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Abstract

Motivation: Sources of variability in experimentally derived data include measurement error in

addition to the physical phenomena of interest. This measurement error is a combination of sys-

tematic components, originating from the measuring instrument and random measurement errors.

Several novel biological technologies, such as mass cytometry and single-cell RNA-seq (scRNA-

seq), are plagued with systematic errors that may severely affect statistical analysis if the data are

not properly calibrated.

Results: We propose a novel deep learning approach for removing systematic batch effects. Our

method is based on a residual neural network, trained to minimize the Maximum Mean

Discrepancy between the multivariate distributions of two replicates, measured in different

batches. We apply our method to mass cytometry and scRNA-seq datasets, and demonstrate that

it effectively attenuates batch effects.

Availability and Implementation: our codes and data are publicly available at https://github.com/

ushaham/BatchEffectRemoval.git

Contact: yuval.kluger@yale.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biological data are affected by the conditions of the measuring

instruments. For example, two distributions of multidimensional

molecular data generated from two identical blood drops of the

same person (technical replicates) in two experimental batches, may

deviate from each other due to variation in conditions between

batches. The term batch effects, often used in the biological com-

munity, describes a situation where subsets (batches) of the measure-

ments significantly differ in distribution, due to irrelevant

instrument-related factors (Leek et al., 2010). Batch effects

introduce systematic error, which may cause statistical analysis to

produce spurious results and/or obfuscate the signal of interest.

Typically, the systematic effect of varying instrument conditions on

the measurements depends on many unknown factors, whose impact

on the difference between the observed and underlying true signal

cannot be modeled.

For example, CyTOF, a mass cytometry technique for meas-

uring multiple protein levels in many cells of a biological speci-

men, is known to incur batch effects. When replicate blood

specimens from the same patient are measured on a CyTOF
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machine in different batches (e.g. different days), they might dif-

fer noticeably in the distribution of cells in the multivariate pro-

tein space. In order to run a valid and effective statistical analysis

on the data, a calibration process has to be carried out, to

account for the effect of the difference in instrument conditions

on the measurements.

In this article, we consider cases where replicates differ in dis-

tribution, due to batch effects. By designating one replicate to be

the source sample and the other to be the target sample, we pro-

pose a deep learning approach to learn a map that calibrates the

distribution of the source sample to match that of the target

(The term sample is used with different meanings in the biologi-

cal and statistical communities. Both meanings are used in this

article, however, usage should be clear from context.). Our pro-

posed approach is designed for data where the difference between

these source and target distributions is moderate, so that the

map that calibrates them is close to the identity map; such an

assumption is fairly realistic in many situations. An example of

the problem and the output of our proposed method is depicted

in Figure 1. A short demo movie is available at https://www.you

tube.com/watch?v ¼ Lqya9WDkZ60. To evaluate the effective-

ness of our proposed approach, we employ it to analyze mass

cytometry (CyTOF) and single-cell RNA-seq (scRNA-seq), and

demonstrate that it strongly attenuates the batch effect. We also

demonstrate that it outperforms other popular approaches for

batch effect removal. To the best of our knowledge, prior to this

work, neural nets have never been applied to batch effect

removal.

The remainder of this article is organized as follows: in

Section 2, we give a brief review of Maximum Mean Discrepancy

(MMD) and Residual Nets, on which our approach is based. The

calibration learning problem is defined in Section 3, where we also

describe our proposed approach. Experimental results on CyTOF

and scRNA-seq measurements are reported in Section 4. In Section

5, we review some related works. Section 6 concludes the manu-

script. Additional experimental results and discussion appear in

the Appendix.

2 Materials and methods

2.1 Maximum mean discrepancy
MMD (Gretton et al., 2006, 2012) is a measure for distance

between two probability distributions p, q. It is defined with respect

to a function class F by

MMDðF ; p;qÞ � sup
f2F
ðEx�pf ðxÞ � Ex�qf ðxÞÞ:

When F is a reproducing kernel Hilbert space with kernel k, the

MMD can be written as the distance between the mean embeddings

of p and q

MMD2ðF ;p;qÞ ¼ jjlp � lqjj2F ; (1)

where lpðtÞ ¼ Ex�pkðx; tÞ. Equation (1) can be written as

MMD2ðF ;p;qÞ¼Ex;x0�pkðx;x0Þ�2Ex�p;y �qkðx;yÞþEy;y0�qkðy;y0Þ;
(2)

where x and x0 are independent, and so are y and y0. Importantly, if

k is a universal kernel, then MMDðF ;p;qÞ¼0 iff p ¼ q. In practice,

the distributions p, q are unknown, and instead we are given obser-

vations X¼fx1; . . .xng;Y¼fy1; . . .ymg, so that the (biased) sample

version of (2) becomes

MMD2ðF ;X;YÞ ¼ 1

n2

X
xi ;xj2X

kðxi; xjÞ

� 2

nm

X
xi2X;yj2Y

kðxi; yjÞ

þ 1

m2

X
yi ;yj2Y

kðyi; yjÞ:

MMD was originally proposed as a non-parametric two sample

test, and has since been widely used in various applications. Li et al.

(2015) and Dziugaite et al. (2015), use it as a loss function for neural

net; here we adopt this direction to tackle the calibration problem,

as discussed in Section 3.

Fig. 1. Calibration of CyTOF data. Projection of the source (red) and target (blue) samples on the first two principal components of the target data. Left: before

calibration. Right: after calibration
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2.2 Residual nets
Residual neural networks (ResNets), proposed by He et al. (2016a)

and improved in (He et al., 2016b), is a recently introduced class of

very deep neural nets, mostly used for image recognition tasks.

ResNets are typically formed by concatenation of many blocks,

where each block receives an input x (the output of the previous

block) and computes output y ¼ xþ dðxÞ, where dðxÞ is the output

of a small neural net, which usually consists of two sequences of

batch normalization (Ioffe and Szegedy, 2015), weight layers and

non-linearity activations, as depicted in Figure 2.

It was empirically shown by He et al. (2016a) that the perform-

ance of very deep convolutional nets without shortcut connections

deteriorates beyond some depth, while ResNets can grow very deep

with increasing performance. In a subsequent work, He et al.

(2016b) showed that the gradient backpropagation in ResNets is

improved, by avoiding exploding or vanishing gradients, comparing

to networks without shortcut connections; this allows for more suc-

cessful optimization, regardless of the depth. Li et al. (2016) showed

that ResNets with shortcut connections of depth 2 are easy to train,

while deeper shortcut connections make the loss surface more flat.

In addition, they argue that initializing ResNets with weights close

to zero performs better than other standard initialization

techniques.

Since a ResNet block consists of a residual term and an identity

term, it can easily learn functions close to the identity function,

when the weights are initialized close to zero, which is shown to be

a valuable property for deep neural nets (Hardt and Ma, 2016). In

our case, the ability to efficiently learn functions which are close to

the identity is appealing from an additional reason: we are interested

in performing calibration between replicate samples whose multi-

variate distributions are close to each other; to calibrate the samples,

we are therefore interested in learning a map which is close to the

identity map. A ResNet structure is hence a convenient tool to learn

such a map.

3 Approach

Formally, we consider the following learning problem: let D1;D2

be two distributions on R
d, such that there exists a continuous map

w : Rd ! R
d so that if X � D1 then wðXÞ � D2. We also assume

that w is a small perturbation of the identity map.

We are given two finite samples fx1; . . . ;xng; fy1; . . . ; ymg from

D1;D2, respectively. The goal is to learn a map bw : Rd ! Rd so that

fbwðx1Þ; . . . ; bwðxnÞg is likely to be a sample from D2.

Since we assume that w is close to the identity, it is convenient to

express it as wðxÞ ¼ xþ dðxÞ, where dðxÞ is small, so that the con-

nection to ResNets blocks becomes apparent.

Our proposed solution, which we term MMD-ResNet is there-

fore a ResNet. The input to the net is a sample fx1; . . . xng of points

in Rd, to which we refer as the source sample; the net is trained to

learn a map of the source sample, to make it similar in distribution

to a target sample fy1; . . . ; ymg, also in Rd. Specifically, we train the

net with the following loss function

LðwÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MMD2ðfbwðx1Þ; . . . bwðxnÞg; fy1; . . . ymgÞ

q
;

where bw is the map computed by the network, and depends on the

network parameters w. We train the net in a stochastic mode, so

that in fact the MMD is computed only on mini-batches from both

samples, and not on the entire samples.

4 Results

In this section, we report experimental results on biological data

obtained using two types of high-throughput technologies: CyTOF

and scRNA-seq. CyTOF is a mass cytometry technology that allows

simultaneous measurements of multiple protein markers in each cell

of a specimen (e.g. a blood sample), consisting of 103 � 106 cells

(Spitzer and Nolan, 2016). scRNA-seq is a sequencing technology

that allows to simultaneously measure mRNA expression levels of

all genes in thousands of single cells.

4.1 Technical details
All MMD-ResNets were trained using RMSprop (Tieleman and

Hinton, 2012), using the Keras default hyper-parameter setting;

a penalty of 0.01 on the ‘2 norm of the network weights was added

to the loss for regularization. We used mini-batches of size 1000

from both the source and target samples. A subset 10% of the train-

ing data was held out for validation, to determine when to stop the

training.

Any fixed scale makes a Gaussian kernel sensitive to similarities

in a certain range; to increase the sensitivity of our kernel to a wider

range, the kernel we used is a sum of three Gaussian kernels with

different scales

kðx; yÞ ¼
X

i
exp

jjx� yjj2

r2
i

 !
:

We chose the ris to be m
2 ;m;2m, where m is the median of the aver-

age distance between a point in the target sample to its nearest 25

neighbors, a popular practice in kernel-based methods.

4.2 Calibration of CyTOF data
Mass cytometry uses a set of antibodies, each of which is conjugated

to a unique heavy ion and binds to a different cellular protein. Cells

are then individually nebulized and subjected to mass spectrometry.

Protein abundance is indirectly observed from the signal intensity at

each protein’s associated ions’ mass to charge ratio. Multiple speci-

mens can be measured in the same batch by using barcoding with

additional ions to record the origin of each specimen (Spitzer and

Nolan, 2016). A CyTOF batch contains measurements of numerous

cells from a few specimens, and each batch is affected by systematic

errors (Finck et al., 2013).Fig. 2. A typical ResNet block
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4.2.1 Data

Our calibration experiments were performed on data collected at

Yale New Haven Hospital; Peripheral Blood Mononuclear Cells

(PBMCs) were collected from two MS patients at baseline and 90

days after Gilenya treatment and cryopreserved. At the end of the

study, PBMC were thawed in two batches (on two different days)

and incubated with or without PMA þ ionomycin (using a robotic

platform). PMA/ionomycin stimulated and unstimulated samples

were barcoded using Cell-ID (Fluidigm), then pooled and labeled for

different markers with mass cytometry antibodies and analyzed on

CyTOF III Helios. Here we analyzed a subset of eight unstimulated

samples: 2 patients � 2 conditions � 2 days. From this collection,

we assembled four source-target pairs, where for each patient and

biological condition, the sample from day 1 was considered as

source and the one from day 2 as target. All samples were of dimen-

sion d ¼ 25 and contained 1800–5000 cells. A full specification of

the markers is given in Supplementary Section S1

4.2.2 Pre-processing

All samples were manually filtered by a human expert to remove

debris and dead cells. Log transformation, a standard practice for

CyTOF, was applied to the data. In addition, a bead-normalization

procedure was applied to the data; this is a current practice for nor-

malizing CyTOF data (Finck et al., 2013). Yet, our results demon-

strate that the samples clearly differ in distribution, despite the fact

that they were normalized.

A typical CyTOF sample contains large proportions of zero val-

ues (up to 40% sometimes) which occur due to instabilities of the

CyTOF instrument and usually do not reflect biological phenom-

enon. As leaving the zero values in place might incur difficulties to

calibrate the data, a cleaning procedure has to be carried out. In our

experiments, we collected the cells with non or very few zero values

and used them to train a denoising autoencoder (DAE; Vincent

et al., 2008). Specifically, the DAE was trained to reconstruct clean

cells x from noisy inputs ~x, where ~x was obtained from x by multi-

plying each entry of x by an independent Bernoulli random variable

with parameter ¼ 0.8. The DAE contained two hidden layers, each

of 25 ReLU units; the output units were linear. As with the MMD-

ResNets, the DAEs were also trained using RMSprop, and ‘2 penal-

ization of the weights was added to their loss. Once the DAE was

trained, we passed the source and target samples through it, and

used their reconstructions, which did not contain zeros, for the cali-

bration. In all our CyTOF experiments, source and target refer to

the denoised version of these samples. Lastly, as a standard practice,

in each of the experiments the input to the net (i.e. the source sam-

ple) was standardized to have zero mean and unit variance in each

dimension. The parameters of the standardization were then also

applied to the target sample.

4.2.3 CyTOF calibration

We trained a MMD-ResNet on each of the four source-target pairs.

All nets had identical architecture, consisting of three blocks, where

each block is as in Figure 2. Each of the weight matrices was of size

25 � 25. The net weights were initialized by sampling from a Nð0;
10�4Þ distribution. The projection of the target and source data onto

the first two PCs of the target sample in a representative source-target

pair is shown in Figure 1. The plots of the remaining three pairs are

presented in Supplementary Figure S7. In the left plot, it is apparent

that before calibration, the source sample (red) differs in distribution

from the target sample (blue). After calibration (right plot), the gap

between the source and the target distributions decreases significantly.

The MMD between the source and target before and after calibration

in each of the four pairs is shown in Table 1. In addition, we also

report the MMD obtained using a multi-layer perceptron (MLP)

MMD-net with a similar architecture to the ResNet, except without

shortcut connections. The MLP was initialized in a standard fashion

(Glorot and Bengio, 2010). A corresponding table, where the samples

from day 2 are used as source and from day 1 as target is provided in

Supplementary Section S2. As can be seen, the calibrated data are sig-

nificantly closer to the target data than the original source data. The

ResNet achieves similar performance to the MLP on two pairs and

outperforms the MLP on the other two. In Section 4.2.4, we will

show that ResNet architecture is in fact a crucial element in our

approach, for a more important reason.

On a per-marker level, Figure 3 shows the empirical cumulative

distribution functions of the first three markers in the source sample

before and after the calibration, in comparison to the target sample.

The plots for the next three markers are shown in Supplementary

Figure S8. In all cases, as well as on the remaining markers that are

not shown here, the calibrated source curves are substantially closer

to the target than the curves before calibration.

4.2.4 Biological validation and the importance of shortcut

connections

To biologically assess the quality of the calibration and further justify

our choice of ResNet architecture, we inspect the effect of calibration

not only at a global level across all types of cell sub-populations, but

also zoom in to a specific cell sub-population. Specifically, we focus

here on CD8 þ T-cells, also known as Killer T-cells, in the 2D space

of the markers CD28 and GzB. In each sample, we identified the CD8

þ T-cells sub-population based on manual gating, performed by a

human expert. Figure 4 shows the CD8 þ T-cells of the source and

target samples from the baseline samples of patient 2 (pa.2 base.),

before calibration, after calibration using a ResNet and after calibra-

tion using a similar net without shortcut connections (MLP) (The

plots for the remaining three source-target pairs are shown in

Supplementary Fig. S9.). As can be seen, when the calibration is per-

formed by a net without shortcut connections, the CD8 þ T-cells sub-

population is not mapped to the same region as its target sample

counterpart. However, with ResNet it is mapped appropriately.

Observe that in Table 1, for this patient, the MMD score

between the target sample and the ResNet-calibrated source sample

of this patient is very similar to the MMD score between the target

sample and the MLP-calibrated source sample. We therefore see

that in order to achieve good calibration, it does not suffice that the

Table 1. CyTOF calibration experiment: MMD values between ran-

dom batches of size 1000 from the source and target samples,

before and after calibration on each of the four source-target pairs

(patient1-baseline, patient2-baseline, patient1-treatment, patient2-

treatment)

Method\pair pa.1 base. pa.2 base. pa.1 treat. pa.2 treat.

no calibration 0.62 0.56 0.59 0.65

MLP calibration 0.20 0.16 0.28 0.22

ResNet calibration 0.19 0.15 0.20 0.18

MMD(target,target) 0.12 0.12 0.12 0.13

Note: The MMD between two random batches of the target sample is pro-

vided as reference in the bottom row. The calibrated data is significantly

closer in MMD to the target sample. The presented values are averages, based

on sampling of five random subsets of size 1000; all standard deviations were

at most 0.01.

2542 U.Shaham et al.

Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;&hx00D7;&hx2009;
Deleted Text: &hx2009;&hx00D7;&hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: s
Deleted Text: )
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: ,
Deleted Text: &hx2009;
Deleted Text: &hx00D7;&hx2009;
Deleted Text: is
Deleted Text: V
Deleted Text: I
Deleted Text: S
Deleted Text: C
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: &hx2009;


calibrated source sample will be close in MMD to the target sample.

It is also crucial that the calibration map will be close to the identity.

Nets without shortcut connections can clearly compute maps which

are close to the identity. However, when trained to minimize MMD,

the resulting map is not necessarily close to the identity, as there

might be different maps that yield low MMD, despite being far from

the identity, and are easier to reach from random initialization by

optimization. Therefore, to obtain a map that is close to the identity,

ResNet is a more appropriate tool, if not crucial, comparing to nets

without shortcut connections.

4.2.5 Comparison to linear methods

In this section, we compare the quality of calibration of our MMD-

ResNet to three popular techniques for removal of batch effects.

The simplest and most common (Nygaard et al., 2016) adjustment

is zero centering, i.e. substracting from any value the global mean of

its batch; see, for example the batchadjust command in the R pack-

age PAMR (Hastie et al., 2015). The first linear method that we con-

sider here is calibration by matching each markerng mean and

variance in the source sample to the corresponding values in target

sample. The second common practice is to obtain the principal com-

ponents of the data, and remove the components that are most cor-

related with the batch index (Liu and Markatou, 2016). The third

technique is Combat (Johnson et al., 2007), a standard tool for

batch effect removal, mostly in gene expression data. Combat per-

forms linear adjustments, where the corrections are based on

Bayesian estimation. We used the Combat implementation of the R

package SVA (Leek et al., 2012).

Table 2 compares the performances of our approach and the

three approaches mentioned earlier in terms of MMD scores. As can

be seen, the MMD-ResNet achieves better MMD than the ones

obtained by the other methods.

In addition, we also compared the methods using Kolmogorov-

Smirnov test for the marginal distribution of each marker. Figure 5

shows histograms of the 25 p-values of the test on the treatment

samples of patient 2 (pa.2 treat), comparing the calibrated data of

each method to the corresponding target distribution. The greater

P-values of the MMD-ResNet relative to the other calibration meth-

ods indicate a superiority in removing batch effects.

4.3 Calibration of scRNA-seq data
Drop-seq (Macosko et al., 2015) is a novel technique for simultane-

ous measurement of single-cell mRNA expression levels of all genes

Table 2. CyTOF calibration: comparison of calibration using (i)

matching mean and variance of each marker, (ii) PCA, (iii) Combat

and (iv) MMD-ResNet

Method\pair pa.1 base. pa.2 base. pa.1 treat. pa.2 treat.

mean, variance 0.27 6 0.02 0.26 6 0.01 0.29 6 0.01 0.29 6 0.02

PCA 0.40 6 0.02 0.40 6 0.01 0.36 6 0.01 0.36 6 0.01

Combat 0.27 6 0.01 0.25 6 0.01 0.29 6 0.01 0.29 6 0.01

MMD-ResNet 0.19 6 0.01 0.15 6 0.01 0.20 6 0.01 0.18 6 0.01

Note: The table entries are average MMD between the target sample and

the calibrated source sample, based on five random subsets of size 1000.

Fig. 4. Calibration of CyTOF data: CD8 þ T-cells cells (red) and target (blue) samples in the (CD28, GzB) plane. Left: before calibration. Center: calibration using

MLP. Right, calibration using ResNet

Fig. 3. Quality of calibration in terms of the marginal distribution of each marker. Empirical cumulative distribution functions of the first three markers in the

CyTOF calibration experiment. In each plot the full, dashed and dotted curves corresponds to the target, source and calibrated source samples, respectively.

In each marker the full and dotted curves are substantially closer than the full and dashed curves
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of numerous individual cells. Unlike traditional single cell sequenc-

ing methods, which can only sequence up to hundreds or a few thou-

sands of cells (Picelli et al., 2013), (Jaitin et al., 2014), Drop-seq

enables researchers to analyze many thousands of cells in parallel,

thus offers a better understanding of complex cell types of cellular

states.

However, even with several thousands of cells (�5000) in each

run, only less than half of the cells typically contain enough tran-

scribed genes, that can be used for statistical analysis. As the number

of cells in a single run is not sufficient for studying very complicated

tissues, one needs to perform multiple runs, in several batches, so

that the cumulative number of cells is a good representation of the

distribution of cell populations. This process may create batch

effects, which need to be removed.

In Shekhar et al. (2016), seven replicates from two batches

were sequenced to study bipolar cells of mouse retina. Applying

their approach to clean and filter the data, we obtained a dataset

of 13 166 genes, each expressed in more than 30 cells and has a

total transcript count of more than 60, and 27 499 cells, each of

which has more than 500 expressed genes. Data were then normal-

ized such that counts in each cell sum to 10 000, followed by a log

transform of (count þ 1). Shekhar et al. (2016) estimated that

most of the signal is captured by the leading 37 principal compo-

nents and used them for downstream analysis. We therefore pro-

jected the 13 166 dimensional data onto the subspace of the

leading 37 principal components and used this reduced data for

our calibration experiment.

We arbitrarily chose batch 1 to be the target and the one from

batch 2 to be the source, and used them to train a MMD-ResNet.

The net had three blocks, where each block is as in Figure 2. In each

block, the lower weight matrix was of size 37 � 50 and the upper

one was of size 50 � 37. The net weights were initialized by sam-

pling from a Nð0;10�4Þ distribution. t-SNE plots of the data before

and after calibration are presented in the top part of Figure 6, which

shows that after calibration, clusters from the source batches are

mapped onto their target batch counterparts.

Table 3 shows the MMD distance between the target and the

source, calibrated by MMD-ResNet, as well as the MMD distances

between the target and the source, calibrated by each of the three

linear calibration methods mentioned in Section 4.2.5. Combat and

the mean-variance matching were applied on the full set of 13 166

genes, after normalization as in (Shekhar et al., 2016), rather than

on the projection of the data onto the leading 37 principal compo-

nents, which was the input to the MMD-ResNet on this dataset. As

can be seen, MMD-ResNet outperforms all other methods in terms

of MMD.

Fig. 6. Calibration of scRNA-seq. Top: t-SNE plots before (left) and after (right) calibration using MMD-ResNet. Bottom: Calibration of cells with high expression of

Prkca. t-SNE plots before calibration (left), after calibration using Combat (middle) and MMD-ResNet (right)

Fig. 5. Histograms of the 25 P-values of Kolmogorov-Smirnov tests, compar-

ing the distributions of the calibrated data with the target distribution of each

of the 25 markers
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To further assess the quality of calibration, and explore how

well our approach preserves the underlying biological patterns in the

data, we examine the sub-population of cells with high log-

transformed expression values (�3) of the Prkca marker (which

characterizes the cell sub-population of the large cluster in the top

part of Fig. 6). The bottom part of Fig. 6) shows this sub-population

before and after calibration, as well as after calibration using

Combat. Visually, in this example, MMD-ResNet performs better

calibration than Combat.

5 Related work

Leek et al. (2010) thoroughly discuss the importance of tackling

batch effects and review several existing approaches for doing so.

Bead normalization (Finck et al., 2013) is a specific normaliza-

tion procedure for CyTOF. As we observed in Section 4, two

CyTOF samples may significantly differ in distribution even after

Bead normalization. Warping (Hahne et al., 2010) is an approach

for calibration of cytometry data where for each marker, the peaks

of the marginal distribution in the source sample are (possibly non-

linearly) shifted to match the peaks of the corresponding marginal

distribution in the target sample. We argue that warping can per-

haps be performed by training MMD-ResNet for each single

marker. The advantage of MMD-ResNet over a warping is that the

former is multivariate, and can take into account dependencies,

while the latter assumes that the joint distributions are products of

their marginals.

Surrogate variable Analysis (Leek and Storey, 2007) is a popular

approach for batch effect adjustment, primarily in gene expression

data. However, it is designed for supervised scenarios where labels

representing the phenotype of each gene expression profile are

provided hence it is not directly applicable to our case, which is

purely unsupervised.

MMD was used as a loss criterion for artificial neural networks

in (Dziugaite et al., 2015; Li et al., 2015), where the goal was to

learn a generative model that can transform standard input distribu-

tions (e.g. white noise) to a target distribution. To the best of our

knowledge, MMD nets have not been applied to the problem of

removal of batch effects, which is considered here.

6 Conclusions and future research

We presented a novel deep learning approach for non-linear removal

of batch effects, based on residual networks, to match the distribu-

tions of source and target samples. Our approach is general and can

be applied to various data modalities. We applied our approach to

CyTOF and scRNA-seq and demonstrated impressive performance.

To the best of our knowledge, such a performance on CyTOF data

was never reported. To justify our choice of residual nets, we

showed that equivalent nets that lack the shortcut connections may

distort the biological conditions manifested in the samples, while

residual nets preserve them.

We are currently developing applications of MMD-ResNets to

perform calibration in scenarios where multiple batches are present,

each batch contains multiple samples and all batches contain a refer-

ence sample. The idea is to perform calibration of all samples by train-

ing MMD-ResNets only on the reference samples. We note that a

reference sample should be a pool from a representative population

similarly to control in Genome Wide Association Studies. Success in

such a task will imply that the MMD-ResNets overcome the batch

effects (i.e. the machine-dependent variation), without distorting the

biological properties of each sample. To the best of our knowledge,

such application is not performed elsewhere. It is based on an appeal-

ing property of using neural nets for calibration, which is the fact that

the nets define a map that can be later applied to new data.

Last, an intensively growing number of general deep learning tech-

niques, operating on raw data, outperform traditional algorithms tail-

ored for specific data types and involving domain knowledge and

massive pre-processing. In the same way, we find our proposed

approach and experimental results very promising and hope that they

open new directions for removing batch effects in biological datasets.

For example, recent proposed experimental approaches to standard-

ization (Kleinsteuber et al., 2016), should provide an excellent source

for application of MMD-ResNet for calibration.
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