
Sequence analysis

A novel data structure to support ultra-fast

taxonomic classification of metagenomic

sequences with k-mer signatures

Xinan Liu1,†, Ye Yu1,†, Jinpeng Liu2, Corrine F. Elliott1, Chen Qian3 and

Jinze Liu1,*

1Department of Computer Science and 2Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer

Center, University of Kentucky, Lexington, KY, USA and 3Department of Computer Engineering, UC Santa Cruz,

Santa Cruz, CA, USA

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: Cenk Sahinalp

Received on April 7, 2017; revised on June 16, 2017; editorial decision on June 29, 2017; accepted on July 3, 2017

Abstract

Motivation: Metagenomic read classification is a critical step in the identification and quantification

of microbial species sampled by high-throughput sequencing. Although many algorithms have

been developed to date, they suffer significant memory and/or computational costs. Due to the

growing popularity of metagenomic data in both basic science and clinical applications, as well as

the increasing volume of data being generated, efficient and accurate algorithms are in high

demand.

Results: We introduce MetaOthello, a probabilistic hashing classifier for metagenomic sequencing

reads. The algorithm employs a novel data structure, called l-Othello, to support efficient querying

of a taxon using its k-mer signatures. MetaOthello is an order-of-magnitude faster than the current

state-of-the-art algorithms Kraken and Clark, and requires only one-third of the RAM. In compari-

son to Kaiju, a metagenomic classification tool using protein sequences instead of genomic se-

quences, MetaOthello is three times faster and exhibits 20–30% higher classification sensitivity. We

report comparative analyses of both scalability and accuracy using a number of simulated and em-

pirical datasets.

Availability and implementation: MetaOthello is a stand-alone program implemented in Cþþ. The

current version (1.0) is accessible via https://doi.org/10.5281/zenodo.808941.

Contact: liuj@cs.uky.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Metagenomics is the study of genomic content obtained in bulk

from an environment of interest, such as the human body

(Huttenhower and Human Microbiome Project Consortium, 2012),

seawater (Venter et al., 2004), or acidic mine drainage (Tyson et al.,

2004). Metagenomics studies often generate tens of millions of

sequencing reads in order to capture the presence of microbial

organisms and quantify their relative abundances, rendering the

classification and analysis of these data a logistical challenge.

One of the major computational challenges in the analysis of

metagenomic data is the classification of each sequencing read into

the most-specific biological taxon to which sequence conservation

supports its assignment. Specifically, a read is classified as belonging

to a taxon if it has high sequence similarity with the reference

VC The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 171

Bioinformatics, 34(1), 2018, 171–178

doi: 10.1093/bioinformatics/btx432

Advance Access Publication Date: 7 July 2017

Original Paper

https://doi.org/10.5281/zenodo.808941
https://academic.oup.com/

genomes collected for that taxon, a process made possible by the

large deposits of reference sequences collected in recent years for a

variety of microbial species. In 2014 alone, more than 10 000

sequence records were newly added to the NCBI RefSeq data-

base thanks to the accessibility of high-throughput sequencing

technology.

Existing classification methods can be divided into two broad

categories: alignment-based and alignment-free. The former ap-

proach, implemented most popularly as BLAST (Altschul et al.,

1990), assigns each read to the taxon that affords the best alignment

with its reference genomes. Several methods, including MEGAN

(Huson et al., 2007), PhymmBL (Brady and Salzberg, 2009) and

NBC (Rosen et al., 2011), apply additional machine-learning tech-

niques to BLAST results to increase classification accuracy. These

methods are often slower than BLAST alone, rendering them com-

putationally prohibitive for large-scale analysis of many millions of

short reads. However, the recent development of Centrifuge (Kim

et al., 2016) has significantly improved the scalability of the

alignment-based algorithm using FM-index. Besides using genomic

sequences as reference, the recently published tool Kaiju (Menzel

and Krogh, 2015) performs alignments towards protein sequences,

achieving faster classification speed than existing tools.

The other line of work, including but not limited to LMAT

(Ames et al., 2013), Kraken (Wood and Salzberg, 2014) and Clark

(Ounit et al., 2015), classifies a read using exact k-mer matches be-

tween the read and the collection of reference sequences belonging

to the target taxon, thereby avoiding inefficient base-by-base align-

ment while maintaining a sensitivity and specificity comparable to

the alignment-based approach. This approach is generally faster

than alignment-based methods and allows for greater flexibility in

reference material because it requires only the collection of k-mers

extracted from reference sequences belonging to each taxon. Thus

k-mers extracted from DNA or RNA sequencing data can be

included as reference material without being assembled, increasing

the sensitivity of the algorithm in capturing natural variants that are

often missed using reference genomes alone.

The above alignment-free algorithms rely on the use of indexing

structures for k-mer matching. For example, Kraken indexes its lex-

icographically sorted k-mer database using a minimizer offset array,

while Clark uses a hash table to store the mapping between a k-mer

and its classification information. Both Kraken and Clark require

computers with large memory to support the construction of their

indexing structures (at least 120 GB RAM) and the classification of

reads (at least 70 GB RAM) to achieve optimal classification accu-

racy. Although there exist variations on both algorithms requiring

smaller memory footprints, they often afford significantly lower sen-

sitivity or slower execution speed compared to the full version. For

this reason, the ever-increasing amount of sequencing and reference-

genome data call for tools with better scalability in both memory

and computation.

In this paper, we present a new algorithm, dubbed MetaOthello,

for taxonomic classification of sequencing reads. Our algorithm

builds upon taxon-specific k-mer signatures to support direct assign-

ment to any level in the taxonomy. It employs a novel data structure,

l-Othello, to support ultra-fast k-mer classification, achieving at

least an order-of-magnitude improvement in speed over the state-of-

the-art methods, Kraken and Clark, and [runs] three times faster

than Kaiju. In the meantime, MetaOthello also substantially reduces

the memory footprint, typically requiring only one-third [the mem-

ory] of the aforementioned methods. This modest memory require-

ment allows our algorithm to run on typical lab servers with 32 GB

RAM, rendering it more accessible to biological researchers than

those with memory requirements achievable only by supercom-

puters. Additionally, our algorithm is capable of conducting hier-

archical top-down taxonomic classification and delivers

performance competitive to, if not better than, other algorithms in

both sensitivity and specificity as validated by benchmarking on a

variety of datasets.

2 Algorithms

2.1 k-mer taxon signatures
A k-mer is a length k subsequence of genomic sequences; for any

sequence of length L, there exist a maximum of L� kþ 1 possible

k-mers. Metagenomic reference material consists of one or more

complete reference genomes belonging to an organism. Increasingly

sophisticated sequencing techniques have permitted discovery of dis-

tinct reference genomes for a single species of organism, thereby

capturing genomic variations that are often important to the func-

tionality of the microbial species. The number of genomes (whether

draft or complete) available as metagenomic reference material in-

creases with each new discovery. If we consider each dataset as a

collection of k-mers, a given taxon can be described by the set of

k-mers present in the reference sequences belonging to its taxonomic

subtree. The problem of classifying a metagenomic read thus simpli-

fies to the identification of the taxon that best matches the set of

k-mers associated with the target read. When k is sufficiently large

(e.g. kP20), the majority of k-mers are unique to the species

carrying them. These species-specific k-mers may serve as signa-

tures, directly implicating the appropriate taxonomic classification.

However, a significant proportion of k-mers is present in multiple

species, making them unique only to higher-ranking taxa. In this

paper, we formalize the taxonomic specificity of a k-mer as the sig-

nature of a taxon: A k-mer is considered to be a signature of a taxon

if (i) the k-mer does not appear in any genomic references belonging

to ancestors or siblings of the target taxon, but only to sequences

belonging to the taxon’s subtree, and (ii) the k-mer is not a signa-

ture of any lower-ranked taxon in the subtree. Equivalently, the

taxon evincing a k-mer signature is the lowest common ancestor

(LCA) of all species in the taxonomy whose reference genomes con-

tain that k-mer (Ames et al., 2013; Tu et al., 2014).

In this way, as illustrated in Figure 1A, the set of all k-mers pre-

sent in the genomic references of a taxonomy can be divided into

disjoint collections, each of which contains the set of signature

k-mers belonging to a single node in the taxonomy tree. Formally,

let S be the set of all k-mers present in genomic references annotated

by the taxonomy and let T¼f1; 2; . . . ; jTjg be the taxa (nodes) pre-

sent in the taxonomy. Then S can be divided into jTj disjoint sets,

S ¼ fS0; S1; . . . ; St; . . . ; S jTj�1ð Þg, where for any node t 2 T, St corres-

ponds to the set of k-mer signatures belonging to taxon t. Thus,

there exists a mapping, g : S! T, such that g(s)¼ t if the k-mer,

s 2 S, is a signature of the taxon, t 2 T.

2.2 k-mer classification with l-Othello
The core data structure of MetaOthello is called l-Othello. l-Othello

is essentially a hashing classifier, first designed for fast-forwarding

information base queries (Yu et al., 2016). It is capable of classifying

a key to the appropriate member of a large collection of categories

with high efficiency in memory and speed. In our particular applica-

tion, l-Othello supports the mapping between a k-mer signature and

the corresponding taxon.

172 X.Liu et al.

Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: T
Deleted Text: S
Deleted Text: ,
Deleted Text: 1
Deleted Text: 2
Deleted Text: C
Deleted Text: O

2.2.1 Overview of the l-Othello data structure

l-Othello maintains a query function between any given k-mer and a

taxon: s : SU ! f0; 1; . . . ;2l � 1g, where SU is the universal set of

k-mers (i.e. SU ¼ rk; r ¼ fA;C;G;Tg). l is determined by the total

number of taxa T, where l ¼ d log2jTje. The algorithm satisfies the

following properties: (i) l-Othello is always able to retrieve the cor-

rect taxon ID corresponding to a valid k-mer signature; that is, for

any s 2 S; s sð Þ ¼ t, where t is the ID of the taxon to which s is spe-

cific. (ii) When provided an alien k-mer (i.e. a k-mer that does not

appear in the reference sequences), l-Othello is able to recognize the

alien with high success rate but may carry a slight risk of assigning it

to a random taxon in the taxonomy.

Figure 2 shows an example l-Othello structure. An l-Othello data

structure works by maintaining a pair of hash functions, hha; hbi and

two arrays of l-bit integers, A and B. ha : SU ! f0; 1; . . . ma � 1g
and hb : SU ! f0;1; . . . ;mb � 1g, where ma and mb are integer val-

ues determined during l-Othello construction. The relationships

among the elements of A and B can be viewed as a bipartite graph

G ¼ U;V;Eð Þ, where nodes in U and V correspond to elements in A

and B respectively. A query of k-mer s on the graph yields a node

index i ¼ ha sð Þ in U and a node index j ¼ hb sð Þ in V. The classifica-

tion of k-mer s is determined by the values at A ha sð Þ½ � and B hb sð Þ½ �,
via a � (bitwise XOR) operation:

s sð Þ ¼ A ha sð Þ½ �� B hb sð Þ½ �:

The bit-wise XOR operation of integers has the following property:

For any l-bit integer x, x � x ¼ 0; x � 0 ¼ x.

When l-Othello is properly constructed, s sð Þ ¼ t for any k-mer

specific to taxon t, i.e. s 2 St. The success of l-Othello relies on as-

signing bitmap values on both sides of the bipartite graph, where the

� operation between two nodes can directly generate the class mem-

bership. Setting the bitmap of two nodes with no initial values is

fairly simple and can be achieved in multiple ways. For example,

when l¼1 and assuming the membership of a key is 1, we can assign

the bit values of the two nodes ui and vj as either A i½ � ¼ 0;B j½ � ¼ 1

or A i½ � ¼ 1;B j½ � ¼ 0. However, if the value of one node has already

been determined by another key, then only the remaining value is

altered. For example, if A i½ � is already set as 0, given A i½ �� B j½ � ¼ 1,

then B j½ � ¼ 1. In the worst-case scenario, both A i½ � and B j½ � have al-

ready been determined by their involvement with other keys. This

situation creates a cycle in the graph when edge ui and vj is added,

possibly resulting in a conflict and failed assignment of a bit

value. When a conflict arises, we have two options: remove the k-mer

or select a different hash function. Theorem 1 shows that for a ran-

domly selected pair of hash functions hha;hbi, the probability of G

being cyclic is extremely low. In our experiment, fewer than 100 k-

mers among 6 billion were removed due to conflicts. Additionally, be-

cause multiple k-mers manifest in one read, losing one k-mer does not

significantly affect the accuracy of the algorithm, so we may omit k-

mers whose inclusion would cause a conflict.

THEOREM 1 Suppose ha, hb are randomly selected from a fam-

ily of random hash functions such that ha : S! f0; 1; . . . ;ma � 1g
and hb : S! f0; 1; . . . ;mb � 1g. Given a set of k-mers

S ¼ S0 [S1 [� � � S2l�1, let n ¼ jSj. Construct a bipartite graph

G ¼ U;V;Eð Þ, where an edge ui; vj

� �
2 E if and only if there is a

k-mer s 2 S such that ha sð Þ ¼ i and hb sð Þ ¼ j. Let v be the number of

cycles in G. Then v converges to a Poisson distribution with param-

eter k ¼ � 1
2 ln 1� c2
� �

, where c ¼ nffiffiffiffiffiffiffiffiffi
mamb
p .

The proof of Theorem 1 can be found in Supplementary Section S1.

We recommend the values of ma and mb as follows: Let ma and mb

A B

Fig. 1. Illustration of MetaOthello algorithm. (A) An example of taxonomy with reference sequences in the leaf nodes. 3-mers that are signatures to each taxon

are highlighted in bold font with different shades. (B) A two-step approach to read classification (Color version of this figure is available at Bioinformatics online.)

Fig. 2. An example of l-Othello with l¼3 classifying n¼ 5 k-mers. Left:

Bipartite graph G and corresponding bitmaps A and B. Each edge in G repre-

sents a k-mer. Hash functions ha and hb map the k-mer s into corresponding

locations in A and B. Right: Query of s returns sðsÞ ¼ ð001Þ2 ¼ 1

MetaOthello 173

Deleted Text: O
Deleted Text: ,
Deleted Text: 1
Deleted Text: 2
Deleted Text: ,
Deleted Text: ,

be powers of 2, where ma is the smallest value such that ma � 1:33n,

and mb is the smallest value such that mb � n. As a result, we have

2:67n � ma þmb < 4n and 0:14 < k < 0:41. In practice, we can

always expect the number of cycles in an l-Othello to be less than 2

with probability 97%, and smaller than 9 with probability higher than

99.999%.

2.2.2 Time and space complexity for l-Othello construction

and query

Construction Complexity: The construction of the l-Othello data

structure generally follows a depth-first traversal of the bipartite

graph; thus the complexity is O(n), where n is the total number of

k-mers. The memory complexity is O(ln), where l is the number of

bits to encode the number of categories. We can further reduce the

memory cost by dividing the set of k-mers into smaller groups

based on prefixes, commonly of length 3, corresponding to g¼64

groups. Each group contains approximately n
g k-mers. For each

group, we build an l-Othello, using time O n
g

� �
with memory

cost O n
g

� �
. In total, constructing g l-Othello structures still takes

O(n) time.

Query Complexity: For each query s sð Þ, l-Othello computes two

hash values ha sð Þ and hb sð Þ, and accesses two memory locations A

ha sð Þ½ � and B hb sð Þ½ �. The time complexity is O(1). This procedure

only includes a few basic arithmetic operations, resulting in an ex-

tremely fast execution speed.

2.2.3 On alien k-mers

An alien k-mer is defined as a k-mer that is not included during the

construction of an l-Othello. In the context of taxonomic classifi-

cation, they are those k-mers that are not included in any of the

reference materials. Alien k-mers often arise due to noise or gen-

omic sequences belonging to a novel species sampled by a sequence

read. We have designed two strategies to detect alien k-mers. First,

we would like to increase the randomness of assignments in the

case of alien k-mers; secondly, we may add another bit in the bit-

map (i.e. let l > log djTje), doubling the number of categories, so

that an alien k-mer has a much higher chance of being assigned to

alien categories (i.e., categories not used by existing taxon labels).

Here we show how we may leverage the randomness of alien

assignment to predict an alien k-mer within the l-Othello itself.

We first discuss the query result for l¼1, and then we extend it to

l-Othello. When l¼1, Othello classifies k-mers (s 2 S ¼ S0 [S1)

into S0 and S1. Each element in A or B is a 1-bit value. For a query

of an alien k-mer s0 62 S, l-Othello still returns a value s s0ð Þ 2 f0; 1g.
For alien keys, s s0ð Þ ¼ A ha s0ð Þ½ �� B hb s0ð Þ½ �. Let a0 and a1 be the

fraction of 0s and 1s in the bitmaps A respectively, i.e.

a0 ¼ jftjA t½ �¼0gj
ma

; a1 ¼ jftjA t½ �¼1gj
ma

. Similarly b0 and b1 are the fractions

in B. Suppose ha and hb are uniformly distributed random hash func-

tions, and s0 is an arbitrary k-mer in the universal set; then s s0ð Þ re-

turns 1 with probability p1 ¼ a0b1 þ a1b0. Similarly, s s0ð Þ returns 0

with probability p0 ¼ a0b0 þ a1b1.

For l-Othello, a similar property also holds. Let p(t) be the prob-

ability that the query of an alien k-mer returns exactly t. s s0ð Þ ¼ t in-

dicates A ha s0ð Þ½ �� B hb s0ð Þ½ � ¼ t. Note that ha and hb are uniform

random hash functions and are not correlated. Hence,

p tð Þ ¼ P s s0ð Þ ¼ tð Þ ¼
X2l�1

x¼0

axbx � t

where ax is the fraction of elements has value x in a and bx � t is the

fraction of elements has value x � t in B.

Given a particular l-Othello, we can always compute p(t) values

for all t ¼ 0; 1; . . . ;2l � 1 using time O 22l þ n
� �

. These p(t) values

are affected by the occurrence frequency of each l-bit integer,

namely ax and bx for all 0 � x < 2l. In some cases, these values are

not uniformly distributed, which may result in imbalance among

p(t). Under such circumstances, we can tune these values by flipping

the bitmaps of a connected component in the bipartite graph with-

out changing s sð Þ for s 2 S. In practice, we can always tune the val-

ues so that p(t) is of the same order of magnitude for all t, and all of

them are approximately 2�l. Two tuning approaches are described

in Supplementary Section S2.

We can also explicitly detect alien k-mers by by increasing l,

thus intentionally expanding the number of targeted categories,

where the majority of them are dummy (alien). Due to the random-

ness of class assignment in the presence of an alien, many alien

k-mers are likely to fall in these dummy categories, and are thus rec-

ognized as alien. Formally, if for some s�; s s�ð Þ � jTj; s� is an alien.

Thus, alien k-mers are recognized in this stage with probabilityP2l�1
x¼jTj p xð Þ � 2l�jTj

2l .

2.3 Taxonomic classification of sequencing reads
As illustrated in Figure 1B, given any sequencing read, our algorithm

iterates over each k-mer from the beginning of the read and, for

each k-mer, retrieves the taxon to which it is specific using

l-Othello. Taxonomic classification of the read is determined by

assembling the taxa for all k-mers in the read. The classification is

straightforward when all k-mers indicate the same taxon, but this is

not often the case. Disparate taxa are considered to be consistent if

they belong to the same path in the taxonomy, meaning that one as-

signment is the higher rank of the other. When these taxa belong to

different branches, they represent conflicting information. The issue

is further complicated by the possibility of false taxonomic informa-

tion returned from querying alien k-mers, where the k-mer in the

read does not appear in any of the reference sequences.

To tackle this challenge, we have designed a window-based clas-

sification approach. A window is defined as a sequence of consecu-

tive k-mers that are assigned to the same taxon of a given level. The

window-based approach guards against false-positive assignments

due to alien k-mers. Assuming that the taxon ID returned by an alien

k-mer is random, the chance of having two consecutive alien k-mers

return the same taxon ID is

X2l�1

t¼0

�
p tð Þ

�2

� 2�l:

This value is very small, regardless of k. Additionally, each window

corresponds to a maximum read subsequence that matches the refer-

ence sequences. Thus, the longer the window, the longer the subse-

quence match, and the less likely the match is random. In

comparison, other algorithms such as Kraken and Clark count the

total number of k-mer matches, regardless of their spatial distribu-

tion across the read.

If multiple taxon windows are available, MetaOthello scores

each of them using the summed squares of window sizes as in the

following formula; the taxon with the maximum score will be

selected:

Score tð Þ ¼
X

wt
i

� �2
;

where wt
i denotes the number of k-mers in the ith window classified

to taxon t.

174 X.Liu et al.

Deleted Text: S
Deleted Text: C
Deleted Text: O
Deleted Text: C
Deleted Text: Q
Deleted Text: A
Deleted Text: ,
Deleted Text: ,
Deleted Text: W
Deleted Text: C
Deleted Text: S
Deleted Text: R

A k-mer signature belonging to a taxon is also specific to its

higher-ranking taxa, so at higher taxonomic ranks, there exist more

k-mers to distinguish a taxon from its siblings. Thus, longer k-mer

windows and more-accurate classifications are expected at higher

taxonomic ranks. Under this assumption, a ‘top-down’ strategy is

adopted during read classification. Given a read sequence,

MetaOthello starts the classification at the top rank and continues

the classification down the ranks until there does not exist a suffi-

ciently large k-mer window supporting the level. Based on the k-mer

distribution in each taxon, MetaOthello establishes a threshold on

minimum window size when the classification on that taxon re-

quires. Theorem 2 shows that the minimum window-size threshold

can be precomputed for each taxon prior to read classification. The

minimum window size required for a taxon is determined by the

probability of an alien k-mer query on l-Othello returning a taxon

rooted in t and the acceptable false-positive rate. The larger the size

of the taxon subtree, the higher the probability that a random alien

k-mer may match to t and thus the longer the window required for

reliable classification. Additionally, a larger window size will be

required in order to lower the false-positive rate.

THEOREM 2. Given a user-defined false-positive rate k and the

total read number M, the minimum window-size threshold required

for a taxon t can be computed as logp tð Þ
k

1�kð ÞM, where pt denotes the

probability that an alien k-mer query on l-Othello returns a value in

the taxon subtree with root t.

The proof is presented in Supplementary Section S3. For ex-

ample, when t is a genus-level node, supposing l¼12, then

p tð Þ � 1þ 7ð Þ2�l ¼ 1
256. Given 10 million reads and suppose

k ¼ 0:001, then logp tð Þ
k

1�kð ÞM ¼ 3:42, and only windows larger than

three will be taken into consideration when determining the read

assignment.

3 Experimentation and evaluation

3.1 Classification accuracy and the relative abundance

of taxon-specific k-mers
Accurate classification of a read to a taxon is largely dependent

upon the presence of k-mer signatures. Thus the abundance of these

signature k-mers (i.e. the proportion of taxon-specific k-mers among

all k-mers present in the reference sequences for the taxon) becomes

an important indicator of the capability of our algorithm. Thus we

first investigate the correlation between classification accuracy and

the relative abundance of taxon-specific k-mers.

Classification accuracy is computed as the fraction of reads as-

signed correctly. Using a next-generation sequencing (NGS) read

simulator called ART (Huang et al., 2012), we simulated 10 000

reads for each of 2629 reference genomes in the NCBI RefSeq

bacterial genome database, for a total of 26 290 000 reads. The

database is available at ftp://ftp.ncbi.nih.gov/genomes/archive/old_

refseq/Bacteria/. Each read is paired-end and of length 100 bp with a

fragment size of 250 bp, generated using the default error profile for

the HiSeq platform. Figure 3 shows the read-classification accuracy

for each species as a function of species-specific k-mer proportion,

where read assignments were generated by the MetaOthello algo-

rithm using 20-mers or 31-mers, respectively. The scatter plot for ei-

ther k-mer size demonstrates that the vast majority of all species

manifest more than 50% 20-mers that are species-specific, and al-

most all species have 75% species-specific 31-mers. Although in gen-

eral more species-specific k-mers afford better classification

accuracy, these results suggest that the presence of 50% or more

species-specific k-mers affords suitably high classification accuracy,

thereby demonstrating the utility of k-mer signatures in classifying

metagenomic reads.

To investigate how the window-based approach improves

MetaOthello’s performance over the widely adopted count-based

approach as in Kraken and Clark, we implemented a count-based

version of MetaOthello, and compared its performance against that

of the window-based version executed on the same datasets. The re-

sults demonstrate the clear advantages of a window-based approach

over count-based, especially on assignment precision. This suggests

that the window-based approach is more effective at eliminating the

false positives caused by alien k-mers. Detailed results are reported

in Supplementary Section S5.

3.2 Comparison with state-of-the-art tools
We now assess the performance of MetaOthello in comparison to

three state-of-the-art tools: Kraken (version 0.10.5 beta), Clark (ver-

sion 1.2.3) and Kaiju (version 1.4.4). Besides the newly published

tool Kaiju, Kraken and Clark were chosen based on the recommen-

dation of a recent benchmarking paper (Lindgreen et al., 2016),

which evaluated 14 tools using six datasets and subsequently

declared Kraken and Clark the best performers over Genometa

(Davenport et al., 2012), GOTTCHA (Freitas et al., 2015), LMAT

(Ames et al., 2013), MEGAN (Huson et al., 2007, 2011),

MG-RAST (Meyer et al., 2008), the One Codex webserver, taxator-

tk (Dröge et al., 2015), MetaPhlAn (Segata et al., 2012), MetaPhyler

(Liu et al., 2010), mOTU (Sunagawa et al., 2013) and QIIME

(Caporaso et al., 2010). The comparison was benchmarked against

three publicly available datasets: HiSeq, MiSeq and SimBA5. The

same datasets have been used multiple times to evaluate a number of

metagenomic classification tools, including Kraken in previous stud-

ies (Wood and Salzberg, 2014). All tools were executed using the

same reference database (NCBI RefSeq as of October 1st, 2016),

and all other parameters follow the default settings.

3.2.1 Classification accuracy

We first compare classification accuracy. Three different k-mer

lengths (20-mer, 25-mer and 31-mer) are used to assess the per-

formance relationship with k-mer size for Kraken, Clark and

MetaOthello; Kaiju is not a k-mer-based algorithm. To facilitate the

comparison and to mimic the sequencing data generated by current

platforms, we discarded reads shorter than 36 bp and those whose

taxon is not included in the reference taxonomy.

Reads were classified by each algorithm at three taxonomic lev-

els: phylum, genus and species. MetaOthello, Kraken and Kaiju

were able to classify reads at the three levels simultaneously, while

Clark required three separate runs to conduct similar classifications.

Thus for Clark, results from these runs were merged for the purpose

of direct comparison. Precision and sensitivity were computed at

each of the three classification levels. Precision is defined as the ratio

between correctly assigned reads and the total number of reads in an

assignment; sensitivity is calculated as the fraction of total reads as-

signed correctly. F-score (i.e. the harmonic mean of precision and

sensitivity) was also calculated to quantify the balance between

these two metrics. Results of the comparison are shown in Table 1.

In general, longer k-mers enhance the precision of read classifica-

tion but decrease sensitivity, as observed in MetaOthello, Kraken

and Clark. Within each dataset, the overall winner (in bold) was the

one with highest F1-score when considering across all three k-mer

sizes. In phylum-level classification, MetaOthello outperforms the

other algorithms in all three datasets all using 20-mers. At both

genus and species levels, MetaOthello exhibits the best performance

MetaOthello 175

Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: E
Deleted Text: A
Deleted Text: R
Deleted Text: A
Deleted Text: T
Deleted Text: S
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
http://ftp://ftp.ncbi.nih.gov/genomes/archive/old_refseq/Bacteria/
http://ftp://ftp.ncbi.nih.gov/genomes/archive/old_refseq/Bacteria/
Deleted Text:
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: A
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,

on two out of the three datasets using either 25-mers or 20-mers.

Kraken performs the best in the remaining comparisons, followed

closely by MetaOthello in both cases. In general, Kaiju delivered

much lower (20–30%) sensitivity compared to the other three tools,

due to its lack of capability in classifying reads from non-protein

coding regions. We also ran Kaiju using two additional databases,

nr and proGenomes, as recommended in Kaiju’s manual. Although

higher sensitivities were achieved in some datasets at some taxo-

nomic levels, the overall accuracy is still considerably lower than the

other algorithms. Detailed results of the two additional runs are re-

ported in Supplementary Section S6.

3.2.2 Runtime and memory

Speed benchmarks were performed using the servers from Lipscomb

High-Performance Computing at the University of Kentucky. The

servers are equipped with Dell R820, Quad Intel E5-4640 8-core

(Sandy Bridge) @ 2.4 GHz and 512 GB/node of 1600 Mhz RAM.

Each algorithm was executed using eight threads and k-mer lengths

as specified previously; all other parameters follow the default set-

tings. The speed for each tool is presented in Figure 4. In general,

MetaOthello achieved the highest processing speed, clocking

roughly 1 billion bases per minute. This figure represents an order-

of-magnitude improvement over Kraken and Clark, the two most-

Fig. 3. Correlation between species-specific k-mer signatures and classification accuracy when k¼20 (A) and k¼31 (B). In each panel, the central figure depicts

the correlation between species-specific k-mer proportion and read-classification accuracy for all species; the top histogram shows the distribution of species as

a function of species-specific k-mer proportion, and the right histogram shows the distribution of classification accuracy for all species

Table 1. Accuracy of read taxonomic classification in terms of precision, sensitivity and F-score

Phylum Genus Species

Prec/Sens/F-score Prec/Sens/F-score Prec/Sens/F-score

20mer 98.4/95.0/.967 97.2/92.5/.948 82.0/69.4/.751

MetaOthello 25mer 99.4/92.2/.957 99.1/91.2/.950 84.2/69.1/.760

31mer 99.4/89.0/.939 99.3/88.2/.934 85.7/68.0/.758

20mer 97.8/94.8/.963 96.1/92.0/.940 80.2/69.2/.743

HiSeq Kraken 25mer 99.7/92.3/.959 99.1/91.4/.951 83.7/69.4/.759

31mer 99.7/88.3/.937 99.3/87.6/.931 85.4/67.6/.745

20mer 97.7/95.5/.966 95.1/92.6/.939 76.4/69.5/.728

Clark 25mer 99.7/92.1/.958 99.1/91.2/.950 83.5/69.2/.757

31mer 99.7/88.8/.940 99.3/88.1/.934 85.4/68.0/.757

Kaiju 99.4/68.7/.812 98.6/65.1/.785 89.2/34.7/.499

20mer 99.2/97.5/.983 96.2/92.2/.942 91.8/78.6/.846

MetaOthello 25mer 99.6/95.4/.975 97.4/91.4/.943 93.0/78.3/.850

31mer 99.6/92.9/.961 98.0/89.7/.937 93.8/77.2/.847

20mer 99.0/97.5/.983 95.8/92.2/.939 91.0/78.9/.845

MiSeq Kraken 25mer 99.8/95.1/.974 97.4/91.2/.942 92.7/78.3/.849

31mer 99.9/92.3/.960 98.0/89.3/.935 93.6/76.8/.844

20mer 98.8/97.8/.983 94.4/92.5/.934 86.9/78.8/.826

Clark 25mer 99.8/95.2/.975 97.1/91.5/.942 91.9/78.5/.847

31mer 99.9/92.7/.962 98.0/89.8/.937 93.4/77.3/.846

Kaiju 99.5/75.7/.860 98.5/68.0/.805 95.2/40.6/.570

20mer 99.9/99.7/.998 99.6/95.8/.977 99.3/84.2/.911

MetaOthello 25mer 99.9/98.2/.990 99.8/94.6/.971 99.5/83.1/.906

31mer 99.5/92.2/.957 99.5/88.7/.938 99.4/77.9/.873

20mer 99.8/99.5/.996 99.4/95.9/.976 98.8/84.6/.912

simBA5 Kraken 25mer 99.9/98.5/.992 99.8/95.0/.974 99.5/83.8/.909

31mer 99.9/94.2/.970 99.9/90.9/.952 99.7/80.0/.887

20mer 99.8/99.6/.997 98.5/95.8/.971 94.4/84.2/.890

Clark 25mer 99.9/98.4/.992 99.8/94.8/.973 99.4/83.4/.907

31mer 99.9/93.5/.966 99.9/90.2/.948 99.7/79.2/.883

Kaiju 99.6/75.6/.860 97.9/65.9/.788 96.5/46.7/.630

176 X.Liu et al.

Deleted Text: &hx0025; to
Deleted Text: M

rapid state-of-the-art tools within the category of alignment-free

classifiers. Impressively, the high speed does not entail a compromise

in the memory requirement. MetaOthello only consumes about one-

third (peak memory 27 GB) of the RAM required by Kraken and

Clark (peak memory 73 GB).

The construction of the MetaOthello index from the NCBI

RefSeq bacterial genome sequence database requires roughly 6 hours

with peak memory usage up to 40 GB using 16 threads. In contrast,

Kraken and Clark used 164 GB and 120 GB respectively for index

construction, but both finished under 4 hours with 16 threads.

In summary, MetaOthello achieves a significant speedup with

much smaller memory footprint in comparison with Kraken and

Clark while delivering competitive or even superior performance in

classification accuracy. While Kaiju is relatively scalable, it suffers

from low sensitivity in classification.

3.3 Metagenomic classification of real datasets
3.3.1 Human Microbiome Project data

To assess the performance on real datasets of MetaOthello relative

to Kraken, Clark and Kaiju, the three algorithms were run on

sequencing data from three saliva samples (NCBI SRA accessions:

SRS015055, SRS019120 and SRS014468) used in the Human

Microbiome Project (Human and Project, 2012). We ran the three

k-mer-based algorithms at each of three different k-mer length set-

tings (20-mer, 25-mer and 31-mer) as with the simulated data. The

three samples were analyzed separately, and the results were pooled

together to assess the relative abundances of species. The top five

most-abundant genera are presented in Table 2. The four tools re-

ported the same five most-abundant genera: Streptococcus,

Haemophilus, Prevotella, Veillonella and Neisserlia, all of which are

known to be associated with human saliva. Interestingly, although

the absolute abundance (i.e. the fraction of total reads assigned to a

given genus) varies with k-mer size, the relative abundances remain

stable except for Kaiju. The false-positive rate, however, cannot be

assessed in this case.

4 Conclusion and discussion

In this paper, we present MetaOthello, a novel metagenomic

sequencing read classifier. MetaOthello leverages a novel probabilis-

tic hashing structure, l-Othello, to conduct taxonomic classification

using taxon-specific k-mer signatures. The algorithm delivers ultra-

fast and memory-efficient solutions to k-mer-based taxonomic clas-

sification. Within the set of alignment-free approaches, MetaOthello

achieves an order-of-magnitude improvement in classification speed

relative to the fastest algorithms, Kraken and Clark, while reducing

the RAM requirement from 73 GB to 27 GB. MetaOthello exhibits

high sensitivity and precision competitive with Kraken and Clark,

and in most cases achieves a better balance between the sensitivity

and specificity (as quantified by F-score). It is also three times faster

than the protein alignment-based method Kaiju and delivers much

higher classification accuracy.

Besides the application of metagenomics, we also expect that our

data structure l-Othello may benefit other k-mer-based sequencing-

matching methods with its advantages in memory and speed efficiency.

Acknowledgements

This work was previously submitted to and accepted by The Seventh RECOMB

Satellite Workshop on Massively Parallel Sequencing (RECOMB-Seq 2017).

We thank the reviewers for their valuable comments and suggestions.

Funding

This work was supported by National Science Foundation [CAREER

award grant number 1054631 to J.L.; grant CNS-1701681 to C.Q.]; and

the National Institutes of Health [grant number P30CA177558 and

5R01HG006272-03 to J.L.].

Conflict of Interest: none declared.

References

Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215,

403–410.

Ames,S.K. et al. (2013) Scalable metagenomic taxonomy classification using a

reference genome database. Bioinformatics (Oxford, England), 29,

2253–2260.

Brady,A. and Salzberg,S.L. (2009) Phymm and PhymmBL: metagenomic

phylogenetic classification with interpolated Markov models. Nat.

Methods, 6, 673–676.

Caporaso,J.G. et al. (2010) QIIME allows analysis of high-throughput com-

munity sequencing data. Nat. Methods, 7, 335–336.

Fig. 4. Performance comparison in terms of billion bases processed per

minute using different k-mer lengths

Table 2. The proportion of reads classified into the top-five genera by each algorithm using different k-mer lengths

MetaOthello Kraken Clark Kaiju

k-mer length 20 25 31 20 25 31 20 25 31

Streptococcus 14.32 13.24 12.12 14.58 13.29 12.18 14.25 13.15 12.02 10.05

Haemophilus 6.999 6.626 5.938 7.089 7.134 6.005 6.952 6.411 5.894 4.773

Prevotella 5.621 4.893 4.226 5.774 5.012 4.270 5.590 4.567 4.193 7.653

Veillonella 3.321 2.668 1.924 3.441 2.931 1.976 3.231 2.587 1.891 5.168

Neisseria 2.215 1.860 1.525 2.279 1.941 1.552 2.213 1.779 1.510 3.113

MetaOthello 177

Deleted Text: C
Deleted Text: R
Deleted Text: D
Deleted Text: M
Deleted Text: P
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: D

Davenport,C.F. et al. (2012) Genometa – a fast and accurate classifier for short

metagenomic shotgun reads. PLoS ONE, 7, e41224.

Dröge,J. et al. (2015) Taxator-tk: Precise taxonomic assignment of metage-

nomes by fast approximation of evolutionary neighborhoods.

Bioinformatics, 31, 817–824.

Freitas,T.A.K. et al. (2015) Accurate read-based metagenome characterization

using a hierarchical suite of unique signatures. Nucleic Acids Res., gkv180.

Huang,W. et al. (2012) ART: A next-generation sequencing read simulator.

Bioinformatics, 28, 593–594.

Human,T. and Project,M. (2012) A framework for human microbiome re-

search. Nature, 486, 215–221.

Huson,D.H. et al. (2007) MEGAN analysis of metagenomic data. Genome

Res., 17, 377–386.

Huson,D.H. et al. (2011) Integrative analysis of environmental sequences

using MEGAN4. Genome Res., 21, 1552–1560.

Huttenhower,C. and Human Microbiome Project Consortium (2012)

Structure, function and diversity of the healthy human microbiome. Nature,

486, 207–214.

Kim,D. et al. (2016) Centrifuge: rapid and sensitive classification of metage-

nomic sequences. bioRxiv, (054965).

Lindgreen,S. et al. (2016) An evaluation of the accuracy and speed of metage-

nome analysis tools. Sci. Rep., 6, 19233.

Liu,B. et al. (2010) MetaPhyler: Taxonomic profiling for metagenomic se-

quences. In: Proceedings – 2010 IEEE International Conference on

Bioinformatics and Biomedicine, BIBM 2010, pp. 95–100.

Menzel,P. and Krogh,A. (2015) Kaiju: fast and sensitive taxonomic classifica-

tion for metagenomics. bioRxiv, 7, 1–9.

Meyer,F. et al. (2008) The metagenomics RAST server a public resource for

the automatic phylogenetic and functional analysis of metagenomes. BMC

Bioinformatics, 9, 386.

Ounit,R. and Lonardi,S. (2016) Higher classification sensitivity of short meta-

genomic reads with CLARK-S. Bioinformatics, 32, 3823–3825.

Ounit,R. et al. (2015) CLARK: fast and accurate classification of metagenomic

and genomic sequences using discriminative k-mers. BMC Genomics, 16,

236.

Rosen,G.L. et al. (2011) NBC: the Naive Bayes Classification tool webserver

for taxonomic classification of metagenomic reads. Bioinformatics (Oxford,

England), 27, 127–129.

Segata,N. et al. (2012) Metagenomic microbial community profiling using

unique clade-specific marker genes. Nat. Methods, 9, 811–814.

Sunagawa,S. et al. (2013) Metagenomic species profiling using universal

phylogenetic marker genes. Nat. Methods, 10, 1196–1199.

Tu,Q. et al. (2014) Strain/species identification in metagenomes using

genome-specific markers. Nucleic Acids Res., 42, e67–e67.

Tyson,G.W. et al. (2004) Community structure and metabolism through re-

construction of microbial genomes from the environment. Nature, 428,

37–43.

Venter,J.C. et al. (2004) Environmental genome shotgun sequencing of the

Sargasso Sea. Science (New York, N.Y.), 304, 66–74.

Wood,D.E. and Salzberg,S.L. (2014) Kraken: ultrafast metagenomic sequence

classification using exact alignments. Genome Biol., 15, R46.

Yu,Y. et al. (2016) A Concise Forwarding Information Base for Scalable and

Fast Flat Name Switching. arXiv, (1608.05699).

178 X.Liu et al.

