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Abstract

Motivation: Neuroimaging genetics identifies the relationships between genetic variants (i.e., the

single nucleotide polymorphisms) and brain imaging data to reveal the associations from geno-

types to phenotypes. So far, most existing machine-learning approaches are widely used to detect

the effective associations between genetic variants and brain imaging data at one time-point.

However, those associations are based on static phenotypes and ignore the temporal dynamics of

the phenotypical changes. The phenotypes across multiple time-points may exhibit temporal pat-

terns that can be used to facilitate the understanding of the degenerative process. In this article, we

propose a novel temporally constrained group sparse canonical correlation analysis (TGSCCA)

framework to identify genetic associations with longitudinal phenotypic markers.

Results: The proposed TGSCCA method is able to capture the temporal changes in brain from lon-

gitudinal phenotypes by incorporating the fused penalty, which requires that the differences be-

tween two consecutive canonical weight vectors from adjacent time-points should be small. A new

efficient optimization algorithm is designed to solve the objective function. Furthermore, we dem-

onstrate the effectiveness of our algorithm on both synthetic and real data (i.e., the Alzheimer’s

Disease Neuroimaging Initiative cohort, including progressive mild cognitive impairment, stable

MCI and Normal Control participants). In comparison with conventional SCCA, our proposed

method can achieve strong associations and discover phenotypic biomarkers across multiple time-

points to guide disease-progressive interpretation.

Availability and implementation: The Matlab code is available at https://sourceforge.net/projects/

ibrain-cn/files/.
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1 Introduction

Integrating neuroimaging and molecular genetics technology hold

great promising to use brain imaging as quantitative phenotypes to

investigate the role of genetic variations. These imaging quantitative

traits (QTs) serve as intermediate phenotypes with rich information,

which bridge the gap between genetic factors and phenotypic out-

comes (Glahn et al., 2007; Gottesman and Gould, 2003; Hariri

et al., 2006) and may lead to a better understanding of the complex

biological mechanism underlying neurodegenerative diseases [e.g.,

mild cognitive impairment (MCI), the prodromal stage of

Alzheimer’s disease (AD)].

In prior imaging genetic studies, pairwise univariate analysis

strategies have been performed to identify the associations between

single nucleotide polymorphisms (SNPs) and neuroimaging QTs.

The most comprehensive studies focused on scanning the entire

brain and the entire genome (Shen, et al., 2010; Stein et al., 2010).

In recent studies, taking into account the inherent structure among

genotype or phenotype data, some researchers have developed gen-

eralized multivariate linear regression models (Hibar et al., 2011;

Kohannim et al., 2011, 2012; Vounou et al., 2010; Wang et al.,

2012a) and structured bi-multivariate models (Chi et al., 2013; Lin

et al., 2014; Yan et al., 2014) to identify multi-SNP-multi-QT asso-

ciations. Those methods have sufficient power to discover structured

phenotypic imaging markers associated with disease-relevant SNPs.

However, examining genetic influence on the longitudinal profiles

of imaging phenotype is still an under-explored topic in imaging

genetics. Specifically, a straight forward approach such as conven-

tional sparse canonical correlation analysis (SCCA) (Chi et al.,

2013; Witten et al., 2009; Witten and Tibshirani, 2009), which does

not take into account the valuable information conveyed by the lon-

gitudinal pattern of phenotypic input, is to perform multi-SNP-

multi-QT associations at one time-point. In fact, the phenotypes

across multiple time-points may exhibit temporal patterns that can

be used to describe the degenerative process. Some studies have

investigated on prediction of memory impairment and cognitive as-

sessments with longitudinal magnetic resonance imaging (MRI) data

(Jie et al., 2016; Wang et al., 2016).

So far, only a few machine-learning strategies have been pro-

posed to examine how the phenotypic changes are that affected by

SNPs. Recently, Wang et al. (2012b) proposed a novel task-corre-

lated longitudinal sparse regression model to study the association

between phenotypic imaging markers and the genotypes by taking

into account the temporal structure of the longitudinal imaging

data. More specifically, they used L21-norm for regression coeffi-

cient matrix to jointly select imaging markers that have common ef-

fects across all time-points. However, the task-correlated

longitudinal sparse regression model assumed that longitudinal

imaging markers were related to all candidate SNPs as a task-

correlated constraint, which might not hold in real applications.

More recently, Vounou et al. (2010) have proposed a two-step

framework based on sparse reduced-rank regression to solve the

imaging genetics problem for the genome-wide detection of markers

associated with voxel-wise longitudinal changes in brain (Vounou

et al., 2012). They first pre-selected the disease relevant voxel level

imaging phenotypes with high-classification performance between

AD and NC group by penalized linear discriminant analysis, and

then identified the SNPs associated with the multivariate imaging

phenotypes from the first step. This approach might be inadequate

to capture the dynamics of phenotypic trajectories and thus unable

to detect the underlying temporal patterns. Therefore, how to iden-

tify the longitudinal phenotypes across consecutive time-points

associated to the disease sensitive SNPs is still an important topic in

imaging genetic studies.

With these observations, the motivation of this study is to iden-

tify associations between risk genotypes and longitudinal pheno-

types, where we aim to design a powerful model to simultaneously

maximize progression-relevant imaging genetic associations and

capture the consecutive changes in brain between adjacent time-

points. Accordingly, as shown in Figure 1, we propose a novel tem-

porally constrained group sparse canonical correlation analysis

(TGSCCA) framework that incorporates the group sparsity con-

straint and fused penalty to identify the associations between genetic

factors and longitudinal phenotypes. In particular, it is promising to

find the consecutive patterns that are robust to noises or outliers via

considering both joint selection and the fused information in imag-

ing phenotypes from adjacent time-points.

In this study, to evaluate the effectiveness and efficiency of our

proposed method, we perform experiments on both synthetic and real

data. For real data, using the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) cohort (Mueller et al., 2005), we examine imaging

genetic associations between SNPs nearby the apolipoprotein E

(APOE) gene and region of interest (ROI) measures extracted from

longitudinal structural MRI. The empirical results show that our

method not only yields clearly improved association performance

under the metrics of correlation coefficient but also detects relevant

risk SNP loci and imaging ROI markers.

The rest of this article is organized as follows. Section 2 intro-

duces the TGSCCA method. The performances of the proposed

method are evaluated through both simulations and real data ana-

lysis in Section 3. The last section concludes the study.

2 Materials and methods

2.1 Sparse Canonical Correlation Analysis (SCCA)
We first describe relevant notations to present imaging genetic asso-

ciation analysis. We use lowercase letters to denote vectors,

and uppercase letters to denote the matrices. Let X ¼
½x1; . . . ; xn; . . . ; xN �T 2 RN�p be the SNP genotype data,

½y1; . . . ; yn; . . . ; yN �T 2 RN�q be the phenotype data, where N is the

number of participants, and p and q are the feature number of SNPs

and imaging data, respectively.

Canonical correlation analysis (CCA) is a powerful association

method that seeks linear transformations of two data sets X and Y

to achieve the maximal correlation between Xu and Yv (Hotelling,

1935), which can be formulated as:

max
w;v

uTXTYv

Fig. 1. Schematic illustration of TGSCCA for imaging genetics
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s:t: uTXTXu ¼ 1; vTYTYv ¼ 1; (1)

where we assume that the columns of X and Y are standardized to

have zero mean and unit variance, and u and v are canonical

weights, reflecting the contribution of each feature in the identified

canonical correlation. However, in imaging genetics applications,

the traditional CCA model tends to overfit and does not yield desir-

able results as the dimension of the data is much higher than the

sample size. In addition, the CCA outcome could spread nontrivial

effects across all features, which are not desirable for applications

needing to identify relevant features. To address these issues, sparse

version of CCA (SCCA) (Chi et al., 2013; Witten et al., 2009;

Witten and Tibshirani, 2009) has been proposed by introducing pen-

alties with L1 regularization for variable selection (Tibshirani,

2011) as follows:

max
w;v

uTXTYv

s:t: jjXujj22 ¼ 1; jjYvjj22 ¼ 1; uj jj j1 � c1; vj jj j1 � c2 (2)

where the constraints uj jj j1 � c1 and vj jj j1 � c2 are regularization

term for the objective function, and c1 and c2 is the corresponding

regularization parameters. In imaging genetics applications, the

weight vectors u and v measure the relative contributions of the SNP

loci and imaging phenotype ROIs. For easy computation, the vari-

ance matrix of X and Y is treated as diagonal matrix, which has

shown to be effective and efficient for high-dimensional data

(Grellmann et al., 2015; Witten et al., 2009).

2.2 Temporally constrained group sparse canonical

correlation analysis (TGSCCA)
In clinical practice, imaging phenotypes affected by genetic factors

changes over time. To investigate the association between genotypes

and longitudinal imaging phenotypes, in this article, we consider

how to perform bi-multivariate association analysis across the con-

secutive time-points. Assume that we have N training subjects, and

each subject has imaging data derived from T different time-points.

Given the genotype SNPs data X ¼ ½x1; . . . ; xn; . . . ;xN �T 2 RN�pand

longitudinal imaging phenotypes Yt ¼ ½y1t; . . . ; ynt; . . . ; yNt�T 2
RN�q at time-point t (1 � t � T) as input in the association model,

where N is the number of participants, p and q are the numbers of

feature dimensionalities (i.e., number of SNP loci and brain imaging

ROIs). As described in Section 1 and Figure 1, our aim is to discover

those longitudinal brain imaging markers associated with genetic

factors across different time-points. Task-correlated longitudinal

analysis model has recently been successfully investigated and

applied to regression problems (Wang et al., 2012a, b), which are

inspired by using multi-task learning framework (Liu et al., 2009;

Obozinski et al., 2006) in machine-learning community. Following

their previous work, we induce the joint penalty term L21-norm

into the Equation (2) and then develop group sparse canonical cor-

relation analysis (GSCCA) model as follows:

min
u;V
�
XT

t¼1

uTXTYtvt þ ku uj jj j1 þ kv Vj jj j2;1

s:t: jjXujj22 ¼ 1; jjYtvtjj22 ¼ 1 (3)

where the weight vector u and vt measure the relative importance of

the SNP loci and imaging phenotype ROIs at time-point t

(1 � t � T). ku and kv denote control parameters of the

regularization terms, respectively. V ¼ ½v1; . . . ; vt; . . . ; vT � 2 Rq�T is

the weight matrix whose row vi is the vector of coefficients assigned

to the -th feature across different time-points, and Vj jj j2;1 ¼
Pd

i¼1

jjVijj2 is to penalize all coefficients in the same row of matrix V for

joint feature selection. It is worth noting that the L21 regularization

term can be coupled over time dimension and this “group-sparsity”

regularizer forces only a small number of features being selected

(Yuan and Lin, 2006). In other words, the longitudinal imaging fea-

tures across all time-points will be identified.

To further take into account detecting temporally-constrained

imaging genetic associations, we expect to develop our model to ex-

plore the association between baseline SNPs and longitudinal imag-

ing phenotypes for a better understanding of underlying progressive

mechanism specific to the disease. More specifically, motivated by

the existing work (Jie et al., 2016), we induce a new regularization

term called fused least absolute shrinkage and selection operator

(Lasso) (Liu et al., 2010) in machine-learning community and then

formulate the TGSCCA model as follows:

min
u;V
�
XT

t¼1

uTXTYtvt þ ku uj jj j1 þ kv Vj jj j2;1 þ kt

XT�1

t¼1

vtþ1 � vtj jj j1

s:t: jjXujj22 ¼ 1; jjYtvtjj22 ¼ 1 (4)

where the weight vectors u and vt measure the relative contributions

of the SNP loci and imaging phenotype ROIs at time-point t. The

weight vector vtþ1 and vt are from adjacent time-points. ku, kv and

kt denote control parameters of the regularization terms, respect-

ively. The fused Lasso regularization term tends to constrain the dif-

ferences between two successive canonical weight vectors from

adjacent time-points to be small, that is the smoothness of weight

vectors encourages neighboring features to be selected together. Due

to the two regularization terms in Equation (3), it is promising to

find the better solution that is robust to noises or outliers via con-

sidering both joint selections and the fused information inherent in

imaging genetic associations.

2.3 Optimization algorithm
In this section, we introduce the algorithm to obtain u and V from

Equation (4). The objective function is convex with respect to u

when V is fixed and vice versa. So the iteration procedures mainly

contain two steps as follows:

min
u
�
XT

t¼1

uTXTYtvt þ ku uj jj j1

s:t: jjXujj22 ¼ 1 (5)

min
V
�
XT

t¼1

uTXTYtvt þ kv Vj jj j2;1 þ kt

XT�1

t¼1

vtþ1 � vtj jj j1

s:t: jjYtvtjj22 ¼ 1 (6)

We can use the Lagrange multiplier and write the penalties into

the matrix form for Equation (5), thus the new objective function is

as follows:

min
u
�
XT

t¼1

uTXTYtvt þ ku uj jj j1 þ
h
2
jjXujj22 (7)

Identification of associations between genotypes and longitudinal phenotypes i343

Deleted Text: -
Deleted Text:  paper
Deleted Text: the Introduction 
Deleted Text: machine 
Deleted Text: <inline-formula id=
Deleted Text: &hx0022;
Deleted Text: &hx0022;
Deleted Text: machine 


where ku and h are the model parameters. In this solution, a smooth

approximation has been estimated for L1 term by including an ex-

tremely small value. Take the derivative regarding ku and let it be 0.

The solution for u in each iteration step is as follows:

u ¼ XTXþ ku

h
D

� ��1 XT

t¼1

XTYtvt

 !
(8)

where D is a diagonal matrix with the kth element as

1=2jjukjj1 ðk 2 ½1;p�Þ.
To obtain V when u is fixed for Equation (6), we follow the pre-

vious work (Fang et al., 2016; Witten et al., 2009) and assume that

the variance matrix of Yt is treated as diagonal matrix, which has

shown to be effective and efficient for optimization. The solution for

V in each iteration step is as follows:

min
jjvt jj22¼1

XT

t¼1

�zt
Tvt þ kv Vj jj j2;1 þ kt

XT�1

t¼1

vtþ1 � vtj jj j1 (9)

where zt ¼ YT
t Xu, is given by jjvtjj22 ¼ 1, where V is the optimum of

min
V

XT

t¼1

1

2
jjvt � ztjj22 þ kv Vj jj j2;1 þ kt

XT�1

t¼1

vtþ1 � vtj jj j1 (10)

It is straightforward to verify that Equation (10) is convex but

non-smooth because of L21-norm and Fused Lasso regularization

term. The basic idea to solve this problem is to use a smooth func-

tion to approximate the original non-smooth objective function. In

this study, we use the Nesterov’s accelerated proximal gradient

(APG) algorithm (Beck and Teboulle, 2009; Chen et al., 2009)

to solve our optimization problem, which is shown in the

Algorithm 1.

First, we separate Equation (10) into a smooth part Equation

(11) and a non-smooth part Equation (12) as follows:

f Vð Þ
XT

t¼1

1

2
jjvt � ztjj22 (11)

g Vð Þ ¼ kv Vj jj j2;1 þ kt

XT�1

t¼1

vtþ1 � vtj jj j1 (12)

We define the approximation function Equation (10) as follows,

which is composited by the above smooth part and non-smooth one:

X V;Við Þ ¼ f Við Þþ < V �Vi;rf Við Þ > þ
l

2
jjV �Vijj2F þ g Vð Þ

(13)

where jj � jj2F denotes the Frobenius norm, rf Við Þ denotes the gradi-

ent of f Vð Þ on point Vi at the ith iteration, and l is the step size.

Finally, the update step of Nesterov’s APG is defined as:

Viþ1 ¼ arg min
V

1

2
V �Wj jj j2F þ

1

l
g Vð Þ (14)

where W ¼ Vi � 1
l rf Við Þ. The key of APG algorithm is how to

solve the update step efficiently. In addition, according to the tech-

nique used in Chen et al. (2009), instead of performing gradient des-

cent based on Vi, we compute the search point as:

Qi ¼ Vi þ aiðVi � Vi�1Þ (15)

where ai ¼ qi�1�1
qi

and qi ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4q2

i�1

p
2 . For more details about the so-

lution of L21-norm and Fused Lasso problem, please refer to the

previous work (Jie et al., 2016; Liu et al., 2010).

3 Results and discussions

3.1 Results on simulation data
In this section, we present a simulation study to evaluate the poten-

tial power of our proposed TGSCCA method. The procedure of

simulation generation is similar to that in Chen et al. (2012)and

Fang et al. (2016). We first generated one canonical vector u with p’

non-zero entries and successive canonical vector vk with q’ non-

entries, where vkþ1 ¼ vk þ Dv ðDv � N 0; 0:1ð Þ and ðk ¼ 1;2; 3ÞÞ.
Each non-zero variable in u and v1 was sampled independently from

a uniform distribution in the range of �2;�0:5½ � [ ½0:5; 2�. And

then, we randomly generated a latent variable h with normal distri-

bution Nð0; rhÞ for each sample, where rh is the signal to noise

level. For the data matrix X and Y, the features were simulated from

Gaussian distribution Nðuh;reIpÞ and Nðvkh;reIqÞ, respectively.

We set N¼100, p¼100, q¼50, p’¼30, q’¼20, rh ¼ 0:1. To valid-

ate the effects on the performance, we varied the noise level re from

0.1 to 0.5 to generate simulation data 1 and simulation data 2,

respectively.

In our experiments, 5-fold cross-validation strategy is adopted to

evaluate the effectiveness of our proposed method. All the regular-

ization parameters are optimally tuned using a grid search from the

range of {0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.5, 0.8, 1} by another

nested 5-fold cross-validation on the training set.

We compare SCCA (denoted as sparse canonical correlation ana-

lysis to detect associations between SNP loci and imaging features at

each time-point), GSCCA (denoted as group sparse canonical correl-

ation analysis to detect associations between SNP loci and longitu-

dinal imaging phenotypic features jointly across all time-points only

via L21-norm), and TGSCCA (denoted as temporally-constrained

group sparse canonical correlation analysis to detect associations be-

tween SNP loci and longitudinal imaging features jointly across all

adjacent time-points via L21-norm and fused penalty).

The performance on each dataset is assessed with correlation co-

efficient between X and Y, which are widely used in measuring per-

formances of association analysis. The average results of correlation

Algorithm 1

Input: SNPs X ¼ ½x1; . . . ; xn; . . . ; xN �T 2 RN�p; longitudinal

imaging phenotypes Yt ¼ ½y1t; . . . ; ynt; . . . ; yNt�T 2
RN�q at time-point t (1 � t � T); parameters

ku > 0, h > 0, kv > 0, kt > 0.

Initialization: l ¼ l0 ¼ 1, V0 ¼ V1 ¼ 0, q0 ¼ 1.

While not converge do

1: Calculate the diagonal matrix D, where the k-th elem-

ent is 1=2jjukjj1;

2: Update u by Equation (8);

3: Scale u so that jjXujj22 ¼ 1;

4: Computed the search point Qi according to Equation

(15);

5:Find the smallest l ¼ li�1;2li�1; . . . so that

X Viþ1;Qið Þ � f Viþ1ð Þ þ gðViþ1Þ, where Viþ1 is com-

puted by Equation (14);

6: Set li ¼ l;

7: Scale vt so that jjYtvtjj22 ¼ 1.

End while

Output: canonical vector u 2 Rp�1; V ¼ ½v1; . . . ; vt; . . . ; vT �
2 Rq�T .
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coefficients on 5-fold testing data are calculated respectively on

Simulation 1 and Simulation 2. As shown in Figure 2, joint longitu-

dinal association methods (including GSCCA and TGSCCA) outper-

form SCCA consistently and significantly in the metrics of

correlation coefficients on both simulations. It is worth noting that

TGSCCA is comparable with GSCCA due to the low noises in

Simulation 1, while TGSCCA is more robust to the data with high

noises in Simulation 2. Furthermore, we show the estimated canon-

ical weights from different methods. As shown in Figure 3, the over-

all profiles of the estimated u and v values from TGSCCA are

consistent with the ground truth on both Simulation 1 and

Simulation 2, whereas SCCA is only capable of identifying inconsist-

ent signals at different time-points. Although GSCCA can almost

capture the same signals on u as TGSCCA, from the unsmooth pat-

terns across the longitudinal case, it may be affected by noises and

then draw false discoveries on v without the induced temporal-

constraint. From the above results, it is observed that TGSCCA can

identify not only the signal locations but also strong correlations,

which has certain superiority compared with other methods.

3.2 Results on real imaging genetic data
3.2.1 ADNI dataset

Real imaging genetics data used in the preparation of this article

were obtained from the ADNI database (adni.loni.usc.edu).

Fig. 3. The estimated weights of u and v from average 5-fold cross-validation test on simulation data are shown in the left five panels and right five panels.

Ground truth of w and v are shown in the most left in the two parts, respectively. The estimated u values and v values are shown in the remaining panels, corres-

ponding to different methods. (a) Results on simulation data 1. (b) Results on simulation data 2

Fig. 2. The averaged correlation coefficients on 5-fold test data using different

methods on simulations. (a) Results on simulation data 1. (b) Results on

simulation data 2
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The ADNI was launched in 2003 as a public–private partnership,

led by Principal Investigator Michael W. Weiner, MD. The primary

goal of ADNI has been to test whether serial MRI, positron emission

tomography (PET), other biological markers, and clinical and

neuropsychological assessment can be combined to measure the pro-

gression of MCI and early AD. For up-to-date information, see

www.adni-info.org.

The genotyping and longitudinal imaging data of 114 non-

Hispanic Caucasian participants were downloaded from the ADNI

website. The demographic information is summarized in Table 1.

Specifically, the time points examined in this study for MRI T1-

weighted imaging and cognitive assessments (i.e., MMSE and

ADAS-Cog) included baseline (BL), Month 06 (M06), Month 12

(M12) and Month 24 (M24). We aligned the preprocessed imaging

data [i.e., voxel based morphometry (VBM)] to each participant’s

same visit scan, and then created normalized gray matter density

maps from MRI data in the standard Montreal Neurological

Institute (MNI) space as 2�2�2 mm3 voxels SPM software pack-

age (Ashburner and Friston, 2007). One hundred and sixteen ROI

level measurements of mean gray matter densities were further ex-

tracted based on the MarsBaR AAL atlas (Tzourio-Mazoyer et al.,

2002). After removal of cerebellum, the imaging measures of 90

ROIs were used as phenotypes in our experiments. For the genotyp-

ing data, we included 85 SNPs within 620k base pairs of the APOE

gene boundary based on the ANNOVAR (http://annovar.openbioin

formatics.org) annotation. For input in this association study, each

SNP value was coded in an additive fashion as 0, 1, 2, indicating the

number of minor alleles.

3.2.2 Improved association between risk SNP loci and longitudinal

imaging ROI markers

In the real data experiments, we also use 5-fold cross-validation

strategy to evaluate the effectiveness of our proposed method.

Similar to the previous simulation study, we determine the values of

regularization parameters by nested 5-fold cross-validation on the

training set. The parameters are tuned in the range of {0.01, 0.02,

0.05, 0.08, 0.1, 0.2, 0.5, 0.8, 1}.

In current studies, we compare our proposed joint longitudinal

imaging genetic strategies (including GSCCA and TGSCCA) with

conventional SCCA method. For measuring the association perform-

ance of the compared methods, the average values of Pearson

correlation coefficients on 5-fold test sets are calculated to eliminate

the bias. As shown in Figure 4, the performances of longitudinal

strategies with joint detections (including GSCCA and TGSCCA)

are more stable than the conventional SCCA, which treats imaging

genetic associations at each time-point independently. As expected,

TGSCCA can achieve the best correlation coefficients so that it con-

sistently outperform SCCA and GSCCA. These results demonstrate

that the usage of temporal information across adjacent time-points

can help improve the performances of association between geno-

types and longitudinal imaging phenotypes.

3.2.3 Identification of risk SNP loci

Besides improving association performance, one major goal of this

study is to identify some vital SNP loci and imaging phenotypic

markers for disease progression in MCI research. Therefore, finding

genetic risk factors and imaging ROIs helps scientists better under-

stand how the disease develops and identify possible treatments to

study. We aim to present the selected features on the SNP loci and

imaging ROIs, whose annotations are shown on the X-axis from top

and bottom panels in Figure 5. It shows all comparisons of absolute

weight maps for top 10 loci from APOE SNPs associated to top 10

brain ROIs with longitudinal analysis respect to different methods.

For detecting genetic factors, as shown on top panels in Figure 5,

the locus rs76692773 and rs2075649 (Lin et al., 2016) are the top

hits by all methods. However, compared with SCCA, the joint longi-

tudinal detections (including GSCCA and TGSCCA) can discover

consistent and clear patterns across all time-points, which indicate

our proposed method performs stable in longitudinal imaging gen-

etic associations. It is worth noting that the best-known risk genetic

loci rs429358 has not been identified by all methods (including our

proposed TGSCCA). It warrants further investigation to confirm

whether the eminent risk factor rs429358 is truly not associated

with longitudinal VBM phenotypes in the MCI progression. In add-

ition, as the association solution relies on the linear combination of

all loci, an individual one might not have a direct influence to the

correlation, i.e., it might modulate the influence of another locus.

Consequently, these genetic factors selected in this association study

should also warrant further investigation for replication in inde-

pendent and larger cohorts.

3.2.4 Identification of longitudinal imaging ROI markers

For detecting brain imaging ROIs, as shown on bottom panels in

Figure 5, the conventional SCCA method identifies some irregular

imaging ROIs at different time-points, which are not able to serve

screening target over the course of MCI progression. While using

joint longitudinal detection strategies, we can obtain clear patterns

on the feature panels. For example, right parahippocampal gyrus

Fig. 4. The averaged correlation coefficients on 5-fold test data using different

methods on ADNI

Table 1. Demographic characteristics of the studied population (the

values are denoted as mean 6 standard deviation)

Subjects pMCI (n ¼ 15) sMCI (n ¼ 41) NC (n ¼ 58)

Gender (M/F) 8/7 26/15 31/27

Age 71.7565.92 73.4067.59 75.7164.74

Education 16.3363.54 16.2262.86 16.3862.85

MMSE(BL) 26.9361.91 27.5961.50 29.2160.99

MMSE(M06) 26.0762.69 27.5961.76 29.0361.03

MMSE(M12) 25.4762.72 27.5661.91 29.3860.83

MMSE(M24) 22.8064.00 27.6162.24 29.1261.09

ADAS-Cog(BL) 20.6465.51 15.4565.80 8.9263.69

ADAS-Cog(M06) 22.9168.48 15.5265.77 8.9563.75

ADAS-Cog(M12) 24.3366.57 15.2065.93 7.5864.05

ADAS-Cog(M24) 26.9568.07 16.1166.28 8.4364.43

Note: NC¼Normal Control, pMCI¼ progressive Mild Cognitive

Impairment, sMCI¼ stable Mild Cognitive Impairment, MMSE¼Mini-

Mental State Examination, ADAS-Cog¼Alzheimer’s Disease Assessment

Scale-Cognitive Subscale.
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and right superior parietal gyrus are the two top hits in joint detec-

tions (including GSCCA and TGSCCA), which are in accordance

with previous findings (Jacobs et al., 2012; Shen et al., 2010). In

addition, the top ROIs selected for progression across all time-

points by TGSCCA can be treated as increasingly stable markers,

which are also accordance with the fact that the grey matter atrophy

of these ROIs is severe in MCI (Driscoll et al., 2009). Therefore,

compared with SCCA and GSCCA, our proposed TGSCCA can tol-

erate noises to some extent so that the weight maps of each selected

ROI across different time-points are very smooth. This further indi-

cates the advantage of using the temporal-constrained smoothness

regularization.

4 Conclusion

In this article, we propose a novel TGSCCA framework to detect

risk genetic factors and their correlated longitudinal phenotype

markers for a progressive disease (i.e., MCI). This approach

explicitly captures the consecutive changes between phenotypes

from adjacent time-points by incorporating the group sparsity con-

straint and fused penalty into the objective function. We also present

an effective iterative algorithm to solve the optimization problem.

We apply the proposed method on the simulation data and ADNI

cohort [including progressive mild cognitive impairment (pMCI),

stable MCI (sMCI) and NC participants]. The experimental results

show that our proposed TGSCCA model can identify stronger asso-

ciations than conventional SCCA and GSCCA. Besides the improved

association performance, in real imaging genetic data, our model

can also detect the risk SNP loci and clearly consistent brain ROIs

across all time-points, which provides valuable information to help

understand the genetic basis of brain structural change over the pro-

gression of MCI and AD.

As an interesting future direction, this TGSCCA method can be

applied to investigate the potential mechanism of other imaging

phenotypes (e.g., fluorodeoxyglucose positron emission tomography

(FDG-PET) and Florbetapir F 18 amyloid PET data) (Hao et al.,

2016) and biomarkers such as cerebrospinal fluid and plasma from

Fig. 5. The estimated weights of u (top panels) and v (bottom panels) from average 5-fold cross-validation test on ADNI data using the different methods
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longitudinal perspective (Fagan et al., 2014). Therefore, all kinds of

biomarker outcomes learned from trajectories across the course of

disease can be evaluated, and the findings may have the potential to

help with neurodegenerative assessments in clinical practices.

In this initial study, the proposed TGSCCA can be successfully

applied for longitudinal imaging genetics study on a candidate gene

set. However, when the datasets contain more features, it becomes

more challenging to identify truly relevant ones. Thus, an interesting

future direction could be to develop an improved TGSCCA model

by exploring non-convex penalty terms that have been shown to be

more effective than L1 based terms in terms of feature selection via

sparse learning. In addition, this general framework can be extended

and applied to some other interesting fields such as brain-perceived

analysis (Connolly et al., 2016) and gene expression analysis on

multiple data sources (Allahyar and de Ridder, 2015; Bunte et al.,

2016; Omranian et al., 2016), allowing for generating new insights.
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