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Splicing of short introns by the nuclear pre-mRNA splicing machin-
ery is thought to proceed via an ‘‘intron definition’’ mechanism, in
which the 5* and 3* splice sites (5*ss, 3*ss, respectively) are initially
recognized and paired across the intron. Here, we describe a
computational analysis of sequence features involved in recogni-
tion of short introns by using available transcript data from five
eukaryotes with complete or nearly complete genomic sequences.
The information content of five different transcript features was
measured by using methods from information theory, and Monte
Carlo simulations were used to determine the amount of informa-
tion required for accurate recognition of short introns in each
organism. We conclude: (i) that short introns in Drosophila mela-
nogaster and Caenorhabditis elegans contain essentially all of the
information for their recognition by the splicing machinery, and
computer programs that simulate splicing specificity can predict
the exact boundaries of '95% of short introns in both organisms;
(ii) that in yeast, the 5*ss, branch signal, and 3*ss can accurately
identify intron locations but do not precisely determine the loca-
tion of 3* cleavage in every intron; and (iii) that the 5*ss, branch
signal, and 3*ss are not sufficient to accurately identify short
introns in plant and human transcripts, but that specific subsets of
candidate intronic enhancer motifs can be identified in both human
and Arabidopsis that contribute dramatically to the accuracy of
splicing simulators.

RNA splicing is an essential step in the expression of most
eukaryotic genes. An important goal of research on this

process is to determine a set of rules that accurately predicts the
splicing pattern of primary transcripts. Unlike the process of
mRNA translation by the ribosome, which follows a set of rules
that is essentially invariant in all known organisms, the rules
governing RNA splicing clearly differ between different groups
of eukaryotes. Therefore, there is not one but several variants of
the ‘‘splicing code’’ that remain to be worked out. In addition, the
rules for splicing appear to be significantly more complex than
those for translation, involving presence of multiple degenerate
motifs occurring with appropriate spacing in the transcript.
Development of computer algorithms that directly model rec-
ognition by the splicing machinery is recognized as an important
challenge (1).

In human transcripts, the exons are usually short (typically
100–200 bases) and the introns are much longer, averaging about
3 kb (2). The realization that the splicing machinery would face
great difficulty in locating splice sites across such long introns led
to the exon definition model in which splice sites are paired first
across the exons, with spliceosome assembly proceeding through
subsequent pairing of exon units (3). The alternative intron
definition model derives from the observation that introns in
some transcripts (especially in invertebrates) are quite short
relative to exons, and so the splicing machinery may initially pair
splice sites across introns rather than exons in these cases. As
expected from this model, mutation of the 59 splice site (59ss) of
a short intron leads to intron retention rather than exon skipping,
and expansion of short introns inhibits their splicing in vitro and
in vivo (4). Short introns inserted into intronless transcripts can
be properly spliced, suggesting that the information for splicing
of short introns may be contained entirely within the intron (5).

Here, we analyze transcript features involved in recognition of
short introns by using a computational approach that takes
advantage of the recent availability of large sets of transcripts
from five organisms with essentially complete genome se-
quences. Our analysis had three goals. First, to define and
measure the amount of information usable for intron recognition
that is present in the three classical splice signal motifs [59ss, 39
splice site (39ss), and branch signal] in each organism. Second,
to determine how much information is required to accurately
identify short introns in transcripts from each organism, and
therefore how much additional information must be present in
other transcript features besides the classical splice signals. And,
finally, to identify other transcript features that are likely to
provide the additional information needed for accurate intron
recognition.

Methods
Splicing Simulators. The PAIRSCAN algorithm assigns scores, de-
fined as the sum of the 59 and 39 splice signal log-odds scores, to
all possible 59, 39 splice signal pairs that have appropriate short
intron separation in the transcript (e.g., 40–81 bases apart for
Drosophila transcripts). All such pairs whose scores exceed a
predetermined cutoff C and do not overlap with more highly
scored pairs are predicted to be short introns. The score cutoff
C is chosen empirically for each organism to maximize accuracy,
defined as the average of sensitivity (Sn) and specificity (Sp).
The definitions of these quantities are: Sn 5 TPy(TP 1 FN) and
Sp 5 TPy(TP 1 FP), where TP is the number of true positives
(correctly predicted introns), FN is the number of false negatives
(introns not predicted), and FP is the number of false positives
(predicted introns which are incorrect). In TRIPLESCAN, a branch
score is added to the score of each splice signal pair. The branch
score is defined as the log-odds score of the highest-scoring
potential branch site located between 15 and 45 bases upstream
of the 39ss (15–200 upstream for yeast), using the weight matrix
model (WMM) branch model derived from Fig. 2B, less the
logarithm of the width of the window searched, i.e., subtracting
log2185 for yeast or log230 for other organisms. The possibility
that the branch point may not be present in this window was
accounted for by using the formula S9 5 log2(2SPB 1 1 2 PB),
where S is the WMM branch score and PB is an estimate of the
probability that the branch site occurs in the given window.
INTRONSCAN is similar to TRIPLESCAN, except that an intron
length score and an intron composition score (see below) are
added to the score of each potential intron. PAIRSCAN, TRIPLE-
SCAN, and INTRONSCAN were implemented in the C programming
language.

Abbreviations: 59ss, 59 splice site; 39ss, 39 splice site; RelEnt, relative entropy; DAc, detection
accuracy; EAc, exact accuracy; WMM, weight matrix model.
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Scores for Intron Length and Composition. For any length l between
the minimum and maximum short intron lengths in an organism
(Lmin and Lmax), the intron length preference score was defined
as s(l) 5 log2( flygl), where fl is the frequency of length l in the
empirical distribution of short intron lengths (smoothed by using
the R statistical package with default kernel), and gl 5 (Lmax 1
1 2 Lmin)21 is a uniform density. The intron pentamer score for
an intron was defined as s(I) 5 log2[P(I)yq(I)] where P(I) is the
probability of generating the given intron sequence (excluding
the splice signals and branch signal) under the intron composi-
tion model and q(I) is the corresponding probability under the
transcript composition model. By default, homogeneous fourth-
order Markov chain models were used for both introns and
transcripts, with parameters estimated from the data listed in
Table 1. Such models capture pentanucleotide composition.
Similar models have been used previously for exon-intron dis-
crimination (6). For the experiment shown in Fig. 5, the pen-
tamer score was calculated by using specific subsets of pentamers
as described in the supporting information, which is published on
the PNAS web site, www.pnas.org.

Cross-Validation. The data in Table 1 were 5-fold cross-validated
by randomly dividing the transcript data into five subsets and
measuring the accuracies of PAIRSCAN, TRIPLESCAN, and INTRON-
SCAN on each subset, with splice site and intron composition
parameters derived from the other four subsets, and taking the
average of the five accuracy values obtained. Two-fold cross-
validation was used for yeast because of the limited number of
transcripts.

Measuring Contributions to Intron Detection. The contribution of
each transcript feature to intron detection (see Fig. 4) was
measured by tabulating the accuracy of ‘‘mutant’’ versions of
INTRONSCAN that scored different subsets of transcript features:
59ss 1 39ss, 59ss 1 39ss 1 branch, 59ss 1 39ss 1 intron compo-
sition, etc. All combinations of features involving both splice
signals were used. In addition, the ability of the 59ss and 39ss
alone to detect introns was measured. Intron detection accuracy
(DAc) was converted to log error, defined as log2(1 2 DAc), and
linear regression was then used to estimate the relative contri-
bution of each signal to reduction of the log error.

Results
Construction of Transcript Datasets. Five eukaryotes for which
complete or nearly complete genomic sequences are currently
available were chosen: the yeast Saccharomyces cerevisiae, the
nematode worm Caenorhabditis elegans, the fruit f ly Drosophila
melanogaster, the mustard weed Arabidopsis thaliana, and hu-
man. To avoid using computationally predicted genes, available
cDNAs from each organism were systematically aligned to their
respective genomic loci by using a gene annotation script called
GENOA (unpublished work) (see the supporting information).
Genes identified by this script as alternatively spliced were

excluded. The total number of verified gene structures deter-
mined by this procedure is listed in Table 1. All analyses
described here used transcripts whose exon-intron structure was
confirmed by cDNA alignment.

Intron Length Distributions. Histograms of intron lengths from
these transcripts revealed the presence of a distinct population
of short introns in all five organisms (Fig. 1). Fitting the observed
length distribution as a sum of two lognormal distributions
determined a natural cutoff length for short introns in each
organism as described in the legend to Fig. 1. This criterion
defines short introns as those not longer than 60 bases in C.
elegans, #81 bp in Drosophila, #116 bp in A. thaliana, #134 bp
in human, and #191 bp in S. cerevisiae. For our purposes, introns
longer than these cutoff lengths are considered long introns. The
fraction of introns classified as short was between 45% and 65%
in each organism except human, where it was only about 10%.
Here, our goal was to study short introns, which are thought to
be recognized primarily through intron definition. Therefore, in
each organism all long introns were removed from the set of
transcripts, as if they had already been processed by a separate
mechanism, leaving only exons and short introns. The remainder
of our analyses focused on these modified transcript sequences.
In yeast, where transcripts generally contain at most one intron
and intron definition is the rule, we did not remove long introns,
effectively treating all introns as short.

Splice Signal Models. Next, we analyzed the classical splice signal
motifs in the set of short introns from each organism. The results,
displayed in Fig. 2, reveal well-known motifs. Using these data,

Fig. 1. Intron length distributions. Histograms of the lengths of introns from
each organism are plotted, using a log scale for the abscissa. Each histogram
was fitted as a mixture of two lognormal distributions by using the R statistical
package (curved lines). The position of the point of intersection of these
distributions is indicated. S. ce., S. cerevisiae; C. el., C. elegans; D. me., D.
melanogaster; A. th., A. thaliana; H. sa., Homo sapiens.

Table 1. Accuracy of splicing simulators

Organism
No. of

transcripts
No. of
introns

% Short
introns

PAIRSCAN TRIPLESCAN INTRONSCAN

DAc EAc DAc EAc DAc EAc

S. cerevisiae 152 152 46 90 43 98 83 98 86
C. elegans 691 3,577 46 95 92 95 92 97 95
D. melanogaster 1,310 3,737 54 92 88 93 90 96 94
A. thaliana 1,121 5,265 63 82 68 83 69 96 92
H. sapiens 8,165 33,666 10 76 65 78 66 88 85

The numbers of transcripts and introns derived from cDNAygenomic alignments are listed, as well as the
percentage of introns classified as short according to the cutoffs given in the text. The percent DAc and EAc are
cross-validated values as described in Methods.
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statistical models of the 59 and 39 splice signals were created that
can be used to score potential splice sites. First, WMMs were
constructed that capture the position-specific base composition
of the signals, assuming independence between positions. Al-
though WMMs have been widely used in sequence analysis, the
assumption of independence between positions made by WMMs
is not warranted in the case of the 59 and 39 splice signals (7). In
fact, we confirmed the presence of significant statistical depen-
dencies between positions in the 59ss and 39ss of all four
multicellular organisms studied (see the supporting informa-
tion). To account for these potentially significant statistical
interactions, inhomogeneous first-order Markov models (I1Ms)
were developed for the 59ss and 39ss signals from each organism,
as described (8). I1Ms account both for position-specific nucle-
otide composition and dependencies between adjacent positions
in a sequence motif. Because too few introns were available from
yeast to construct I1M splice site models, WMMs were used
instead for this organism. Both WMMs and I1Ms can be used to
assign log-odds scores to potential splice sites in a transcript that
approximate the log likelihood that the site is used as a splice
site.

Given the complex and somewhat variable motifs shown in
Fig. 2, it is natural to ask how much information these motifs
provide for identifying introns and splice sites in primary tran-
scripts. From information theory, the answer to this question is
that the amount of information useful for identifying occur-
rences of a given motif is directly related to the relative entropy
(RelEnt) or Kullback–Liebler distance between the motif se-
quence distribution and a suitable background distribution (9,
10). The RelEnt of a distribution f relative to the background
distribution g is defined as

D~f i g! 5 O
k

fklog2~fkygk!,

where fk is the probability of observing sequence k under the
motif distribution, gk is the probability of observing sequence k
under the background sequence distribution, and the sum is
taken over all possible nucleotide sequences of appropriate
length. When base 2 logarithms are used, RelEnt is measured in
binary digits or bits. RelEnt has a number of desirable statistical
properties and in an important sense measures the amount of
‘‘information for discrimination’’ that is present in a distribution
(9). In general, the higher the RelEnt of a motif, the more rarely
similar sequences will occur in random sequences with compo-

sition g, and each extra bit of RelEnt corresponds to approxi-
mately a 50% reduction in the frequency of chance occurrences
of motif-like sequences. The RelEnt of the 59 and 39 splice signal
sequences for each organism are listed in Fig. 2 (see also ref. 11).

Information Required for Identification of Introns. The above data
raise a fundamental question in RNA splicing specificity: how
much information is required to accurately identify the locations
of introns in primary transcript sequences? This issue was
addressed by using Monte Carlo simulations in which the
accuracy of intron identification was measured in randomized
sequences as a function of the information content (RelEnt) of
artificial splice signal motifs. The ability of these motifs to specify
short intron locations was assessed by measuring the accuracy of
intron identification using a procedure called PAIRSCAN, which
implements a simple splice site pairing model of intron recog-
nition. In PAIRSCAN, all potential 59ss and 39ss in a transcript are
assigned log-odds scores by using the appropriate motif models
and introns are recognized as pairs of potential 59ss and 39ss,
which are located with appropriate spacing for a short intron in
the given organism and have sufficiently high score, as described
in Methods.

The accuracy of PAIRSCAN in identifying short introns in the
randomized transcripts (defined below) was then plotted as a
function of the sum of the RelEnts of the 59 and 39 splice signal
models used (Fig. 3). As expected, accuracy improves mono-
tonically as the information content of the splice signal motifs
is increased. However, the increase is not linear, but levels off
when the information content becomes high. To achieve high
accuracy of precise intron identification, say 98% of introns
identified exactly, requires '30 bits of information in each
organism (Fig. 3). However, the precise amount needed varies
somewhat depending on transcript geometry—about 29 bits
per intron in C. elegans, 31 bits in Drosophila, and 32, 34 and
37 bits in Arabidopsis, human, and yeast, respectively (see the
supporting information). Comparing these values with the
RelEnt data from Fig. 2 indicates that the classical splice
signals do not appear to provide enough information to exactly
identify 98% of short introns in any organism, with the amount
of the information deficit varying from 10 bits in C. elegans and
11 bits in Drosophila to 16, 17, and 19 bits in Arabidopsis,
human, and yeast, respectively.

Accuracy of Splice Site Pair Model of Intron Recognition. To clarify
this matter, the PAIRSCAN algorithm was then applied to the

Fig. 2. Splice signal motifs. Sequence motifs for the 59ss (A), branch site (B), and 39ss (C) are displayed by using the PICTOGRAM program (http:yygenes.mit.eduy
pictogram.html). The height of each letter is proportional to the frequency of the corresponding base at the given position, and bases are listed in descending
order of frequency from top to bottom. The RelEnt (in bits) of the motif model used in our analyses (I1M or WMM) relative to the background transcript base
composition is also shown. The splice junctions and branch point are marked by inverted triangles.
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set of real transcripts from each organism by using the splice
signal motifs from Fig. 2. The results are summarized by using
two different measures of accuracy: (i) DAc defined in terms of
the fraction of true introns detected (at least one splice site
correct); and (ii) exact accuracy (EAc), defined in terms of the
fraction of true introns predicted exactly (both splice sites
correct)—see Methods for precise definitions. In yeast, using the
59ss and 39ss alone gave a detection accuracy of 90%, but an exact
accuracy of only about 40% (Table 1), underscoring the useful-
ness of distinguishing these two measures. This difference re-
flects the ability of the strong yeast 59 splice signal to indicate the
existence of an intron but the inability of the weak yeast 39 splice
signal motif to accurately specify the precise location of the 39ss
(12). The 59 and 39 splice signals alone are sufficient to achieve
relatively high (.90%) accuracy in fly and worm transcripts. By
contrast, these motifs by themselves cannot accurately identify
short introns in human or Arabidopsis (Table 1). This analysis
implies that other transcript features must play a large role in
recognition of short introns in both human and plant transcripts
and must play at least some role in splicing in yeast, f ly, and
worm. Below, we review three such features and describe how
their possible contribution to intron recognition was assessed.

Branch Signals, Intron Length, and Intron Composition. Unlike the
59ss and 39ss, the position of the branch site cannot be directly
determined from cDNAygenomic alignments alone. To assess
the contribution of this signal to splicing specificity, the region
immediately upstream of the 39ss was extracted from the set of
short introns available from each organism, and potential branch
sites were identified by using the Gibbs sampling algorithm (13),
as described in the supporting information. The branch motifs
identified in this way are shown in Fig. 2B. This procedure easily
identifies the canonical TACTAAC sequence in S. cerevisiae and
identifies consensus patterns CTAAT, CTGAT, and CTGAC, in
fly, mustard weed and human, respectively, all of which have
significant complementarity to U2 small nuclear RNA. These
patterns are similar to consensus branch signals described in the
literature for these organisms (14, 15). The consensus pattern

TTT(CyG)AA identified by the Gibbs sampler in C. elegans
introns differs substantially from the other branch motifs, ex-
hibiting only weak complementarity to U2 small nuclear RNA,
consistent with previous observations that nematode introns lack
a recognizable branch motif (16). Incorporation of this motif into
splicing simulators does not increase accuracy (Table 1), sug-
gesting that this pattern is not critically involved in intron
recognition.

Another possible source of information for intron recognition
is a preference on the part of the splicing machinery for short
introns of particular lengths. For example, the Drosophila intron
length histogram (Fig. 1) has a sharp peak at around 60 nt, with
over 40 times as many introns in the range of 60 to 65 bp than
in the range of 40 to 45 bp, and seven times as many introns in
the range of 60 to 65 than in the range of 75 to 80 bases. There
is some evidence of natural selection for short intron lengths
(17), and it is possible that selection favors introns with lengths
very close to 60–65 bases over shorter or longer introns because
they are spliced more efficiently. Consistent with this idea,
expanding the length of a 68-base Drosophila intron to 84 bp
greatly decreased its splicing in vitro (18), and expansion of other
short Drosophila introns led to activation of weak cryptic splice
sites within the expansion cassette (4).

Other sequences in the intron besides the classical splice
signals also may play a role in recognition of short introns. In
many cases, oligonucleotide motifs 3–7 bases in length appear to
play a role in splicing (19, 20). Here, we analyzed the possible
role of intron pentanucleotide composition. Pentamer compo-
sition implicitly includes composition of 3- and 4-nt patterns and
will capture some of the information in longer patterns. Pen-
tamers were chosen because too few intron sequences were
available from some organisms to reliably estimate frequencies
of longer oligomers.

Log-odds scores were derived for each of the three features
described above: the branch signal, intron length preference, and
intron pentamer composition, as described in Methods. To assess
the importance of these features for intron recognition, two
algorithms were developed that simulate somewhat more com-
plex models of intron recognition than PAIRSCAN. TRIPLESCAN
implements a model in which the 59ss, branch site, and 39ss are
recognized as a unit. INTRONSCAN implements a model of intron
recognition in which intron length preference and intron pen-
tamer composition also play a role (see Methods for details). Too
few confirmed intron sequences were available from yeast to
effectively model intron pentamer composition in this organism.
The accuracies of TRIPLESCAN and INTRONSCAN are listed in
Table 1, and the INTRONSCAN results are also displayed in Fig. 3.
As expected, inclusion of the strong yeast branch signal in
TRIPLESCAN allows a very high rate of intron detection in yeast
transcripts (98%). However, the weak yeast 39ss signal is not
sufficient to determine the 39ss location with comparable accu-
racy (EAc only 83% for TRIPLESCAN and 86% for INTRONSCAN).
In Drosophila and C. elegans, INTRONSCAN has very high detec-
tion accuracy and comparable exact accuracy, demonstrating
that short introns contain essentially all of the information
necessary for their recognition by the splicing machinery in these
two invertebrates. In human introns, the branch signal is rela-
tively weak, and TRIPLESCAN is only slightly more accurate than
PAIRSCAN. However, intron composition contributes signifi-
cantly, and INTRONSCAN is much more accurate than PAIRSCAN
(85% EAc versus 65% for PAIRSCAN). The results for Arabidopsis
are similar, except that accuracy is even more dramatically
improved in INTRONSCAN versus PAIRSCAN (92% EAc versus
68%).

Relative Contributions of Intron Features to Intron Detection. Given
the significant improvements in accuracy achieved by INTRON-
SCAN, it is natural to ask which intron features contribute most.

Fig. 3. Monte Carlo estimation of information required for short intron
recognition. EAc of prediction of short introns by PAIRSCAN in randomized
transcripts is plotted versus the sum of the RelEnts of the splice signal motifs
used. Dotted gray line indicates 98% EAc. Each curve is the best-fit from 130
simulations. Brackets indicate 1 SD above and below the best-fit curve for
three chosen RelEnt values. Solid circles represent EAc for INTRONSCAN in real
transcripts versus the sum of the RelEnts of the transcript features used.
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To assess the contribution of each feature to accuracy, a method
based on linear regression was used (see Methods). The results
(Fig. 4) show that the relative contributions of different tran-
script features differ dramatically between yeast, invertebrates,
vertebrates, and plants (Fig. 4). The branch signal provides close
to half of the information required to detect introns in yeast,
whereas the 39ss is relatively insignificant. As expected, the 59
and 39 splice signals contribute at least 75% of the information
in Drosophila and C. elegans. However, in Arabidopsis and human
these signals provide only 50% or less of the necessary infor-
mation. A very large contribution from intron pentamer com-
position is particularly notable in Arabidopsis and human. Cal-
ibrating the proportional contributions represented in Fig. 4 to
the RelEnt data from Fig. 2 allows estimation of the information
content (RelEnt) that must be present in other (unknown)
transcript features to achieve 98% detection accuracy in each
organism (gray wedges in Fig. 4), found to be about 9 bits per
intron in human, 3–4 bits in fly and mustard weed, 2 bits in worm,
and 0 bits in yeast.

The very large contribution to intron recognition derivable
from intron pentamer composition in Arabidopsis and human is
striking. It is natural to ask whether this effect can be attributed
to a small subset of pentamers, which might function as intronic
splicing enhancers. To address this question, the ability of
INTRONSCAN to predict introns was analyzed in these organisms
by using simpler models of intron composition that consider only
particular subsets of pentamers. The results (Fig. 5) show clearly
that when only intron-biased pentamers are included, sorted by
their contribution to the relative entropy of intron- vs. exon
pentamer composition, a large contribution to intron recogni-
tion can be derived from a very small subset of pentamers.
Strikingly, a subset of only 10 pentamers (less than 1% of the
total) gives more than 50% of the total contribution to accuracy
that can be derived from considering all possible pentamers in
all three organisms (lower dashed gray lines indicate 50% level
in Fig. 5). These ‘‘top 10’’ pentamers are listed in Fig. 5D.
Approximately 75% of the contribution to accuracy derivable
from all pentamers in each organism (upper dashed gray lines in
Fig. 5) can be derived from only 40 pentamers, still less than 4%
of the total.

Discussion
This study presents a large-scale computational analysis of
pre-mRNA splicing that has been able to take advantage of
sequence data from five essentially complete eukaryotic ge-

nomes. We present a systematic approach for assessing the
contributions of different transcript features to intron recogni-
tion and for estimating the amount of information required to
achieve any desired level of accuracy of intron identification.
This approach has been applied to analyze recognition of short
introns in five different eukaryotes: yeast, C. elegans, Drosophila,
Arabidopsis, and human. Short introns may represent a distinct
class of introns that are spliced by an intron definition mecha-
nism (3, 21).

Our results highlight significant similarities and differences
between the organization of splicing information in transcripts
from different organisms. In yeast, the 59ss, 39ss, and branch
signal motifs contain sufficient information to detect the loca-
tions of introns in transcripts with very high accuracy (98%; see
also ref. 22), but the low information content of the yeast 39ss
motif is sufficient to determine the precise 39 splice junction for
only about 86% of yeast introns (Table 1). Some additional
transcript feature(s) not included in our models must play a role
in specifying the 39 splice junction of at least some yeast introns.
Plausible candidates for this feature include RNA secondary
structure (23, 24) or presence of additional enhancer or repres-
sor elements in the 39 ends of some yeast introns.

In Drosophila and C. elegans, the 59 and 39 splice signal motifs
are sufficient to detect more than 90% of short introns. Our
analysis suggests that the branch signal motif plays a minor but
appreciable role in Drosophila splicing. Intron length preference
and intron pentamer composition also may play a small role in
intron recognition in both invertebrates (Table 1 and Fig. 4). The
INTRONSCAN model is able to predict the locations and exact
splice junctions of short introns in both Drosophila and C. elegans

Fig. 4. Relative contributions of five transcript features to intron detection.
The area of each wedge represents the relative contribution to intron detec-
tion accuracy of the corresponding transcript feature, calculated as described
in Methods. The sizes of the wedges are scaled so that the complete circle
represents the RelEnt per intron required to achieve 98% detection accuracy
in each organism, derived from Fig. 3.

Fig. 5. Contribution of subsets of pentamers to intron prediction. Exact
prediction accuracies are shown for INTRONSCAN by using the 59ss and 39ss
signals and specialized intron composition models that score particular sub-
sets of pentamers (see the supporting information) as a function of the
number of pentamers used. Circles represent accuracy calculated by using 0,
10, 20, 40, 60, and 100 pentamers, with pentamers chosen in order from high
values of flog( fyg) to low, where f and g are the pentamer frequency in introns
and exons, respectively, using a protocol that avoids choosing overlapping
pentamers (see the supporting information). (A) Drosophila, (B) Arabidopsis,
(C) human. (D). The first ten intron-biased pentamers chosen from each
organism. The dashed black line represents average accuracy for 25 random
orderings of pentamers. The solid gray line represents accuracy by using all
1,024 pentamers—dashed gray lines are described in text.
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with high accuracy (94% and 95%, respectively), implying that
invertebrate introns contain essentially all of the information
necessary for their recognition.

The 59 and 39 splice signal motifs of Arabidopsis introns are not
sufficient to accurately specify short intron locations, and the
branch signal motif could contribute only marginally. However,
the pentamer composition of Arabidopsis introns can contribute
enormously to the recognition of short intron locations (Table
1). This effect can be attributed to a relatively small number of
pentanucleotides, most quite U-rich (Fig. 5D), consistent with
previous results implicating U-rich sequences in splicing of plant
introns (25, 26). Thus, splicing of short Arabidopsis introns can
largely be explained by a model involving recognition of the
classical splice signals and a handful of U-rich intronic enhancer
motifs. Interestingly, the accuracy observed for INTRONSCAN in
Arabidopsis transcripts is significantly higher than that predicted
on the basis of the Monte Carlo data (Fig. 3). Preliminary
analysis suggests that this discrepancy results from a ‘‘compen-
sation’’ effect in which introns with weak splice sites are more
likely to contain U-rich pentamers (data not shown).

As in Arabidopsis, the 59 and 39 splice signals of human introns
are far too weak to reliably determine the locations of even short
introns in human transcripts, and the human branch signal can
contribute only marginally to intron recognition. Our analysis
also implicates a small subset of intron-biased pentamers in
recognition of short human introns (Fig. 5). These pentamers
appear to be dominated by the presence of G triples (GGG), a
well-established splicing enhancer motif in human introns (19,
27, 28). However, these motifs do not appear to provide all of the
information necessary for accurate determination of short intron
locations in human transcripts. Some additional transcript fea-
ture(s) must play a role in recognition of at least some short
human introns. It could be that some intronic enhancers are
longer than five bases or require precise spacing that we have not
effectively modeled. The separation between long and short
introns is much less pronounced in human than in the other
organisms (Fig. 1). This observation might indicate that some
human introns we have classified as short may functionally act as

long introns and be spliced by exon definition mechanisms, which
we have not modeled.

Interestingly, short introns show a statistically significant
tendency to cluster together in C. elegans, D. melanogaster, A.
thaliana, and human (data not shown). This observation suggests
that simply scanning the genome for clusters of predicted short
introns by using INTRONSCAN could help to identify genes. This
method, because it does not rely on ORFs, could potentially
identify nonprotein coding genes (which are effectively invisible
to most gene prediction algorithms) as well as protein coding
genes. To test this approach, INTRONSCAN was applied to a
sample of Drosophila genomic contigs, identifying a number of
statistically significant clusters of predicted short introns. Most
of these clusters overlapped annotated genes. At least one novel
gene also was detected (see supporting information and Fig. 6,
which is published on the PNAS web site).

Here, we have focused on the constitutive splicing of short
introns, ignoring genes known to be alternatively spliced. Further
progress in modeling and understanding splicing specificity will
require development of models of the exon definition process to
complement our initial efforts to model intron definition and
will eventually require consideration of alternative splicing. It
will also be important to more precisely define the nature of the
enhancers and repressors that function in splicing. It is interest-
ing that many of the top 10 intron-biased pentamers identified
in Fig. 5D match well-known intronic enhancer motifs in human
and Arabidopsis. The top 10 intron-biased pentamers in Dro-
sophila appear to fall into two classes: AU-rich motifs and
sequences containing UGA (Fig. 5D). A previous study showed
that AU-rich sequences from plant introns could function as
intronic splicing enhancers in Drosophila (29). Our analysis
supports a role for naturally occurring AU-rich andyor UGA-
containing sequences in recognition of fly introns.
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