialization through organelle formation is found in 

magnetotactic bacteria. These organisms form magnetosomes, which are made of magnetic 

iron crystals surrounded by a membrane derived from cytoplasmic membrane invaginations 

(Figure 5Ciii) (Uebe and Schuler, 2016). In some Magnetospirillum species, filaments of the 

actin homolog MamK help align the magnetosomes along the cell body through an 

interaction with MamJ (Figure 5Ciii) (Komeili et al., 2006; Pradel et al., 2006; Scheffel et 

al., 2006). This cellular-scale order effectively endows the cell with a compass. Such a built-

in navigation system allows the cell to orient itself along the Earth’s magnetic field and 

swim toward a position in the water column where growth is optimal.

Many bacteria can also form intracellular organelles surrounded by a protein shell, offering 

unique properties compared to membrane-bound organelles. For example, different types of 

aquatic bacteria (e.g., cyanobacteria and anoxygenic phototrophic bacteria) carry hollow 

gas-filled proteinaceous vesicles in their cytoplasm (Pfeifer, 2012). The rigid protein wall, 

which primarily consists a highly hydrophobic protein (GvpA), is impermeable to liquid 

water, but permeable to gases (Sivertsen et al., 2010; Walsby, 1969). As a result, the vesicles 

fill with air and cells become buoyant, preventing them from sinking and adjusting them to 

the right water depth.

Most protein-based intracellular organelles in bacteria are, however, not filled with air. 

Instead, they encapsulate enzymes (Bobik et al., 2015). Genomic analyses suggest that about 

20% bacteria across phyla can compartmentalize metabolic reactions within a protein shell 

(Abdul-Rahman et al., 2013). The best characterized bacterial microcompartments (BMCs) 

are the cyanobacterial carboxysomes (Figure 5Civ), which encapsulate CO2-fixing enzymes, 

and the enteric metabolosomes that carry out ethanolamine and propanediol degradation 

(Bobik et al., 1999; Kofoid et al., 1999; Shively et al., 1973). The selectively permeable 

protein shell of BMCs serves not only to colocalize enzymes of a specific pathway, but also 

to confine toxic intermediates and volatile compounds(Bobik et al., 2015). For instance, 

carboxysomes help reduce the loss of CO2 (Dou et al., 2008), a small, nonpolar molecule 

that readily crosses lipid membranes. The microcompartments for ethanolamine and 

propanediol utilization are thought to sequester a volatile aldehyde intermediate that is toxic 

to the cell (Havemann et al., 2002; Penrod and Roth, 2006; Sampson and Bobik, 2008). 

Structural studies of carboxysomes have shown that the icosahedral protein shell shares 

assembly principles with viral capsids and consists of facets of tightly packed hexamers and 

vertices of pentamers (Kerfeld et al., 2005; Tanaka et al., 2008; Tsai et al., 2007). Pores 

within the protein shell are thought to control what goes in and out of the microcompartment 

(Cai et al., 2013; Klein et al., 2009; Sagermann et al., 2009). BMCs typically range from 80 

to 500 nm in size. Similar, but smaller (20-40 nm) proteinaceous compartments called 

encapsulins are also widespread in bacteria (Giessen and Silver, 2017; Sutter et al., 2008). 

Protein targeting to the BMC or encapsulin interior only requires a short peptide sequence, 

allowing encapsulation of foreign proteins through genetic engineering (Cassidy-Amstutz et 
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al., 2016; Choudhary et al., 2012; Fan and Bobik, 2011; Rurup et al., 2014; Tamura et al., 

2015). This property, together with their stability (e.g., to temperature, pH or denaturants), 

makes BMCs and encapsulins promising platforms for biotechnology and biomedical 

applications (Giessen, 2016; Giessen and Silver, 2016).

An extreme case of cytoplasmic compartmentalization in bacteria is endospore formation, a 

developmental process that members of the Bacillus and Clostridium genera undergo in 

response to starvation. The endospore is a cell maturing into a resilient spore within the 

cytoplasm of a nurturing “mother” cell (Figure 5Cv). This organization presents a new cell 

geometrical cue—a convex membrane inside the cell—that can be exploited for protein 

localization. This is elegantly illustrated by SpoVM, a small protein that specifically 

accumulates to the endospore’s outer surface by sensing, through a cooperative interaction, 

small differences in lipid packing between convex and non-convex membrane curvatures 

(Figure 5Cv) (Gill et al., 2015; Ramamurthi et al., 2009). This geometry-driven localization 

of SpoVM provides positional information for the deposition of a protective proteinaceous 

coat on the developing spore.

IN CLOSING

The examples presented above demonstrate how ingrained cellular organization is in many 

aspects of bacterial replication and lifestyle. Order at the cellular scale emerges from 

interactions at the molecular scale through protein polymerization, reaction-diffusion 

mechanisms, excluded volume effects, and collective phenomena. The examples also 

highlight the crucial role that physical factors play in organizing the cell.

A recurring theme in bacterial cellular organization is the reliance of self-organizing 

mechanisms on ATPases or GTPases. These proteins render the system dynamic by cycling 

between different states. At the same time, the activity of these proteins pushes the system 

out of thermodynamic equilibrium by continuously consuming ATP or GTP. This less 

appreciated aspect of their activity allows cells to maintain spatial order by “fighting back” 

against the natural increase in entropy.

Another theme is the role of the nucleoid and cell geometry in providing spatial cues for the 

development of finer organization. This dependence emphasizes the importance of studying 

how geometrical cell features (e.g., cell shape, cell size, curved membranes) and aspects of 

nucleoid organization (nucleoid shape, DNA compaction, chromosome orientation, and 

spatial gene positioning) are established and maintained. Most of our current knowledge 

comes from studies of rod-shaped, monoploid bacteria, and much remains to be learned 

from them. In recent years, bacteria with different shapes or ploidy have gained momentum 

as experimental systems. Further expanding the repertoire of bacterial models will be 

important to develop a complete understanding.

In the context of cell biology, bacterial systems have emerged from virtual irrelevance into 

excellent experimental models for investigating how spatial order can spontaneously arise 

from disorder. In the field of residential and office architecture, an open layout provides 

flexibility and efficient use of the space. Perhaps, by analogy, the open plan of the bacterial 
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cytoplasm offers a flexible platform for the evolution of different intracellular organizations. 

The study of evolutionary divergent species has, indeed, taught us that bacteria have often 

found different solutions to the same biological problem. In this context, the breadth of 

bacterial diversity gifts us with a unique opportunity to explore the space of design 

principles and to study the evolution of cellular organization. Understanding the self-

emergent and evolvable organization of the cell will bring us closer to understanding life 

itself.
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BOX 1

PHYSICAL CONSIDERATIONS

Here, we briefly describe some physical aspects that contribute to intracellular 

organization.

Polymeric nature of the DNA

Most bacteria have a single circular chromosome. Given that the distance between 

adjacent nucleotides is 1/3 nm, the contour length of a typical bacterial chromosome 

(4.5×106 base pairs, bp) is 1.5 mm. At the cellular scale, the chromosome can be 

modeled as a very long flexible polymer, as the persistence (rigidity) length (Lp) of 

double-stranded DNA is small (~150 bp or ~50 nm) relative to the length of the 

chromosome (1.5 mm). This polymeric nature emphasizes the role of entropic effects, as 

the chromosome has an intrinsic tendency to adopt a conformation that maximizes 

available degrees of freedom for its segments. These entropic effects would drive 

spontaneous condensation of the chromosome into a soft globule of size L~Lp(N)1/2 ≈ 10 

μm, considering the chromosome as an ideal polymer of length N in persistence-length 

units.

Crowding and excluded volume effects on chromosome organization

Inside cells, the DNA is not in an ideal solvent. The high macromolecular crowding of 

the cytoplasm causes the collapse of large polymer loops through excluded volume 

effects. This effect is entropy-driven; a decrease in the conformational freedom of the 

polymer is overcompensated by the gain in accessible volume by the large number of 

crowding particles.

DNA supercoiling

Another crucial aspect of DNA physics is that the DNA is an oriented helix with a natural 

pitch of about 10.5 bp per twist. Addition or removal of twists imposes a torsional 

(mechanical) strain. In the case of a circular DNA, the strain is partially released by the 

folding of the DNA into superhelices. A classic (albeit outdated) analogy for this 

supercoiling effect is the coiling of a telephone cord generated by repetitive rotations of 

the phone’s handset.

Elastic properties of the chromosome

From a statistical physics perspective, the probability to find a particle (a chromosomal 

locus, in our case) at position x is given by the Boltzmann distribution: , 

where E(x) is the potential energy of the particle, k is the Boltzmann constant, and T is 

the absolute temperature. From the experimental measurement of such a distribution, one 

can infer the energy potential E(x) in which the particle moves. For chromosomal loci, 

experiments show that the probability of finding a chromosomal locus away (at position 

x) from its mean position x0 follows a Gaussian distribution: , with 

the deviation (σ) from the mean position being ~ 100 nm (Lim et al., 2014; Surovtsev et 

al., 2016). This implies that a chromosomal locus moves in a “harmonic” potential E(x) = 
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a(x−x0)2 with a = kT/2σ2 and with the particle experiencing a force F = 2a(x−x0), i.e., an 

elastic force with a spring constant ksp = 2a = kT/σ2. In other words, the chromosomal 

locus moves like a particle on a spring experiencing a characteristic force: F = ksρσ ~ 

0.04 pN.

ParA-dependent translocating force on plasmid cargos

A force F applied to a particle in a viscous liquid is related to the particle velocity v as: 

, where D is the diffusion coefficient of the particle. The average velocity of a 

single plasmid cargo can be estimated from experiments as v = 2l/t = 0.007 μm/s, where l 
is the length of nucleoid (~ 2 μm) and t is the period of plasmid oscillation (~10 min) 

(Ah-Seng et al., 2013; Ringgaard et al., 2009). Given the experimentally measured 

diffusion coefficient of plasmids D ~ 0.001 μm2/s (Ietswaart et al., 2014; Surovtsev et al., 

2016), the estimated translocating force on plasmid cargos is F~ 0.03 pN.

Random distribution and inheritance of cellular components

If a cellular component in n copies are distributed randomly in the cell, the probability to 

find all copies in the same half of the cell is .
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Figure 1. Shaping the cell
A. (i) FtsZ-dependent inward growth of PG during division produces new cell halves in 

spherical bacteria. Two types of cell cycle are shown. The top panel showcases septal PG 

synthesis followed by an abrupt separation of daughter cells, as in Staphylococcus aureus. 

The bottom panel illustrates the hypothetical case of septal PG synthesis occurring 

concurrently with cell constriction. A good candidate for this cell cycle pattern is Moraxella 
catarrhalis (Zhou et al, 2016). (ii) Septal PG growth gives rise to cell poles in rod-shaped 

bacteria. B. Rod shapes can be created by MreB-dependent (i) lateral or (ii) zonal PG 

incorporation. Preferential localization of MreB to the inner curve of a bent cell cylinder has 

been proposed to help restore straight shape. (iii) Rod shape can also derive from polar 

growth, which, in some bacteria, is DivIVA-dependent. C. Curved cell shapes can be 

achieved (i) by a filamentous structure such as periplasmic flagella applying an external 

force on the PG, (ii) through asymmetric PG growth between lateral walls caused by a static 

protein filament, (iii) via local modifications of the PG mesh, affecting its material 

properties. D. Stalk formation is achieved through localized PG growth with the assistance 

of a bactofilin structure.
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Figure 2. Folding and decoding the genome
A. (i) Bacterial chromosomes can fold into two major configurations: longitudinal or 

transverse. Folding is driven by physical factors and DNA-binding proteins such as (ii) 

NAPs and (iii) SMC complexes. SMC complexes may travel in pairs (Badrinarayanan et al., 

2012; Wang et al., 2017), but just a single complex is shown for simplicity. B. (i) Prevailing 

view of nucleoid (transcription), polysome (translation) and RNase E or Y (mRNA 

degradation) arrangement in bacterial cells. (ii) Unconventional organization of the 

chromosomal DNA, ribosomes and RNase E in C. crescentus.

Surovtsev and Jacobs-Wagner Page 40

Cell. Author manuscript; available in PMC 2019 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Partitioning cellular components
A. Different approaches ensure faithful partitioning of low-copy-number cellular 

components between daughter cells: (i) Cytoskeleton-based active transport of component 

copies to opposite poles, as illustrated with the plasmid ParM/R system. (ii) Localization of 

copies at opposite poles. (iii) Regular distribution of copies along the long cell axis. B. (i) 

Current models of the ParA/B DNA partitioning system propose different sources of the 

translocating force, which, together with the ParA/B biochemistry, drive (ii) oscillations of a 

single plasmid, (iii) regular patterning of multiple plasmid copies, and (iv) segregation of 

chromosomal ori regions in some bacteria. C. Segregation of chromosomal ter regions 

across the septal plane is driven by the hexameric FtsK translocase, which interacts with the 

division machinery. FstK recognizes DNA sequences on the chromosome that have an ori-
to-ter orientation, which determines the directionality of DNA translocation across the septal 

plane.
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Figure 4. Selecting the division site
A. Nucleoid occlusion of Z-ring formation is facilitated by the asymmetry in DNA-binding 

sites of FtsZ inhibitors SlmA (E. coli) or Noc (B. subtilis) along the chromosome. B. The E. 
coli Min system prevents Z-ring formation in the polar regions through protein oscillations 

driven by a reaction-diffusion mechanism. These oscillations result in time-averaged 

accumulation of an FtsZ-assembly inhibitor at the polar regions. C. The Pom system in M. 
xanthus identifies midcell by positioning an FtsZ assembly activating complex, the PomX/Y 

cluster, at mid-nucleoid through a localized-sink/distributed-source mechanism coupled to a 

translocating force of chemophoretic or chromosomal origin.
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Figure 5. Specializing the cell
A. Protein localization at a specific cell pole results in cellular asymmetry that underlies (i) 

the coordination between developmental and cell cycle events in C. crescentus (the polar 

localization of only two histidine kinases, DivJ and PleC, are shown for clarity (Wheeler and 

Shapiro, 1999); in reality, there are at least a dozen regulators that display polar 

accumulation during the cell cycle), (ii) the actin-based motility of some intracellular 

pathogens and their cell-to-cell spread in eukaryotic host tissues, (iii) the directional motility 

in M. xanthus. B. Pole recognition can be based on (i) differences in lipid composition 

between membrane regions of different curvatures, (ii) sensing of high curvature by 
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individual protein oligomers, (iii) sensing of moderate curvature through collective oligomer 

interactions, (iv) interplay between protein cluster diffusion and protein cluster 

agglomeration, (v) volume exclusion that promotes formation of large protein structures 

outside the nucleoid. C. Examples of bacterial microcompartments: (i) chlorosomes bound 

by a single lipid layer and a protein baseplate, (ii) an anammoxosome enclosed by a lipid 

bilayer, (iii) iron-containing magnetosomes, (iv) carboxysomes, which confine reactions 

involved in carbon fixation in a protein shell, (v) an endospore maturing into a spore inside 

the mother cell. B. subtilis SpoVM localizes to the outer surface of the endospore to 

facilitate spore coat formation.
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