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Abstract

Motivation: Current metagenomics approaches allow analyzing the composition of microbial com-

munities at high resolution. Important changes to the composition are known to even occur on

strain level and to go hand in hand with changes in disease or ecological state. However, specific

challenges arise for strain level analysis due to highly similar genome sequences present. Only a

limited number of tools approach taxa abundance estimation beyond species level and there is a

strong need for dedicated tools for strain resolution and differential abundance testing.

Methods: We present DiTASiC (Differential Taxa Abundance including Similarity Correction) as a

novel approach for quantification and differential assessment of individual taxa in metagenomics

samples. We introduce a generalized linear model for the resolution of shared read counts which

cause a significant bias on strain level. Further, we capture abundance estimation uncertainties,

which play a crucial role in differential abundance analysis. A novel statistical framework is built,

which integrates the abundance variance and infers abundance distributions for differential testing

sensitive to strain level.

Results: As a result, we obtain highly accurate abundance estimates down to sub-strain level and

enable fine-grained resolution of strain clusters. We demonstrate the relevance of read ambiguity

resolution and integration of abundance uncertainties for differential analysis. Accurate detections

of even small changes are achieved and false-positives are significantly reduced. Superior per-

formance is shown on latest benchmark sets of various complexities and in comparison to existing

methods.

Availability and Implementation: DiTASiC code is freely available from https://rki_bioinformatics.

gitlab.io/ditasic.

Contact: renardB@rki.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Rapid advances in next generation sequencing (NGS) technologies

have revolutionized the field of metagenomics (Oulas et al., 2015;

Wooley et al., 2010). Metagenomics enables the study of complex

communities in environmental or human samples by direct analysis of

whole shotgun metagenomes, without prior need for cultivation.

Among others, two major goals in metagenomics profiling studies are

pursued. One is to unravel the taxonomic composition of the commu-

nity in a given sample, the second concerns the abundance change of

taxa between different metagenomes (Neelakanta and Sultana, 2013).

Especially, differences occurring on strain level in microbiomes

can be of high relevance for disease and health state (Nawy, 2015).

Investigations on strain level have been proven to be crucial for the

understanding of evolutionary processes, adaption, pathogenicity,

drug resistance and transmission (Lieberman et al., 2014; Rosen

et al., 2015; Shapiro et al., 2012; Snitkin et al., 2011). However, al-

though importance of resolution on strain level is acknowledged,

there are still only a limited number of tools focusing on accurate

profiling beyond species level (Sczyrba et al., 2017).

Altogether, in this context, three main concepts are relevant:

strain identification, abundance estimation and differential abun-

dance assessment. Our objective in this work is to address all these

steps by specifically focusing on strain level resolution and its arising

challenges. In particular for differential abundance evaluation on

the strain level, there is a need for novel tools. Here, we use the term

strain level referring to the highest possible resolution available and

always work on the exact genome level.

VC The Author 2017. Published by Oxford University Press. i124

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 33, 2017, i124–i132

doi: 10.1093/bioinformatics/btx237

ISMB/ECCB 2017

https://rki_bioinformatics.gitlab.io/ditasic
https://rki_bioinformatics.gitlab.io/ditasic
Deleted Text: -
Deleted Text: -
Deleted Text: ,
Deleted Text: Shapiro <italic>et<?A3B2 show $146#?>al.</italic>, 2012
Deleted Text: Lieberman <italic>et<?A3B2 show $146#?>al.</italic>, 2014; 
Deleted Text: ,
http://www.oxfordjournals.org/


Many concepts have been pioneered for taxa identification

and quantification, apart from assembly and binning methods, di-

verse metagenomics profiling tools have specialized on this task

(Lindgreen et al., 2016; Sczyrba et al., 2017). In practice, these con-

cern the assignment of the sequenced reads to taxa and correspond-

ing inference of taxa abundance. Read assignment can be conducted

either by the full alignment of reads to genome sequences or by using

pseudo-alignment approaches (Wood and Salzberg, 2014). The lat-

ter is sufficient for many metagenomics quantification studies due to

the fact that only the assignment of reads is required and not exact

alignments. Another variant is to rely on marker genes instead of

complete genome sequences (Segata et al., 2012; Scholz et al., 2016;

Luo et al., 2015); however, a general drawback is the requirement

of high-sequencing coverage contrasting typical metagenomics sce-

narios of many low abundant taxa (Li, 2015). One of the first and

popular reference-based tools for read assignment in metagenomics

was MEGAN (Huson et al., 2007), which assigns the reads to the

lowest common ancestor in the taxonomic tree at which a unique

alignment is achieved. However, this approach limits MEGAN to

the identification and quantification of only higher taxonomic lev-

els. A main characteristic on strain level is the presence of highly

similar reference sequences, causing many reads to match to mul-

tiple genomes equally. A further common practice is to assign multi-

ply mapped reads heuristically to reference genomes according to

uniquely mapped read proportions (Liu et al., 2017; Nayfach et al.,

2016). Yet, this can easily result in biased abundance estimates due

to reference sequence similarities as observed e.g. by Liu et al.,

2017. GRAMMy (Xia et al., 2011) and GASiC (Lindner and

Renard, 2013) were the first tools to include reference genome simi-

larities in a model for the resolution of ambiguously mapped reads.

Since being based on read alignments, these methods can encounter

computational limits in large sample sizes. A new era evolved by uti-

lizing fast k-mer approaches, significantly accelerating read assign-

ments, with Kraken being a popular representative (Wood and

Salzberg, 2014), but showing reduced resolution power on strain

level (Schaeffer et al., 2017). As a consequence, the importance of

combining fast mapping approaches with methods for read ambigu-

ity resolution was recognized. This was likewise applied in the field

of RNA-Seq, resulting in the development of kallisto (Bray et al.,

2016), which promises to also support metagenomics abundance

analysis (Schaeffer et al., 2017). kallisto consists of two parts, a new

fast pseudo-aligner based on k-mer hashing and an expectation–

maximization (EM) algorithm on equivalence classes, which carries

out the statistical resolution of read ambiguities.

In this work, we present DiTASiC (Differential Taxa Abundance

including Similarity Correction) which relies on pseudo-alignments

for mapping and is built on a novel generalized linear model (GLM)

framework for read ambiguity resolution. Hereby, we significantly

improve on our previous development in this field, GASiC. Our new

model framework is developed to adapt more precisely to the char-

acteristics of absolute mapping count data observed for taxa.

Moreover, our method improves on existing pure abundance profil-

ing strategies by including additional error terms in the model and

capturing abundance estimation uncertainties.

The integration of variance of abundance estimates plays a cru-

cial role for the differential abundance analysis. This variance re-

flects the uncertainty in the resolution of read mapping ambiguities

in the presence of similar reference sequences. Hence, it is of particu-

lar importance on strain level to integrate this variance to enable ac-

curate detections of differential or non-differential abundance of a

taxon in co-existence of similar strains, most notably in the case of

smaller changes.

Most approaches developed for identification of differential

abundance in the field of comparative metagenomics focus exclu-

sively on experimental sources of variance, namely on sample vari-

ance relevant within technical and biological replicates. A large

variety of tools is available (Jonsson et al., 2016); amongst others,

software packages implementing diverse parametric and non-

parametric statistical standard tests (Karlsson et al., 2013; Parks

et al., 2014; Parks and Beiko, 2010; Segata et al., 2011; White et al.,

2009). Another group comprises zero-inflated models either com-

bined with Gaussian mixture distribution (Paulson et al., 2013), log-

normal distribution (Sohn et al., 2015), or beta-regression (Peng

et al., 2015), concentrating on the potential sparsity in count data.

Further, popular methods from RNA-Seq analysis such as edgeR

(Robinson et al., 2010), DESeq2 (Love et al., 2014) and voom (Law

et al., 2014) are also commonly applied in comparative metagenom-

ics. Without doubt, the integration of experimental variance is of

high necessity when comparing groups of samples. However, here,

we want to emphasize and raise awareness for variance in abun-

dance estimates and its impact on differential abundance analysis on

strain level.

Further it should be noted that many methods treat the differen-

tial assessment of taxa and genes equivalently. However, assump-

tions such as the majority of features will show non-differential

abundance, which has widely been proven for gene expression, are

not necessarily valid for taxa abundance in a sample. Antibiotics

treatment and other life influential factors have shown rapid

changes of microbial compositions in human samples (David et al.,

2014) and similar scenarios are found in ecological environments

(Gibbons and Gilbert, 2015). Thus, commonly used assumptions

cannot be easily transferred to composition change.

In summary, we present DiTASiC, which addresses abundance

estimation as well as differential abundance of taxa specifically

focusing on strain level. A new GLM framework is proposed for

resolution of read mapping ambiguities and allows inference of

highly accurate taxa abundance estimates. Second, a statistical

framework, which integrates abundance estimate uncertainties, is

built for differential abundance testing. Here, no prior assumptions

on overall composition change are required. A resulting list of tested

taxa is reported with estimated abundances, fold-changes and P-val-

ues to infer significance. The performance of DiTASiC is evaluated

on different metagenomics data sets from four different data sources

and in comparison to existing tools.

2 Materials and methods

DiTASiC is designed as a comprehensive approach for abundance

estimation and differential abundance assessment of individual taxa.

Thereby, the main focus is on distinguishing on the strain level with

highly similar sequences and its corresponding challenges. The steps

of the DiTASiC workflow are illustrated in Figure 1, it consists of

three main parts: mapping, abundance estimation and differential

abundance assessment.

In the first two parts we built on some of the core ideas of our

previously published tool GASiC (Lindner and Renard, 2013), while

strongly improving on abundance quantification and introducing

new methodology to address the critical aspects of variance of abun-

dance estimates and differential abundance.

In a metagenomics sample measured by NGS technologies we

face millions to billions of reads which are derived from diverse

taxa. DiTASiC relies on a pre-filtering of species by fast profiling

tools such as Kraken (Wood and Salzberg, 2014), CLARK
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(Ounit et al., 2015), Kaiju (Menzel et al., 2016), or by using Mash

(Ondov et al., 2016), a genome distance calculator, to reduce the

number of potential reference genomes and keep the main focus on

species expected in the data. Here, we specifically aim at revealing

the picture on the highest available strain levels. In the first mapping

step, all reads are assigned to the given references as a first attempt

to decipher their potential origin. The number of hits per reference

genome is counted. We refer to it as mapping abundance of a taxon.

In the next step of abundance estimation, a new generalized linear

model (GLM) is introduced for the resolution of shared read counts,

which are crucial on strain level. As a result, more accurate abun-

dance estimates are obtained for the different strains along with

standard errors for abundance uncertainty. In the last section, the

focus is on the comparison of whole metagenomics samples and the

assessment of differential abundance of taxa. Thereby, we concen-

trate on a method to integrate the variance of abundance estimates.

Abundances are transformed into distributions, divergence of distri-

butions is used to infer differential events and corresponding P-val-

ues are calculated.

The details of the three DiTASiC parts are explained in the fol-

lowing sections. The following notation is applied: different metage-

nomics samples are denoted as D¼ {Dk, k ¼ 1,. . ., K}, each

containing N ¼ {Nk, k¼1,. . ., K} total input reads. A set of taxa

S ¼ {Si, i¼1,. . ., M} with known reference sequences is considered.

Thereby, Si is synonymously used for both the taxa itself as well as

its exact reference genome. Mapping and abundance estimation are

addressed for each data set separately, while the last step of differen-

tial abundance estimation is defined on a pair of samples from D.

2.1 Mapping
To identify their origin, the assignment of reads is conducted by a

competitive mapping approach, which means all selected reference

genome sequences S are simultaneously offered to all reads of a sam-

ple D � D for mapping. Particularly on strain level, reference se-

quences exhibit high sequence similarities, thus some reads are

expected to match to different genome sequences equally well.

These reads are defined as shared reads and we account for all their

multiple hits. However, the exact matching position in a reference

genome Si is not of importance and several position hits of one read

on the same reference Si are counted as one. For the mapping itself,

a pseudo-alignment approach provided as part of the kallisto imple-

mentation (Bray et al., 2016) is applied. As no exact alignments are

required for our purpose, a pseudo-aligner is sufficient and proves to

be much faster and accurate using a fast kmer-based approach.

Here, we gain significant improvements over our previously pub-

lished tool GASiC, which relied on individual reference alignments

by Bowtie 2 (Langmead and Salzberg, 2012).

Altogether, we extract and count the number of read hits each ref-

erence genome receives and refer to it as mapping abundance ci of

taxon Si. In case the data set D consists of mainly dissimilar references

and is dominated by clearly unique mappings, the observed mapping

abundances ci may already closely reflect the underlying true abun-

dances of the taxa. However, if many similar references are present,

which is a common scenario on strain level, a large bias is present due

to multiple hits of shared reads. The sum of the mapping abundances

of all taxa then drastically exceeds the number of input reads.

2.2 Abundance estimation
Following the idea introduced in GASiC, we rely on a simulation-

based representation of reference genome similarities to resolve the

effect of shared reads. A similarity matrix is constructed, which en-

codes the proportion of reads which are expected to be shared

among all pairwise combinations of reference sequences considered.

Reads are simulated using Mason (Holtgrewe, 2010) based on each

reference sequence, and are subsequently mapped to all references

following the same competitive mapping setup as applied to the

reads of D in the step before. The key element is to imitate sequenc-

ing, read, and mapping characteristics as good as possible to

reproduce the source of ambiguities. Parameters such as read length

and mismatch probability are crucial for the simulation of

reads, and are inferred from the raw reads of D. The square matrix

A ¼ (aij), i,j ¼ 1,. . .,M, is computed column-wise for each

Fig. 1. Workflow of DiTASiC. It consists of three main parts: (i) mapping, (ii) taxa abundance estimation and (iii) differential abundance assessment. (i) We rely on

prior pre-filtering of species by external profiling tools such as Kraken or Mash. Reads are mapped to the given reference genome sequences and the number of

matching reads per reference are counted (mapping abundance). A similarity matrix reflecting the genome similarities is constructed. (ii) Subsequently, a GLM is

built for resolution of read count ambiguities, resulting in corrected abundance estimates along with standard errors. (iii) For the comparison of metagenomes,

abundances are formulated as distributions and their divergence reflects differential events. A final list of tested taxa with fold change and adjusted P-values is

reported
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reference, with aij referring to the count of reads simulated from

reference j which map to reference i. Next, the matrix is normalized

column-wise by the read count ajj, the number of simulated reads

which are assigned back to their reference of origin. Thus, the matrix

A¼ (aij/ajj), i,j ¼ 1,. . .,M, holds values between zero and one.

Replacing the classic linear model of GASiC, we formulate a

new GLM with the vector of absolute mapping abundances c and

similarity matrix A to correct for the shared read biases. Aiming to

recover the true, but unknown, abundances r of the taxa:

c ¼ A � rþ e

with A ¼ (aij), i,j¼1,. . .,M, c ¼ (c1, c2, . . ., cM)T, r ¼ (r1, r2, . . ., rM)T

with non-negativity constraint r�0, and error term E.

The observed mapping count ci of taxon i corresponds to a

summed mixture of the underlying true abundance ri of taxon i and

a proportion of shared read counts rj due to the other references:

ci ¼ ri þ
XM

i 6¼j

aij � rj þ ei ;with taxon i and taxa j ¼ f1 . . . Mg 6¼ i

The GLM is defined by an identity link function as a linear relation of

components holds to explain the observed mapping counts. However,

in this setting of discrete counts the error E is defined to follow a

Poisson distribution. We expect and observed no overdispersion in the

abundance estimates within a sample after ambiguity correction by

the model (Supplementary Material). This is in contrast to measure-

ments of replicate samples, which may display overdispersion and mo-

tivate a negative-binomial assumption (Anders and Huber, 2010).

The GLM is internally solved by an ‘iteratively reweighted least

squares’ to find the maximum likelihood estimates referring to the

‘true’ abundance estimates ri for each taxon i. Along with the abun-

dance estimates, standard errors are computed which report the range

of accuracy and reliability of the abundance estimates. Further, P-val-

ues are given for each taxa estimate as a measure of significance.

In case of high uncertainty about the presence of a crucial

amount of taxa within the selected set of references, the application

of an implemented filtering is possible. Thereby, P-values above a

set threshold, commonly a value of 0.05, and estimates below a min-

imum number of assigned reads are used as indicators for false-

positive estimates. The filtering step helps to numerically stabilize

the equation system in case of many absent taxa and a re-

optimization step is subsequently conducted.

2.3 Differential abundance
In this section, the focus is on comparing metagenomics samples.

The objective is to identify which taxa significantly change their

abundance from one metagenome sample to another as well as

which hold a constant abundance. For the differential abundance as-

sessment of similar strains the integration of the variance of their

abundance estimates is crucial. Hence, in place of directly compar-

ing abundance point estimates of taxa between samples, we make

use of the estimates as well as their standard errors.

First, the comparison of different samples requires accounting

for potentially different numbers of total input reads N. The number

of input reads has a significant impact on the computed abundances

r and standard error estimates. A linear dependence is clearly notice-

able (see Supplementary Fig. S1) and is in agreement with theoretical

derivations of the GLM framework. The abundance count estimate

r scales linear with the number of reads whereas the standard error

scales quadratic. This means the accuracy of abundance estimates

improves with increased number of input reads as expected.

Altogether, a normalization factor is required and a factor of Nx/Ny

is correspondingly applied to samples Dx and Dy to achieve a com-

parable base between samples.

In the next step, we integrate abundance estimates and corres-

ponding standard errors to infer an abundance distribution for each

taxon in each sample. Here, it is assumed that the unknown true

abundance count of a taxon underlies a Poisson distribution. The

potential bias due to falsely assigned reads to taxa, after correction

for read ambiguities by the GLM model, is not expected to exceed

the variance of a Poisson distribution. But, an analytical approach is

not feasible here, as the exact distribution is described in practice by

a mixture of Poisson distributions. However, an empirical ap-

proach can be pursued, which is realized by a two-step sampling

process: In the first step, we define intervals with abundance esti-

mates ri 6 their standard errors as boundaries for each listed taxon.

We use a scale unit of one standard error, as this reflects the uncer-

tainty interval which is expected to contain the abundance estimate.

Subsequently, potential abundance point estimates are uniformly

sampled from this interval. Concurrently each of these sampled values

refers to a k value of a Poisson distribution. In the second step, for

each taxon and each potential k of it, 500 values in a default setup are

drawn from the corresponding defined Poisson distribution with par-

ameter k. This creates one empirical distribution based on a specific k
for the taxon. Pooling all empirical distributions, created by all the dif-

ferent k which are assigned to the taxon, results in an overall empirical

distribution comprising 50000 Poisson draws by default setup. We

refer to it as empirical abundance distribution of a taxon.

In order to assess whether taxa show differential abundance be-

tween two samples, their abundance distributions need to be com-

pared. As we rely on empirical distributions here, no analytical form

of standard differential testing is applicable. Yet, we can transfer the

assessment of differential abundance to the question to which extent

the corresponding abundance distributions overlap. Clearly sepa-

rated distributions refer to a significant abundance change, while an

increasing overlap points to smaller or no significant difference.

Measuring the separation of the distributions is implemented by ran-

domly drawing pairs of values from either distribution. The differ-

ence within each pair is computed and yields an overall distribution

of differences as a result. Thereby, the location of the zero value

related to the distribution of differences is meaningful. A zero value

moving towards the center of the distribution reflects a higher previ-

ous overlap and corresponds to a less significant abundance change.

An empirical P-value is correspondingly inferred by determining the

quantile of the zero value within the distribution.

In case a taxon is only detected within one sample, while absent in

the other, the single abundance distribution of the taxon is tested against

a user-defined threshold corresponding to a minimum read count. The

latter test yields the significance of taxa presence in this one sample.

Generally, P-values are calculated individually for all taxa con-

sidered in the samples of comparison, either to assess differential

abundance of taxa present in both samples or to infer new appear-

ance of taxa in only one sample. Thus, P-values need to be adjusted

for multiplicity, which is performed by the method of Benjamini-

Hochberg (Benjamini and Hochberg, 1995). A final report is pro-

vided listing all taxa tested for differential abundance along with

normalized abundance estimates for each sample, log2 fold changes,

and adjusted P-values.

2.4 Implementation
DiTASiC is implemented in Python3 and R (version � 3.3.1), and is

available from https://rki_bioinformatics.gitlab.io/ditasic. Further, a
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linked webpage and user manual provides easy guidance through

the three main commands. DiTASiC is based on a flexible design

and allows the integration of mapping algorithms and read simula-

tors of choice. Our implementation uses the current state of the art

pseudo-alignment algorithm provided within the kallisto framework

(Bray et al., 2016), which can be individually called by the command

kallisto pseudo. As a prerequisite, an overall index is built on se-

lected reference sequences. Using the generated tsv and ec file for-

mats, we extract the mapping counts of the contigs and merge them

according to genomes. This allows circumventing the use of large

SAM files. Further, read simulators need to be optimally adapted

to capture the read characteristics. Here, the Mason simulator

(Holtgrewe, 2010) serves as default.

3 Experimental setup

We tested DiTASiC and existing approaches on a variety of data sets

from four different sources (Table 1), challenging the tools by num-

ber of taxa, total number of input reads, read characteristics, abun-

dance complexity and degree of reference similarities.

A comprehensive simulation setup is established to enable abun-

dance estimation as well as differential evaluation on an exact ground

truth at which taxa proportions are known. In total, we consider 11

different simulation sets characterized by many strain clusters

(Supplementary Fig. S2-3), and distinguish between three groups:

Group (1) serves to evaluate the abundance performance with differ-

ent proportions of absent taxa, group (2) defined by all 35 taxa en-

sures an unbiased differential abundance evaluation in pairwise

comparisons and group (3) focuses on the resolution of large and

highly similar strain clusters as well as on the impact of missing

strains. Further, we relied on the Illumina based FAMeS data set of

Pignatelli and Moya (2011), evolved from the original set by

Mavromatis et al. (2007), which covers low (LC), medium (MC) and

high complexity (HC) metagenomics profiles (Supplementary Fig.

S4). Additionally, we tested the popular Illumina 100 data sample

(Mende et al., 2012), which serves as benchmark set in the latest rele-

vant studies (Lu et al., 2017; Schaeffer et al., 2017). Last, we used

two benchmark data sets of medium complexity from a current com-

parative metagenomics challenge, CAMI (Sczyrba et al., 2017). We

further extended the CAMI sets by simulated spike-in data, adding 30

new strains of genera already present in the original set and 20 million

reads per sample, to create an additional ground truth for differential

assessment. Further details on the data sets and parameter settings are

found in the Supplementary Material. In all presented data sets,

ground truth of relative abundances of taxa is available. Comparing

the samples, a ground truth to classify differentially or non-

differentially abundant taxa is given for the simulation and CAMI

study, while fold-change accuracy can be assessed in all data sources.

4 Results

In the following sections, we demonstrate the performance of

DiTASiC on the presented data sets in comparison to existing tools.

We separately investigate three aspects: (i) abundance estimation,

(ii) absent and missing taxa and (iii) differential abundance.

Evaluations focus on the accuracy of estimates of relative taxa abun-

dance as well as fold change, and on sensitivity and specificity con-

cerning detection of differentially abundant taxa.

4.1 Abundance estimation
In this first part, we address the quantification of taxa in a given

metagenomics sample, aiming for the highest taxonomic level. We

highlight the strength of our proposed GLM model for the reso-

lution of shared read counts and subsequent inference of corrected

abundance estimates for taxa considered.

We compare to our previously published tool GASiC (Lindner

and Renard, 2013), which relies on individual reference align-

ments and a non-negative LASSO modelling approach for abun-

dance estimation, and present significant improvements. Further

we test against the most recently published tool for RNA-Seq ana-

lysis, kallisto (Bray et al., 2016; Schaeffer et al., 2017), which has

also been shown to perform superior to other existing tools in the

application to metagenomics. We also evaluate on the same bench-

mark data to allow further comparison of tools (see

Supplementary Material). Although we compare against the full

version of kallisto, it is important to note, that we use and inte-

grate the pseudo-aligner of kallisto for mapping purpose, but not

kallisto’s quantification and modelling framework. Yet our main

focus in this work is the modeling and resolution of arising read

ambiguities due to highly similar genome sequences considered.

Hence, the comparison of DiTASiC to kallisto in this section refers

to a comparison of our GLM model to the statistical EM frame-

work of kallisto.

All tools are applied to each sample individually, in total we con-

sider and evaluate 17 different samples from four data sources.

The output of all three tools are absolute read counts assigned to

each taxa in the data set considered. Normalization is applied by

dividing all absolute taxa counts by the total number of input reads

of the corresponding sample. We receive an estimation of a quantita-

tive taxa composition of a sample as a result.

All data sets described here provide a ground truth of taxa abun-

dance proportions, enabling us to assess the difference between truth

and estimate. As an error measure we apply the SSE (Sum of

Squared Errors) to evaluate the accuracy of the given estimates, the

SSE also penalizes abundance estimates obtained for absent taxa.

The resulting error measures of abundance estimation by

DiTASiC, GASiC and kallisto, according to all different data sets are

reported in Table 2. Overall, DiTASiC strongly reduces the error on

Table 1. Characteristics of the four data sources: CAMI, FAMeS, Illumina 100 data (i100) and the simulation setups (Sim (1), (2), (3))

Source CAMI FAMeS Sim (1) Sim (2) Sim (3) i100

Samples Set 1-2 LC, MC, HC Set 1-3 Set 4-9 Set 10-11

References 225 122 35 35 55 100

Genera 128 81 12 12 12 63

Species 199 108 22 22 26 85

Reads (M) �150 �1.0 0.75a 0.75a 0.75a 53.3

Length (bp) 100 110 100 100 100 75

Abundance range 0.0009–8% 2–20% 1–30% 0.1–15% 0.1–2% 0.8–2.2%

Note: Each reference set is defined by the union of references of the underlying samples. All read profiles follow Illumina characteristics (areads are simulated

by Mason).

i128 M.Fischer et al.

Deleted Text: 3 EXPERIMENTAL SETUP
Deleted Text: ,
Deleted Text: eleven 
Deleted Text: 1
Deleted Text: 2
Deleted Text: ,
Deleted Text: 3
Deleted Text: Schaeffer <italic>et<?A3B2 show $146#?>al.</italic>, 2017; 
Deleted Text:  
Deleted Text: 4 RESULTS
Deleted Text: ,
Deleted Text: While 
Deleted Text: l
Deleted Text: ,


all data sets compared with GASiC by several orders of magnitude.

Further, DiTASiC shows either comparable and in many cases im-

proved performance to kallisto. Generally, reported error values are

dependent on data size and prevailing genome similarities. However,

the presented values refer to a remarkably high accuracy of abun-

dance estimates overall. Smallest divergences of estimates from the

ground truth are found for the FAMeS data sets (Supplementary Fig.

S5). This is expected due to less pronounced reference similarities

within the data and moderate median abundance proportions, mean-

ing less challenge for the resolution models. The CAMI data do pose

a much greater challenge, considering 255 taxa for quantification

with several strain clusters and some extremely small relative abun-

dance values. Yet, highly accurate taxa estimates, apart from few

small outliers, are obtained by DiTASiC; notably also for very low

relative abundances below 0.01% (see also Supplementary Fig. S6).

CAMI data were not analyzed with GASiC due to computational

limitations. The commonly used i100 data set is characterized by

shorter reads derived from different bacterial strain clusters. DiTASiC

achieves an improved accuracy in comparison to kallisto, and also to

further tools when compared with the values reported in a recent

benchmark study of different abundance profiling tools on the i100

set (Schaeffer et al., 2017) (see Supplementary Material and

Supplementary Fig. S7). The simulation data serves as a challenge

with a high number of similar strains and a smaller number of reads

available for assignment. In comparison, samples in CAMI hold 150

times more reads with only seven times more taxa. The results show

that DiTASiC performs superior in all sets of simulation group (2),

where all taxa are present, while errors are proportionally higher in

sets of group (1), where taxa are absent. Group (1) is primarily

defined by the absence of distant strains or entire strain clusters; the

EM algorithm of kallisto proves to be slightly more accurate in these

scenarios. However, sets in simulation group (3) are characterized by

the absence of strains from highly similar clusters and by the presence

of very large clusters of high sequence similarities. Here, DiTASiC

demonstrates to be more powerful (Supplementary Fig. S8). Notably,

we observe an increased error of abundance estimates in kallisto pre-

dominantly for highly similar strain sequences. In contrast, DiTASiC

reveals its particular strength in the resolution of these strain clusters,

it demonstrates to precisely distinguish abundances down to sub-

strains with sequence similarities above 95%. Different examples are

found for the CAMI, i100 and simulation data, considering diverse

Escherichia coli cluster, Corynebacterium and Staphylococcus aureus

cluster (Supplementary Fig. S9). Here, an accurate cluster resolution is

obtained by DiTASiC, and common errors such as abundance inter-

change or equalization of similar sub-strains are avoided.

Supplementary Figure S10 visualizes the taxa abundance estimates

of the different tools in comparison to the observed mapping abun-

dances, exemplary for three simulation sets of different complexity. It

clearly demonstrates how the mapping abundance, biased due to read

ambiguities, mainly overestimates the ground truth and further assigns

abundance counts to absent taxa. GASiC shows some significant over-

and underestimations, while the accuracy of DiTASiC and kallisto is

consistently high. Further, a study of two replicate sets, defined by read

sets simulated with the same abundance profile, proves robustness and

precise reproducibility of results by DiTASiC as well as kallisto, with

significant improvement over GASiC (Supplementary Fig. S11).

4.2 Absent and missing taxa
We recommend prior pre-filtering of references to focus on reference

genomes of species expected in the data. Still, frequently we consider

more references than taxa actually present in the data and an inclu-

sion of all potentially abundant strains is advised.

Hence, in the simulation groups (1) and (3) and the FAMeS data,

which hold different proportions of absent taxa, we tested the detec-

tion performance of DiTASiC. The internal filtering is conducted to

infer potential false-positive taxa in the given sets. In the simulation

group (1) the abundant taxa proportions of 28, 40 and 45%, re-

spectively, are exactly detected with neither false-positive nor false-

negative calls. In the FAMeS data, proportion of absent taxa based

on the reference set corresponds to 8, 9 and 8% in the three samples.

DiTASiC achieves sensitivity and specificity of 100% for the MC

and HC data. In the LC set, a false-negative is caused by missing one

abundant taxon, resulting in a decreased sensitivity of 99.1%.

(Supplementary Table S1). In simulation group (3), set 10 serves to

study the impact of absent strains from highly similar clusters and

indicates un-biased abundance estimation of strains of the affected

clusters by DiTASiC (refer to Supplementary Fig. S7). In another

study, reads derived from 55 taxa are contrasted to a reduced refer-

ence set of 35 taxa to investigate the impact of missing taxa in a se-

lected reference set. First, we observe that 11% of the reads are not

aligned; second, it is shown that abundance estimates of some taxa

are overestimated by DiTASiC. However, a closer look reveals that

it concerns closely related strains which show an increased abun-

dance due to missing strains within their cluster. The results propose

that no overall abundance bias is caused (Supplementary Fig. S12).

4.3 Differential taxa abundance
Here, we evaluate pairwise comparisons of metagenomics samples, aim-

ing to reveal the change of taxa compositions at the highest taxonomic

level. We demonstrate how the entire process of read ambiguity reso-

lution and incorporating the uncertainty of abundance estimates has a

crucial impact on differential assessment on strain level. As a result, a

Table 2. Accuracy of taxa abundance estimates by DiTASiC, kallisto

and GASiC

DiTASiC kallisto GASiC

CAMI Set 1 6.98 e-02 1.05 e-01 n.a.

Set 2 5.36 e-02 5.69 e-02 n.a.

i100 i100 8.23 e-06 5.62 e-05 9.32 e-04

FAMeS LC 6.87 e-06 1.73 e-08 3.18 e-04

MC 3.07 e-08 1.70 e-08 4.17 e-04

HC 8.34 e-08 2.79 e-08 7.79 e-05

Simulation group (1) Set 1 8.38 e-07 7.61 e-07 6.92 e-03

Set 2 9.33 e-07 9.61 e-07 1.13 e-02

Set 3 4.37 e-07 2.59 e-07 9.73 e-03

Simulation group (2) Set 4 2.54 e-06 4.09 e-05 6.10 e-03

Set 5 1.85 e-06 5.94 e-05 8.54 e-03

Set 6 2.67 e-06 3.46 e-05 2.22 e-03

Set 7 3.41 e-06 2.84 e-04 6.55 e-03

Set 8 4.93 e-06 2.99 e-04 2.27 e-03

Set 9 4.15 e-06 5.37 e-05 1.63 e-03

Simulation group (3) Set 10 3.94 e-06 5.43 e-05 1.84 e-02

Set 11 3.39 e-05 5.07 e-04 7.29 e-03

Note: Accuracy is defined by the SSE between estimates and available

ground truth. A significant error reduction is shown for DiTASiC compared

with GASiC and a comparable performance is observed for kallisto (highest

accuracy is depicted in bold print). GASiC was not run on CAMI data due to

computational limitations.
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more accurate detection of differential events is achieved, particularly in

case of small changes. False-positives are significantly reduced.

In order to evaluate independent of technical and biological vari-

ance factors, we do not consider replicate samples and comparisons

here. This way we can test our specifically addressed differential

method and prove the validity and impact of the abundance variance

without bias. We compare our approach to STAMP (Parks and

Beiko, 2010; Parks et al., 2014), which is available for pairwise

comparisons to exemplary demonstrate the importance of the issues

of read ambiguities and abundance estimation uncertainties. The

mapping abundances of the taxa serve as input for STAMP. STAMP

is a software package providing several statistical tests for differen-

tial taxonomic and functional assessment and a user-friendly graph-

ical interface. The recommended option of a G-test with Yates

continuity correction followed by a Benjamini-Hochberg adjustment

is selected.

Different metagenome comparisons are conducted within the

presented data sources. Evaluations focus on correct detections of

differentially abundant taxa and on accuracy of taxa fold changes.

For the simulation data and the CAMI spike-in data, ground truth

is available for specific classification into differential and non-

differential taxa, results are described by measures of sensitivity, speci-

ficity and accuracy as combined measure of correct detections. For the

FAMeS and the original CAMI data, no classification is provided, here,

the accuracy of fold changes is evaluated by using the SSE instead.

Different pairwise comparisons of the simulation data cover vari-

ous scenarios of non-differential and differential events. A P-value

cutoff of 0.05, adjusted for multiplicity, is used to define differentially

abundant taxa. Evaluation results for the simulation data are pre-

sented in Table 3. For all scenarios, DiTASiC reports no false-positive

hits, holding a false discovery rate (FDR) of zero and a resulting speci-

ficity of one. Further, in five out of eight comparisons also a sensitivity

of 100% is achieved. In the other three cases, the detection of one

known differentially abundant taxon fails resulting in one false-

negative detection and corresponding sensitivities of 97%. Here, it

concerns the differential detection of the sub-strain E.coli K12

MG1655, which holds accurate abundance estimates but fairly large

standard errors, arising due to uncertainties because of high sequence

similarity of 98% with another E.coli sub-strain DH10B. The known

relative abundance decrease by 1% is very small and hereby falls in

the abundance variance range, while an increase by 3% for sub-strain

DH10B could be detected as well as differences below 1% for the

other E.coli strains in the cluster. In general contrast are the results

obtained for STAMP, showing a strong tendency of identifying non-

differential taxa as differentially expressed, causing high numbers of

false-positives. As abundance estimates underlie some variation, add-

itionally biased due to read ambiguities, these results confirm how the

inclusion of standard errors is crucial to identify taxa with consistent

abundances. The FDR of STAMP ranges from 12 to 63% and the

overall accuracy from 46 to 86%.

A similar situation is observed for the CAMI spike-in data.

DiTASiC correctly detects all 15 differential and 15 non-differential

taxa. However, all 30 taxa are found to be differentially abundant by

STAMP, resulting in an accuracy of only 50%. Considering the entire

CAMI data set, fold changes, spanning from 0.0009 to 1024, are pro-

ven to be highly accurate for DiTASiC with an SSE 19 times smaller

compared with the STAMP output. Further, the assigned P-values by

DiTASiC clearly separate the spiked-in non-differential and differential

taxa (Supplementary Fig. S13). All other taxa of the data set, holding

fold change values greater than zero, also receive very small P-values

stating differential abundance, but cannot be further confirmed.

Pairwise metagenome comparisons within the FAMeS data also

exhibit high fold change accuracies, as consequence to the former

highly accurate abundance estimates. Corresponding SSE values are

two magnitudes smaller compared with the ones computed by

STAMP (see Supplementary Table S2).

5 Discussion

Our work demonstrates the challenges concerning strain level reso-

lution in metagenomics data and the need for dedicated methods

for quantification and differential abundance testing. DiTASiC

addresses these challenges and provides novel approaches.

The inference of taxa abundances by directly counting mapped

reads is not suitable on strain level. Although read mappers have sig-

nificantly improved in speed and mapping accuracy, they cannot

Table 3. Evaluation of differential taxa abundance by DiTASiC and STAMP based on sample comparisons within the simulation data and

the CAMI data set

Data source Samples

compared

No. of non-

differen-

tial

events

No. of

differential

events

False positives

(FPs) and False

negatives (FNs)

FDR Sensitivity j Specificity Accuracy

DiTASiC STAMP DiTASiC STAMP DiTASiC STAMP DiTASiC STAMP

FP FN FP FN

CAMI

spike-in data

Samples

S1 versus S2 15 15 0 0 15 0 0 0.50 1 j 1 1 j 0.5 1 0.5

Simulation group (2):

Pairwise sample

comparisons

of different

simulation sets

(numbered

from 4 to 9)

set 4 versus set 5 35 0 0 0 0 0 n.a. n.a. n.a. j 1 n.a j 1 1 1

set 5 versus set 9 28 7 0 0 12 0 0 0.63 1 j 1 1 j 0.7 1 0.66

set 5 versus set 6 18 17 0 1 18 2 0 0.51 0.94 j 1 0.89 j 0.5 0.97 0.43

set 6 versus set 7 17 18 0 0 16 0 0 0.47 1 j 1 1 j 0.51 1 0.54

set 7 versus set 8 10 25 0 0 7 0 0 0.22 1 j 1 1 j 0.59 1 0.8

set 6 versus set 8 6 29 0 0 4 0 0 0.12 1 j 1 1 j 0.6 1 0.89

set 4 versus set 7 5 30 0 1 5 0 0 0.14 0.97 j 1 1 j 0.5 0.97 0.86

set 4 versus set 8 5 30 0 1 5 0 0 0.14 0.97 j 1 1 j 0.5 0.97 0.86

Note: A P-value cutoff of 0.05 is used to define differentially abundant taxa. In most scenarios, DiTASiC achieves exact detections, holding a FDR of zero and

accuracy above 97% overall. A reduced accuracy performance by STAMP, using mapping abundances, confirms the significant impact of read ambiguities and

abundance estimate uncertainties. In case of no differential events, FDR and sensitivity cannot be computed (n.a.).
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resolve shared read assignments and thereby cannot directly output

correct abundances. Our results show the bias introduced by the

pseudo-aligner of kallisto (without its well working EM-based quan-

tification framework): the abundances of most taxa are overesti-

mated and many actually absent taxa are assigned positive

abundances. This effect is due to shared read counts, caused by

highly similar reference sequences of strains in a metagenomics sam-

ple. DiTASiC is based on a new GLM framework, adapted to char-

acteristics of taxa data for the resolution of shared read counts. As a

result, it provides highly accurate abundance estimates for taxa in

different metagenomics samples. Thereby, DiTASiC proves excellent

performance independent of abundance profile complexities and

also shows reduced errors in comparison to existing tools on a re-

cent benchmark study on the i100 data (Schaeffer et al., 2017). It en-

ables accuracy in a large range of relative abundances from 0.001 to

30% present in the various data sets. Further, while generally the

read coverage in a metagenomics sample is a critical factor for abun-

dance estimation, the degree of reference similarities of present taxa

means a greater challenge. Thus, on the FAMeS data set with 122

taxa, but many dissimilar species, all tools achieve overall higher

abundance accuracy compared with the simulation sets with only 35

taxa holding almost the same number of input reads, but different

challenging strain clusters. However, the GLM model of DiTASiC

proves specific strength in highly accurate abundance resolution

within strain clusters, as is shown for various examples in the i100,

CAMI and simulation studies. In particular, it demonstrates to pre-

cisely distinguish abundances down to sub-strains which share se-

quence similarities above 95%. Whereas this is more challenging for

kallisto, which was similarly reported in a benchmark study by

McLoughlin (2016). An important point is that the similarity matrix

used in DiTASiC is not necessarily symmetric. Hence, the simulated

proportion of reads shared from reference i with reference j can dif-

fer from the proportion reference j shares with reference i. We ob-

serve these dissimilarities in the matrix e.g. for the E.coli clusters

and hypothesize that this may explain the good performance of

DiTASiC, as it allows capturing sub-strain sequences, which may be

shorter, but highly similar to other longer strain sequences.

The framework of DiTASiC is also robust with increasing

sequencing error, as the internal matrix simulations account for

the error profiles found in the raw reads. However, as a conse-

quence, misaligned reads in addition to shared reads will cause

abundance bias, which poses another resolution challenge. Further,

missing or unknown taxa in reference sets may introduce quantifi-

cation bias. However, one of our studies indicates that closely

related strains compensate for missing ones and not affected strain

cluster remain stable. Overall, DiTASiC shows certain robustness

on imperfect reference sets with either missing or false-positive

taxa included. Nevertheless, explicitly accounting for non-mapped

reads and their missed abundance proportion could be included in

future work.

All in all, the accuracy of the abundance estimation has an imme-

diate impact on the accuracy that can be achieved in the differential

abundance analysis of the taxa. This is clearly observable in the

comparisons of the FAMeS data sets, which result in highly accurate

fold change estimates in consequence of the accurate abundance esti-

mates that were obtained.

However, for differential abundance testing, in order to distin-

guish differentially and non-differentially abundant taxa, the uncer-

tainty of the abundance estimates plays a crucial role. Especially on

strain level, this variance reflects uncertainties in the underlying read

ambiguity resolution in the presence of highly similar reference se-

quences. DiTASiC introduces a new statistical framework, which

integrates the abundance variance and forms abundance distribu-

tions for differential testing sensitive to strain level.

Generally in comparative metagenomics, it is difficult to predict

how a community of taxa in a sample will change, as there is a variety

of influential factors involved. A study by (David et al., 2014), demon-

strates how human actions can cause next-day abundance change in

the microbiome. Hence, putting assumptions on data for composition

change is complex. Further, although taxa abundance data and gene ex-

pression data share discrete count data characteristics, assumptions

commonly made for gene expression for differential analysis cannot be

easily transferred. One of the most common assumptions is that the ma-

jority of features will not be differentially changed. This is reasonable

for genes in a cell as no global change of expression of all genes is bio-

logically expected. In metagenomics studies though, antibiotics treat-

ment has shown to cause rapid change of microbial compositions in

human samples (Dethlefsen and Relman, 2011). Further, gene expres-

sion data in RNA-Seq studies are often characterized by overdispersion

and correspondingly modelled by negative binomial distributions.

Different popular RNA-Seq tools as well as standard statistical tests

are frequently applied to metagenomics gene data for differential ana-

lysis, however, have been shown to not capture the data well in all cases

(Jonsson et al., 2016). Similar problems are observed when considering

differential taxa abundance. In a study of plaque samples, DESeq and

edgeR were also shown to not fit the data properly (Paulson et al.,

2013). Hence overall, it is important to distinguish gene and taxa level

and critically assess corresponding assumptions. Furthermore, defining

assumptions to capture all diverse structures of metagenomics data might

pose an almost impossible challenge. Here, we propose an independent

statistical framework for differential testing of all individual taxa in the

set, without putting any assumptions on overall composition change.

We evaluated our approach on diverse scenarios, covering sets

with only non-differential events to sets with overall change, and

can indicate overall correct detections. Further, the method is not

dependent on the presence of a taxon in both samples of compari-

son, it also serves as test on taxa emergence or extinction.

In contrast, STAMP yields many false-positives, which reflects

the importance of read ambiguity resolution and integration of

abundance uncertainties for strain level analysis. In cases of ex-

tremely similar strain sequences, however, large standard errors for

the estimates can occur, as shown for the two E.coli sub-strains, and

can consequently cause a lower limit for the detection of very small

fold-changes in DiTASiC.

Generally, DiTASiC is neither limited to bacteria nor any taxo-

nomic level. Also its concept is applicable to any ambiguity reso-

lution in which the similarities causing the ambiguities can be

described. Further, variance of sample replicates pose another cru-

cial variance source, integration could be achieved by not sampling

from the mixture of Poisson distributions of one experiment, but

across all replicates. DiTASiC is independent of specific databases

or any additional data information, it simply relies on the raw reads

and on a (pre-filtered) species reference set in fasta format, the latter

can also contain assemblies or fragmented sequences.

6 Conclusion

This contribution focuses on the resolution on strain level in metage-

nomics data concerning taxa quantification and differential abun-

dance assessment. We point out the challenges arising on strain level

due to the presence of highly similar reference sequences. We present

DiTASiC, which provides a new GLM framework for the resolution

of shared read counts and introduce a statistical framework, which
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integrates abundance variances, for differential testing sensitive to

strain level. As a result, highly accurate abundance estimates down

to sub-strain level as well as detections of differentially abundant

taxa are obtained. Evaluations are conducted on different data sour-

ces and in comparison to existing methods.
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