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Abstract

Motivation: Left ventricular (LV) hypertrophy is a strong predictor of cardiovascular outcomes, but

its genetic regulation remains largely unexplained. Conventional phenotyping relies on manual cal-

culation of LV mass and wall thickness, but advanced cardiac image analysis presents an opportun-

ity for high-throughput mapping of genotype-phenotype associations in three dimensions (3D).

Results: High-resolution cardiac magnetic resonance images were automatically segmented in

1124 healthy volunteers to create a 3D shape model of the heart. Mass univariate regression was

used to plot a 3D effect-size map for the association between wall thickness and a set of predictors

at each vertex in the mesh. The vertices where a significant effect exists were determined by apply-

ing threshold-free cluster enhancement to boost areas of signal with spatial contiguity.

Experiments on simulated phenotypic signals and SNP replication show that this approach offers a

substantial gain in statistical power for cardiac genotype-phenotype associations while providing

good control of the false discovery rate. This framework models the effects of genetic variation

throughout the heart and can be automatically applied to large population cohorts.

Availability and implementation: The proposed approach has been coded in an R package freely

available at https://doi.org/10.5281/zenodo.834610 together with the clinical data used in this work.

Contact: declan.oregan@imperial.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

One of the most complex unanswered questions in cardiovascular

biology is how genetic and environmental factors influence the

structure and function of the heart as a three-dimensional (3D)

structure (Li et al., 2016). This is relevant for understanding the

penetrance and expressivity of variants associated with inherited

cardiac conditions as well as exploring the biology of heart develop-

ment and within-population variation. Cardiac magnetic resonance
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(CMR) is the gold-standard for quantitative imaging (Hundley et al.,

2010), providing a rich source of anatomic and motion-based data,

however conventional phenotyping relies on manual analysis reducing

the variables of interest to global volumes and mass. Computational

image analysis, by which machine learning is used to annotate and seg-

ment the images, is gaining traction as a means of representing detailed

3D phenotypic variation at thousands of vertices in a standardized co-

ordinate space (Fig. 1) (Fonseca et al., 2011; Young and Frangi, 2009).

One approach to inference is to transform the spatially correlated

data into a smaller number of uncorrelated principal components

(Medrano-Gracia et al., 2015), however these modes would not pro-

vide an explicit model relating genotype to phenotype. A more power-

ful approach may be to derive a statistic expressing evidence of a

given effect at each vertex of the 3D model, hence creating a so-called

statistical parametric map—a concept widely used in functional

neuroimaging (Friston, 2007). In this paper we extend techniques

developed in the neuroscience domain to cardiovascular imaging-

genetics by implementing a mass univariate framework to map associ-

ations between genetic variation and a 3D phenotype. Such an

approach would provide overly conservative inferences without con-

sidering spatial dependencies in the underlying data and so we vali-

dated the translation of threshold-free cluster-enhancement (TFCE) to

cardiovascular phenotypes for the sensitive detection of coherent

signal (Smith and Nichols, 2009) as well as implementing robust

control for multiple testing. The feasibility of the proposed method-

ology to derive computationally efficient inferences on imaging-

genetics datasets has been tested through experiments on clinical and

synthetic data using an R package developed for this purpose.

2 Materials and methods

2.1 Study population
The healthy volunteers dataset used in this study is part of the UK

Digital Heart Project at Imperial College London (Bai et al., 2015)

(see Supplementary Data S1 for full cohort characteristic and acquisi-

tion details). To capture the whole-heart phenotype, a high-spatial

resolution 3D balanced steady-state free precession cine sequence was

performed on a 1.5-T Philips Achieva system (Best, the Netherlands).

Images were stored on an open-source database (MRIdb, Imperial

College London, UK) (Woodbridge et al., 2013). Conventional volu-

metric analysis of the cine images was performed using CMRtools

(Cardiovascular Imaging Solutions, London, UK) following a stand-

ard protocol (Schulz-Menger et al., 2013).

Genotyping of common variants was carried out using an

Illumina HumanOmniExpress-12v1-1 single nucleotide polymorph-

ism (SNP) array (Sanger Institute, Cambridge). Clustering, calling and

scoring of SNPs was performed using Illumina GenCall software.

Samples were pre-phased with SHAPEIT (Delaneau et al., 2013) and

imputation was performed using IMPUTE2 (Howie et al., 2009) with

the UK10K dataset as a reference (www.uk10k.org). Quality of the

genotypes was evaluated both on a per-individual and per-marker

level using in-house Perl scripts. SNPs were removed if they had a

Impute Information (INFO) score<0.4, missing call rate in more

than 1% of samples, minor allele frequency of less than 1% or devi-

ated significantly from Hardy-Weinberg equilibrium (P>0.001).

Only non-related individuals with ‘CEU’ ethnicity were retained. The

total genotyping rate in these individuals was 0.997 and the total

number of variants available was 9.4 million.

2.2 Atlas-based segmentation and co-registration
All image processing was performed with Matlab (MathWorks,

Natick, Mass). A validated cardiac segmentation and co-registration

framework was used which has previously been described in detail

(Bai et al., 2015; de Marvao et al., 2015). A 3D shape model (at end-

diastole and end-systole) was created encoding phenotypic variation

in our study population at 49 876 epicardial vertices and visualized in

a standard coordinate space (Fig. 1) (Bai et al., 2015). Wall thickness

(WT) was measured by computing the distance between respective

vertices on the endocardial and epicardial surfaces at end-diastole.

2.3 Overview of the approach
In the following sections we introduce a framework for deriving asso-

ciations between clinical/genetic parameters and a 3D cardiac pheno-

type which is outlined in Figure 2. Briefly, a general linear model is

fitted at each vertex to extract the regression coefficient associated

with the variable of interest (mass univariate regression). Threshold-

free cluster enhancement (TFCE) is then applied to boost belief in ex-

tended areas of coherent signal in the derived vertex-wise statistical

map. The points where a significant effect exists are determined by

applying TFCE on the obtained t-statistic map and on N t-statistic

maps obtained through permutation testing, derived under the null

hypothesis of no effect. Then, at each vertex the frequentist probabil-

ity of having obtained a higher TFCE score by chance is regarded as

the P-value related to the regression coefficient b. Finally, the derived

P-values are adjusted for multiple testing. The permutation testing

procedure employed by this approach is the Freedman-Lane proced-

ure (Freedman and Lane, 1983), whilst a false discovery rate (FDR)

correction using the Benjamini-Hochberg procedure (Benjamin and

Hochberg, 1995) is applied to correct for multiple testing.

2.4 Mass univariate analysis
The association between a ventricular phenotype mapped onto a 3D

mesh and one or more clinical variables can be described using a

general linear model of the form Y ¼ bXþ �, where Y is a vector of,

for example, WT values at each vertex and X is a design matrix that

can be used to model the effect of interest and contains in each col-

umn the subject’s values of clinical co-variates as well as the inter-

cept term. These variables can be numerical (such as age or weight),

categorical or expressing interaction between them. In particular,

categorical variables can be exploited to express either different cat-

egories (such as gender or ethnicity) or the presence/absence in a bin-

ary form of a clinical condition (such as the presence of genetic

mutation or a specific disease). b is the regression coefficient vector

to be estimated and � represents the noise or error term, which is

Fig. 1. Computational image analysis. (A) Short axis cardiac magnetic reson-

ance image demonstrating automated segmentation of the endocardial and

epicardial boundaries of the left ventricle. (B) The segmentation is used to

construct a three dimensional mesh of the cardiac surfaces (left ventricle

shown as a mesh, right ventricle shown as a solid) that is co-registered to a

standard coordinate space. Phenotypic parameters, such as wall thickness,

are then derived for each vertex in the model
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assumed to be a zero-mean Gaussian process and represents the vari-

ability of Y not explained by the model. The regression coefficient

can be standardized by normalizing to mean 0 and unit-variance the

columns of X and Y. As a result, b will represent the amount of vari-

ation of Y in units of its standard deviation when X is increased by

one standard deviation, allowing comparisons between variables.

The same model can be fitted at each ventricular vertex inde-

pendently (mass univariate regression) and statistics can be ex-

tracted and corrected for multiple testing in order to test one or

more statistical hypotheses. In a parametric framework, the t-statis-

tic computed as t ¼ b
s:e: bð Þ is typically used in the neuroimaging litera-

ture to contrast the null hypothesis H0 : b ¼ 0 (no association

between the predictor and the phenotype under study), where s:e: bð Þ
is the standard error of the estimator of b (Friston, 2007). The re-

gression coefficients b and their related P-value thus obtained can be

plotted to display, at high resolution on the whole 3D ventricle, the

magnitude and spatial distribution of a given association. However,

this approach underestimates associations where the signal is more

spatially correlated than noise coherence. For this reason non-

parametric statistics such as TFCE are valuable to increase the statis-

tical power of the approach.

2.5 Threshold-free cluster enhancement on a cardiac

atlas
The value of a statistic h obtained through mass univariate regres-

sion at a vertex p—a t-statistic in our context—is transformed by

TFCE using the following integral:

TFCE pð Þ ¼
ðhp

h¼0

e hð ÞE hH dh ’
Xhp

h¼0

e hð ÞE hH Dh (1)

In the equation hp is the value of the vertex statistic, e(h) is the ex-

tent of the cluster with cluster-forming threshold h that contains p,

and E and H are two parameters usually set to 0.5 and 2 for empir-

ical and analytical motivations (Smith and Nichols, 2009). In com-

putational algorithms the integral is estimated using a discrete sum.

The computational model of the heart is defined as a 3D mesh com-

posed of non-congruent triangles where at each vertex pointwise

phenotypic variables are stored for each subject. The translation of

TFCE to a cardiac model is not straightforward as the model is not

composed of a regular grid of voxels (as in brain imaging applica-

tions) but instead forms a mesh of vertices. We addressed this

problem by associating an area to each vertex i equivalent to the

mesh area closest to that vertex. In computing Eq. 1 at each vertex,

the most time consuming part is deriving e(h)—the area of all the

elements connected to p that have a statistic value greater or equal

to h—as a different e(h) needs to be computed for each vertex of the

mesh and for each term of the sum. However, the TFCE score asso-

ciated to a vertex p of a specific h in the summation consists of the

same score that should be associated with all the vertices which con-

tribute to e(h). Therefore, the computational time of the TFCE

method can be significantly reduced by sampling the interval be-

tween the maximum and minimum statistic h in the statistic map so

as to use each sampled value as a threshold ~h for the selection of ver-

tices with a greater statistic value in the case of positive threshold,

or less than ~h in the case of a negative threshold. The edges of the

graph are defined from a list containing the nearest neighbours of

each vertex, and which is filtered at each iteration to contain only

the vertices selected by the thresholding operation, resulting in one

or more graphs of connected vertices. In this way, all the possible

patterns of signal on the ventricle can be discovered without relying

on assumptions about the geometry of cluster shapes. For all the

obtained graphs including more than two vertices the TFCE score

can be computed and associated to all the vertices that belong to

them. The final TFCE score is the sum of all the TFCE scores thus

obtained.

2.6 Permutation testing
The P-value associated with the regression coefficient computed at

each atlas vertex can be derived via permutation testing. In particu-

lar, by permuting N times the input data, N TFCE scores maps can

be obtained. It is important that the adopted permutation strategy

guarantees the exchangeability assumption, i.e. permutations of Y

given X do not alter the joint distribution of the dependent variables

under the null hypothesis. In the proposed context, the Y values

themselves are not exchangeable under the null hypothesis, as the

predictors included in the model together with the variable under

study are nuisance variables that could explain some portion of vari-

ability of Y. In order to address this problem, among a number of

available techniques, the Freedman-Lane procedure (Freedman and

Lane, 1983) has proved to provide the best control of statistical

power and false positives (type 1 error) (Winkler et al., 2014). This

procedure proceeds as follows. If Z contains all the nuisance vari-

ables previously contained in X, the general linear model can be

Fig. 2. Outline of three-dimensional mass univariate framework. A statistical atlas provides point-wise measures of ventricular geometry and function which can

be linked to a given predictor through a general linear model. Using mass univariate regression, three-dimensional maps of a test statistic and the degree of asso-

ciation (b) can be derived. Threshold free cluster enhancement (TFCE) coupled with permutation testing produces vertex-wise P-values weighted to the degree of

coherent spatial support. Finally, P-values are corrected for multiple testing. Regression coefficients enclosed by significance contours are represented on a

model of the left ventricle
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rewritten as Y ¼ bXþ cZþ �. Then, instead of permuting Y and ex-

tracting b, the procedure computes the residual-forming matrix RZ

¼ 1�XXT and performs N different permutations by computing

the model cPN RZY ¼ bXþ cZþ � at each point, where cPN is the

permutation operator. For a full derivation of the Freedman-Lane

strategy see Winkler et al. (Winkler et al., 2014).

2.7 False discovery rate correction for multiple

comparisons
A multiple testing problem arises by testing tens of thousands of

statistical hypotheses simultaneously. Control of the family wise

error rate at 5% could be derived by extracting the maximum score

from each map derived via permutation testing and by using the

95th percentile as a threshold for significance. However, in this con-

text such a correction could be overly conservative as we are rarely

interested in the exact number of vertices that reach significance.

The main goal is to detect extended areas of coherent signal and

therefore we can accept a maximum fixed percentage of false discov-

eries as provided by false discovery rate (FDR) procedures. In

particular, these procedures can be applied to adjust the voxelwise

P-values obtained at each vertex by computing the ratio between the

number of times in which a TFCE score greater than the measured

one has been obtained and the number of permutations N. We have

found adaptive procedures such as the two-stage Benjamini-

Hochberg (Benjamini et al., 2006) not suitable for our dataset, since

it led to lower P-values and increased areas of significance, as also

reported in the neuroimaging literature (Reiss et al., 2012). For this

reason, the original Benjamini-Hochberg (BH) (Benjamin and

Hochberg, 1995) procedure has been employed for this work. It is

important to underline that both FDR correction procedures are

valid when the tested hypotheses are independent or satisfy a tech-

nical definition of dependence called positive regression dependency

on a subset (Benjamini and Yekutieli, 2001). This condition for

Gaussian data is translated into the requirement that the correlation

between null voxels or between null and signal voxels is zero or

positive, and for smoothed image data as those that compose a car-

diac atlas, this assumption is generally considered satisfied (Friston,

2007).

2.8 Software
The proposed mass univariate framework has been coded as an R

package (mutools3D) which benefits from the use of vectorized op-

erations. Matrices containing the phenotypic data and templates to

visualise the 3D models are also available with the software. Linear

regression assumptions must be met in order to obtain reliable infer-

ences (for a review of them and their importance in a mass univari-

ate setting see Supplementary Data S2). Particularly important in

this context are multicollinearity and heteroscedasticity problems

which should be checked and solved for each model definition. For

the latter, the R package implements mass univariate functions ex-

ploiting HC4m heteroscedascity consistent estimators (Cribari-Neto

and da Silva, 2011).

3 Results

3.1 GWAS replication study
As an exemplar application, six out of nine exonic SNPs which have

previously shown an association with LV mass in a case-control gen-

ome wide association study (GWAS), using echocardiography for

phenotyping (Arnett et al., 2009), were also identified in the UK

Digital Heart Project genotypes and were assessed for replication.

For each SNP, WT at each vertex in the 3D model in 1124 healthy

Caucasian subjects was tested for association with the posterior esti-

mate of the allele frequency by a regression model adjusted for age,

gender, body surface area (BSA) and systolic blood pressure (SBP).

The tested SNPs are rs409045, rs6450415, rs1833534, rs6961069,

rs10499859 and rs10483186 and cohort characteristics are reported

in Supplementary Data S5. Regression diagnosis through Breush-

Pagan and White’s test showed how the homoscedasticity assump-

tion was violated at a large number of vertices, therefore mass

univariate regression was corrected using HC4m heteroscedascity

consistent estimators (Cribari-Neto and da Silva, 2011). Regarding

the assumption of multicollinearity, the condition number of the

model matrix was 2.19 while the variance inflation factor was equal

to 1.06, suggesting a very low degree of multicollinearity. All the

simulations were executed on a high performance computer (Intel

Xeon Quad-Core Processor (30 M Cache, 2.40 GHz), 36 Gb RAM),

using the analysis pipeline and R package proposed in this paper

(Fig. 2). A multiple comparisons procedure correcting for the

number of vertices and the number of SNPs tested was applied

by simultaneously testing in a BH FDR-controlling procedure all

the TFCE-derived P-values from all the models as suggested in

(Benjamini and Yekutieli, 2005). The number of permutations was

fixed to 10 000 and simulations required less than 3 h each. Finally,

as a result of a preliminary study we conducted (full details in

Supplementary Data S3), TFCE parameters E and H were set to 0.5

and 2, as suggested in the original TFCE paper (Smith and Nichols,

2009), since this choice provides good sensitivity and specificity on a

range of synthetic signals.

Four SNPs showed a significant association with WT as reported

in Figure 3. These are rs409045 (maximum regression coefficient
�b ¼ �0:1, percentage of the LV area significant S ¼ 13%), rs6450415

(�b ¼ �0:11; S ¼ 11%), rs6961069 (�b ¼ �0:09; S ¼ 44%) and

rs10499859 (�b ¼ 0:1; S ¼ 41%). Conventional linear regression ana-

lysis using LV mass and the same model for all the SNPs did not reach

significance (Supplementary Data S5).

3.2 Assessment of sensitivity, specificity and false

discovery rate on synthetic data
Sensitivity, specificity and the rate of false discoveries of the pro-

posed pipeline were estimated using synthetic data. A 3D model

showing no correlation between WT and the posterior estimate of

the allele frequency Xsnp of an non-associated SNP (rs4288653) ad-

justed for age, gender, BSA and SBP was used to generate back-

ground noise. A synthetic data signal was generated by summing to

the WT values of each subject a term I b Xsnp at each vertex, where I

is the signal intensity and b is a map of regression coefficients. Two

contrasting b maps (signal A and B) obtained from real clinical data

were chosen and are available in Supplementary Data S6. Signal A

was characterized by non-null b coefficients covering the 10% of

total area of the LV and scaled to the (0, 1] range, while signal B pre-

sented non-null regression coefficients scaled to the [-1, 0) range in a

more extended area covering the 60% of the LV surface. By subsam-

pling the number of subjects N and the signal intensity I, different

signals to be detected by the proposed standard mass univariate

pipeline were obtained. The number of permutations for each simu-

lation was fixed to 5000 and results were linearly interpolated and

plotted on the contour plots shown in Figure 4.

Sensitivity increased at larger sample sizes N and signal inten-

sities I, reaching the greatest values with the most extended signal

(signal B) as expected. Given the sample size of our GWAS replica-

tion study and the intensity of the associations found, these results
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would assign a sensitivity of 70% for the first two discovered SNPs

and more than 90% for the other two. Moreover, the rate of false

discoveries was 0 for all the results of signal A and below 5% except

for few simulations involving signal B and sample sizes greater than

1600 (results reported in Supplementary Data S6). This effect is due

to the large synthetic signal extension, which causes TFCE to extend

its support to vertices near the true signal which show the same dir-

ection of effect. This is not considered a major limitation as TFCE

will not enhance clusters that originate only from noise. Finally, sen-

sitivity, specificity and the rate of false discoveries were also com-

puted using our pipeline without TFCE—which showed how

application of TFCE provides a relevant increase of up to 50% in

sensitivity which only comes at the expense of a small decrease in

specificity on large extended signals (Supplementary Data S6).

Finally, we have performed a comparative study between TFCE

and a standard cluster-based thresholding method as reported in the

original TFCE paper on brain imaging data (Smith and Nichols,

2009), which has been implemented in the proposed R package

(Supplementary Data S4). Overall, in agreement with the neuroi-

maging literature, the sensitivity of the cluster-extent based thresh-

olding method was lower than TFCE and proved to be very

dependent on the cluster-forming threshold. Moreover, higher false

discovery rates and lower specificities characterized cluster-extent

based thresholding results in all cases when their sensitivity was

comparable or greater than TFCE.

4 Discussion

The environmental and genetic determinants of cardiac physiology

and function, especially in the earliest stages of disease, remain

poorly characterized and morphological classification relies on one-

dimensional metrics derived by manual image segmentation (Khouri

et al., 2010). In contrast, computational cardiac analysis provides

precise 3D quantification of shape and motion differences between

disease groups and normal subjects (Medrano-Gracia et al., 2013).

We have extended the application of these techniques by designing a

general linear model framework that provides a powerful approach

for modelling the relationship between phenotypic traits, genetic

variation and environmental factors using high-fidelity 3D represen-

tations of the heart. By translating statistical parametric mapping

techniques originally developed for brain mapping to the cardiovas-

cular domain we exploit spatial dependencies in the data to identify

coherent areas of biological effect in the myocardium. This frame-

work also accounts for multiple testing correction at tens of thou-

sands of vertices which is the main drawback of this class of

techniques. In particular, the application of TFCE leads to a notable

increase in power of the mass univariate approach at the expense of

only a slight increase of the false discovery rate in large extended

signals.

Genetic association studies using conventional 2D imaging leave

much of the moderate heritability of LV mass unexplained (Fox

et al., 2013; Semsarian et al., 2015; Vasan et al., 2009). One contri-

bution may be the lack of phenotyping power of conventional imag-

ing metrics, which require manual analysis and are insensitive to

regional patterns of hypertrophy. Our simulations on synthetic data

show that our approach has the power to detect anatomical regions

associated with even small genetic effect sizes. In the reported exem-

plar application, we replicated the effect of four SNPs discovered in

a GWAS for LV mass using a 3D WT phenotype with TFCE applied,

while none of the SNPs replicated with conventional LV mass ana-

lysis. The genotype-phenotype associations that we report reflect

that cardiac geometry is a complex phenotype with a highly poly-

genic architecture dependent on anatomical patterns of gene expres-

sion and spatially varying adaptations to haemodynamic conditions

(Srivastava and Olson, 2000; Wild et al., 2017).

One of the main limitations of the presented framework is that

high-spatial resolution CMR is not available in all cohorts, although

conventional two-dimensional images may be super-resolved to pro-

vide similar shape models (Oktay et al., 2017). A second limitation

Fig. 3. Applying three-dimensional analysis to single nucleotide polymorph-

ism (SNP) replication. b coefficients are plotted on the surface of the left ven-

tricle for the effect of 4 distinct SNPs on wall thickness (WT) adjusted for age,

gender, body surface area and systolic blood pressure. Yellow contours en-

close standardized regression coefficients reaching significance after multiple

testing
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is that the true association may not be linear in the model param-

eters and nonlinear models could better fit the data. However, the

advantages favouring a general linear model are its simplicity, the

ability to easily design and adjust the results for multiple factors and

its wide use in biomedical statistics. A third limitation of this work

is with regards to the experiments using synthetic data as we only as-

sessed noise in our single centre population and did not generalize

this to other cohorts. A general limitation of these approaches is that

they do not establish causal relationships, such as the interaction be-

tween genetic variants, blood pressure and LV mass, although this

may be addressed in future work by Mendelian randomization.

Mass univariate approaches do not directly consider the local co-

variance structure of the data, however this is accounted for when

Random Field Theory or permutation tests define a threshold for

significant activation (Bronzino and Peterson, 2015). In the neuroi-

maging literature, in the context of brain-wide candidate-SNP ana-

lyses, mass univariate approaches are used more extensively than

multivariate approaches as the latter are less sensitive to regional ef-

fects and they require more observations than the dimension of the

response variable (i.e. number of vertices) or the use of dimensional-

ity reduction techniques (Friston, 2007).

As the methods are computationally efficient and require no

human input for phenotypic analysis, it is feasible to scale up the

pipeline to larger population cohorts such as UK Biobank, which

aims to investigate up to 100 000 participants using MR imaging

(Petersen et al., 2013). Applying these concepts to revealing the ef-

fect of rare variants on LV geometry in participants without overt

cardiomyopathy (Schafer et al., 2017) and to vertex-wise genome-

wide analyses also represent an interesting area of future work. In

this latter context, multivariate approaches may show promise for

modelling high-dimensional imaging and genetic data (Liu and

Calhoun, 2014; Vounou et al., 2012). Finally, while we have

focused on LV geometry and shape, the same approach can be

applied to time-resolved vertex-wise data to create a functional

phenotype for regression modelling.

5 Conclusion

We report a powerful and flexible framework for statistical para-

metric modelling of 3D cardiac atlases, encoding multiple pheno-

typic traits, which offers a substantial gain in power with robust

inferences. We have implemented and validated the approach on

both synthetic and clinical datasets, showing its suitability for de-

tecting genotype-phenotype interactions on LV geometry. More gen-

erally, the proposed method can be applied to population-based

studies to increase our understanding of the physiological, genetic

and environmental effects on cardiac structure and function.
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