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Abstract

Motivation: Classification of individuals into disease or clinical categories from high-dimensional

biological data with low prediction error is an important challenge of statistical learning in bioinfor-

matics. Feature selection can improve classification accuracy but must be incorporated carefully

into cross-validation to avoid overfitting. Recently, feature selection methods based on differential

privacy, such as differentially private random forests and reusable holdout sets, have been pro-

posed. However, for domains such as bioinformatics, where the number of features is much

larger than the number of observations p � n, these differential privacy methods are susceptible

to overfitting.

Methods: We introduce private Evaporative Cooling, a stochastic privacy-preserving machine

learning algorithm that uses Relief-F for feature selection and random forest for privacy preserving

classification that also prevents overfitting. We relate the privacy-preserving threshold mechanism

to a thermodynamic Maxwell-Boltzmann distribution, where the temperature represents the priv-

acy threshold. We use the thermal statistical physics concept of Evaporative Cooling of atomic

gases to perform backward stepwise privacy-preserving feature selection.

Results: On simulated data with main effects and statistical interactions, we compare accuracies

on holdout and validation sets for three privacy-preserving methods: the reusable holdout, reus-

able holdout with random forest, and private Evaporative Cooling, which uses Relief-F feature se-

lection and random forest classification. In simulations where interactions exist between attributes,

private Evaporative Cooling provides higher classification accuracy without overfitting based on an

independent validation set. In simulations without interactions, thresholdout with random forest

and private Evaporative Cooling give comparable accuracies. We also apply these privacy methods

to human brain resting-state fMRI data from a study of major depressive disorder.

Availability and implementation: Code available at http://insilico.utulsa.edu/software/privateEC.

Contact: brett-mckinney@utulsa.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

In bioinformatics, data exploration is frequently an adaptive and it-

erative process due to the high dimensionality of the data and large

number of features that can be irrelevant to the outcome (e.g.

phenotype). When the outcome variable is not used, iterative ana-

lysis of the data is not restricted. However, when the outcome vari-

able is used, some penalty must be incurred to limit drawing false

conclusions due to chance. For inferential statistics, such as associ-

ation tests in genome-wide association studies (GWAS), an adjust-

ment for multiple hypothesis testing must be computed to control

the false discovery rate (FDR) (Benjamini et al., 2001). For classifi-

cation analysis, cross-validation (CV) is typically used to estimate

the average classification error one would expect to observe in inde-

pendent data (Hastie et al., 2009). For biological or clinical utility,

the goal is to find high accuracy classifiers. Combining feature selec-

tion with classification has the advantage of reducing the complexity

of classification models while including features that have predictive

value. In many cases, the CV error is a biased estimate of the true

error rate in independent data, and this risk may increase if feature

selection leaks information between folds. Nested CV approaches

that integrate feature selection have been used to reduce this type of

bias (Varma and Simon, 2006). In addition, bioinformatics data

sets, such as gene expression studies, typically have small sample

sizes that lead to CV errors with high variance (Simon et al., 2003).

Another approach that was motivated by the concept of differen-

tial privacy (Dwork and Roth, 2013) and is suitable for the adaptive

nature of many data analyses is the thresholdout algorithm (Dwork

et al., 2015), which is applied to data sets with a 2-fold split (train-

ing and holdout). Differential privacy was originally developed to

mine databases like social networks to learn information about

groups while maintaining the privacy of individuals within those

groups. This definition quantifies the leaking of each individual’s in-

formation as queries are made on the aggregate data. There has been

a great deal of research on privacy-preserving data releasing mech-

anisms (Chen et al., 2009; Fung et al., 2010; Yu and Ji, 2014) after

several discussions on the theoretical possibility to identify individ-

uals in GWAS data (Homer et al., 2008; Wang et al., 2009).

However, rather than private data release, the current study focuses

on developing differential privacy methods to prevent overfitting in

statistical data analysis, one of the earliest examples being the

thresholdout algorithm.

Thresholdout uses the Laplace mechanism (Dwork, 2006) to

maintain differential privacy by ensuring zero information from the

holdout set is revealed when the difference of the mean statistic be-

tween training and holdout stays within a stochastic threshold.

Consequently, by ensuring differential privacy, this reusable-holdout

framework keeps the overall statistical estimate stable, and thus

allows for generalization, as long as the number of queries remains

under the budget which is a function of the size of the holdout set.

As illustrated in Ref. (Dwork et al., 2015), thresholdout incorp-

orates the notion of differential privacy into its feature selection and

classification with a 2-fold split (training and holdout), but when se-

lecting relevant features, importance score information is computed

from both the training and holdout sets. Here, the thresholdout

mechanism is used to prevent leaking of information between train-

ing and holdout sets while using both sets to find useful features.

Also, we note that their linear classifier simply relies on the sign of

the correlation between each attribute and the class labels. In their

simulation of partially correlated data (which contains functional at-

tributes), the association with the outcome is created by either add-

ing or subtracting 6 standard deviations from the randomized

functional attribute’s values, depending on class label of 1 or –1, re-

spectively. This shift amounts to an effect size that is very large com-

pared to what is found in most bioinformatics data sets. In the

current study, we use a different simulation approach with a smaller

effect size.

Another distinguishing challenge in bioinformatics is that most

data sets contain a small number of observations, n, compared to

the number of features, p. The simulated sample size of 10 000, pre-

viously used to test thresholdout, was much larger than most bio-

informatics data. In the current study, we simulate data with much

smaller sample sizes, in line with bioinformatics data dimensions

n� p. For these smaller sample sizes, thresholdout does preserve

privacy, but there is a risk of overfitting the holdout set regardless of

the choice of threshold. Thus, we compare each method using

data simulations with lower effect sizes and sample sizes as well as

complex structures of correlations and interactions among these

features.

In our previous work, we developed a backwards elimination

feature selection algorithm called Evaporative cooling (EC) that is

able to identify relevant features due to main effects and interaction

effects (McKinney et al., 2009). Analogous to Evaporative Cooling

of an atomic gas, where phase space density is increased through the

repeated removal of the most energetic atoms, EC feature selection

increases feature space density by iteratively removing the least rele-

vant attributes. The resulting final collection of attributes is then at

equilibrium with regard to independent and interaction effects by

combining Relief-F and random forest importance scores.

In the current study, we develop a privacy-preserving version of

Evaporative Cooling that uses Relief-F for feature selection and ran-

dom forest for classification with an exponential differential privacy

mechanism. Besides the Laplace mechanism, the exponential mech-

anism is another interesting mechanism that ensures e-differential

privacy (McSherry and Talwar, 2007). If q is a quality function that

assigns a score to each attribute a 2 A, and Dq is its sensitivity, then

the exponential mechanism M that outputs a with probability /
exp e q að Þ=2Dqð Þ maintains e-differential privacy. The focus of the

original EC method was on feature selection, rather than classifica-

tion. The focus of private EC (pEC) is classification but uses feature

selection in a way that limits overfitting. We compare pEC and other

differentially private algorithms on simulated data with properties

typical of bioinformatics. These comparison methods include the

original thresholdout algorithm with a linear correlation clas-

sifier and a thresholdout algorithm that uses random forest for

classification.

The current study is outlined as follows. We first describe the

simulation strategy and development of the private Evaporative

Cooling algorithm in the Methods section. Through the thermo-

dynamic formalism, we show a relationship between the Maxwell-

Boltzmann distribution and differential privacy. We use two main

types of simulations to evaluate the methods: data with multiple in-

dependent main effects and data with interactions and correlation

structure. In the Results section, we investigate the relationship be-

tween the simulation parameter b and the detection power obtained

by a Welch two-sample t-test as well as Dwork’s simulation effect

size parameter referred to as ‘bias’. We also evaluate the accuracy re-

ported by three privacy-preserving algorithms on simulated valid-

ation data. The original thresholdout with a linear classifier shows a

high degree of overfitting in n� p data, which can be ameliorated

by using a random forest classifier. In simulated data with character-

istics typically seen in bioinformatics, private Evaporative Cooling is

shown to not overfit and achieve comparable validation accuracy

with thresholdout using random forest when the data contain only
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main effects of specific attributes and highest accuracy when these

attributes interact.

2 Materials and methods

2.1 Simulations
Each simulation consists of two balanced groups of cases and con-

trols with n ¼ 100 observations for each training, holdout, and test-

ing set. For main effect simulations, we use p ¼ 5000 features of

which 10% are functional (correlated with class labels). Although

this p should be sufficient to compare feature selection and classifi-

cation algorithms, we also consider the case of 15 000 features, and

it is possible to analyze larger data sets. These data dimensions are

also comparable to the fMRI data we analyze. The training and

holdout sets are used for the thresholdout algorithms, and the test-

ing set is used to determine the true validation accuracy of an algo-

rithm. For each set of simulations parameters, we simulate 100

replicate data sets to assess statistical differences between methods.

2.1.1 Main effect

We employ the linear model used in Ref. (Leek and Storey, 2007):

Xij ¼ biyj þ eij (1)

where Xij is the jth subject’s value of the ith attribute, bi represents

the coefficient of the ith attribute, yj is the biological group (belongs

to the set {0,1}) of the observation j, and eij is Gaussian noise with

mean 0 and standard deviation 1. A visual representation of the

simulation is shown in Figure 1. In this matrix form, Y ¼ ð1; 1; . . . ;

1; 0;0; . . . ; 0Þ represents the biological status of 100 samples (50

cases and 50 healthy controls), BT ¼ ðb1; b2; . . . ; b500Þ � N 0;bð Þ
consists of 500 effect sizes, and E � N 0; 1ð Þ adds independent ran-

dom error to the data.

2.1.2 Interaction effect

We simulate interaction effects by the framework we designed in

Ref. (Lareau et al., 2015) for differential co-expression network

data. The objective of this framework is to disturb specific attri-

butes’ connections in the co-expression network among the cases

only, while leaving the controls’ network untouched. With this goal

in mind, we initialize a baseline network of correlations of mean 0

and variance sint between attributes either with uniform random de-

gree distribution (Erdos-Renyi) or scale-free degree distribution.

Specifically, if the two attributes a1 and a2 are correlated in the base

network, we let ai1 ¼ ai2 þ gi for all subjects i ¼ 1;2; . . . ; 100 where

gi is drawn from N(0, sint). Hence, the correlation’s strength is regu-

lated by sint: smaller sint yields less noise and hence creates a stronger

correlation between the two attributes. After randomly partitioning

the samples into groups of cases and controls, we arbitrarily select

attributes and permute them within the cases to disrupt the wiring

between these target attributes and their neighbors while keeping

the group means constant. In other words, we introduce a differen-

tial correlation or interaction effect on a subset of co-expressed attri-

butes, even though no main effect will be detected if these attributes

are inspected individually (except by chance). The resulting complex

network is a realistic representation of gene expression data with

differential co-expression effects or resting-state functional magnetic

resonance imaging data with differential correlation effects. We re-

mark the stronger the initial correlation (regulated by sint) between

the target attributes and their neighbors, the more severe the disrup-

tion, and thus the stronger interaction effect introduced. This regula-

tion of the effect size is further discussed in the Results section.

2.2 Resting-state functional magnetic resonance

imaging (rs-fMRI) data
To test our method on real bioinformatics data, we apply the ma-

chine learning classifiers to a human resting-state functional MRI

(rs-fMRI) study of major depressive disorder (MDD). Differential

connectivity in rs-fMRI networks between cases and healthy con-

trols likely contain important variation that may be used as bio-

markers or predictors in diagnostic status (Gotts et al., 2012;

Manoliu et al., 2013). The fMRI data include 80 unmedicated

MDD (52 females, age 6 sd. 33 6 11) and 80 healthy controls (HCs)

(41 females, age 6 sd. 31 6 10). We used AFNI (Cox, 1996) to pro-

cess the rs-fMRI data and extract 3003 features that are z-trans-

formed correlation coefficients between 78 brain regions identified

by a functional region of interest atlas (Shirer et al., 2012) (12 re-

gions of interest in the lower part of cerebellum were excluded due

to the limited field of view in our fMRI scan). Two subjects with

MDD and one HC were excluded from the analysis due to excessive

head motion. To increase power, we only report the prediction ac-

curacy from the holdout set and do not split the data into a third val-

idation set. Specifically, after randomly splitting the entire data in

half (training and holdout), we trained the three privacy-preserving

algorithms on training data to predict each subject’s diagnostic sta-

tus (MDD or HC) in the holdout set.

2.3 Algorithms
Using the simulation approach with small effect and sample sizes as

well as the rs-fMRI data, we compare the performance of the fol-

lowing algorithms:

1. Original Thresholdout (TO) with Dwork’s linear classifier

(Dwork et al., 2015)

2. Random Forest Thresholdout (rfTO), which is TO with the fea-

ture selection and classifier replaced with random forest

3. Private Evaporative Cooling (pEC) feature selection and classifi-

cation (Fig. 2)

We note that the second algorithm is almost identical to the first, ex-

cept that, in place of the simple linear feature selection and classifier,

we implement random forest as the feature selection and classifier.

The rest of the algorithm, including thresholdout, is kept the same.

Fig. 1. Model matrix of the linear model. The top 500 rows of BY are ‘func-

tional’ attributes that discriminate between the cases and controls. We sup-

pose that, for individuals in the cases group, these attributes’ values are

drawn from a normal distribution Nð0;bÞ. The effect of b is discussed in the

Results section. The matrix E adds independent random errors with mean

zero
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Within thresholdout, we choose a threshold of 4=
ffiffiffi

n
p

and tolerance

of 1=
ffiffiffi

n
p

as suggested in the thresholdout’s supplementary material

(Dwork et al., 2015).

2.3.1 Private evaporative cooling (pEC) with relief-F feature

selection and random forest classification

In the feature selection piece of this algorithm, the evaporation rep-

resents the process of backwards elimination of features, and the

temperature T is related to the privacy’s noise parameter (see Fig. 2

for overview). We adapt the idea of the exponential mechanism to

iteratively remove features. Particularly, after setting an initial tem-

perature T0 and evaluating qt að Þ, the importance of attribute a from

the training set using Relief-F, we allow an attribute to evaporate

with a probability proportional to

exp �qt að Þ= 2TDq að Þð Þð Þ (2)

where Dq að Þ represents the difference of an attribute’s importance

score between the holdout, qh að Þ, and training set, qt að Þ:

Dq að Þ ¼ jqt að Þ � qh að Þj: (3)

Then, at time step j, T is decreased according to the following

cooling schedule:

T ¼ T0 exp �j=sð Þ (4)

with the constant s controlling the cooling rate. We note that the

formula of relative probability in (2) resembles that of the exponen-

tial mechanism and 1=T is similar to the privacy loss e (but not

exactly equal to e because our training and holdout data sets are not

adjacent in the privacy sense, and Dq að Þ is not the sensitivity of the

function q). Nevertheless, the parameter T controls the information

leak from the holdout set by rescaling the attributes’ importance.

The decaying of T in this algorithm is analogous to that of simulated

annealing. During the initial cooling steps, simulated annealing algo-

rithms are more tolerant of suboptimal solutions to avoid falling

into a local minimum, but as the system cools, simulated annealing

algorithms become less tolerant of innovative solutions. Similarly,

by putting increasing weight on important attributes, pEC gradually

allows for more privacy loss in order to be stricter in selecting poten-

tial attributes for removal, thus becoming less likely to remove attri-

butes that have higher training importance score.

We chose Relief-F for the feature selection component because

interactions can be an important source of variation in bioinfor-

matics data, and Relief-F has been shown to have high power to

identify features that involve complex interactions that are

important for distinguishing classes (Draper et al., 2003; Greene

et al., 2009; Kononenko, 1994; Kononenko et al., 1997; McKinney

et al., 2013; Sikonja and Kononenko, 2003). We chose random for-

est as the classifier for the pEC algorithm because of its well-known

advantages in high dimensional data and wide usage in bioinfor-

matics (Amaratunga et al., 2008; Breiman, 2001). We also use

thresholdout as a safe mechanism to output the accuracy obtained

from classifying samples in the holdout set.

One other key idea of this algorithm is similar to thresholdout’s:

for attributes with the same importance score, pEC prefers to keep

attributes with high training-holdout consistency. In other words,

the expression in (2) allows an attribute to probabilistically evapor-

ate when it has relatively low ReliefF importance score in training or

larger difference in its importance score between the training and

holdout set. Also, rewriting this relative probability in (2) gives

exp �E að Þ=kTð Þ (5)

showing our algorithm’s analogy to the Maxwell-Boltzmann distribu-

tion where E að Þ ¼ qt að Þ=2Dq að Þ, k is the Boltzman constant, T is the

privacy temperature. Note that this Boltzmann scaling can be adapted

to any importance score (e.g. random forest permutation score), and

the accuracy can be computed by any classifier. The only constraint is

that a lower energy represents a lower importance score, which leads

to a higher probability of irrelevant features being evaporated.

This distribution considers the probability that a certain attribute

is removed from a system as a function of that attribute’s energy and

the ‘privacy temperature’ of the system. Writing the differential priv-

acy mechanism as Equation (5) provides a link between what we

call the privacy temperature and Jaynes’ maximum information en-

tropy methods (Jaynes, 1957; McKinney et al., 2007).

2.4 Comparison of pEC workflow with a validation

workflow
While conducting statistical analyses using the standard workflow is

perfectly justified, we present a private workflow with Evaporative

Cooling that better utilizes the entire data set. In our example, each

workflow includes a training and holdout/validation set. With the

validation workflow, because of the small sample size in many bio-

informatics studies, setting samples aside for validation may de-

crease the analysis power significantly. Moreover, once the results

from the validation set are released, the validation set cannot be

reused in later analyses without introducing bias. With pEC work-

flow, one can exploit the whole data set and safely adapt the hold-

out results to later analyses (Fig. 3). Specifically, in pEC workflow,

one is able to use the holdout set for feature selection and estimation

of accuracy, and the privacy budget allows the analyst to reuse the

holdout set.

3 Results

3.1 Calibrating the simulation parameters
The average effect size parameter b is the variance in N 0; bð Þ that

regulates the strength of the signals in simulations with main effects

(Fig. 1). A larger effect size allows for more deviation from the mean

of 0 in the group of cases, which in turn increases the proportion of

correctly detected attributes in a basic two-sample, unpaired t-test.

In order to further examine the meaning of b and compare with the

simulation parameter in Dwork’s illustration, we simulate data sets

with different values of b with groups of 50 cases and 50 controls

for each training, holdout, and validation set. There are 500 func-

tional features out of 5000 total features. We define detection power

Fig. 2. Pseudocode of private Evaporative Cooling algorithm
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as the proportion of correctly detected attributes out of the 500

functional ones.

The plots of detection power versus effect size of two different

simulations are shown in Figure 4. We first adjust the resulting

P-values from a two-sample, unpaired t-test using the Benjamini-

Hochberg (FDR) method. We count a discovery when an adjusted

P-value is less than the threshold of a ¼ 0:05. Then, the detection

power (true positive rate) is calculated by dividing the number of

true discoveries (true functional attributes with small adjusted P-

value) by the total number of discoveries. As the effect size increases,

the number of correct attributes detected increases, while the false

positive rate is controlled at approximately 5%. In terms of preci-

sion and recall in information retrieval classification, detection

power (vertical axis, Fig. 4) is ultimately the value of recall, and pre-

cision is kept at approximately 95% (Supplementary Fig. S1). In the

current study, we choose a small effect size of b ¼ 0:4, which results

in about 12% detection power and approximately corresponds with

the effect size of 2.3 standard deviations in Dwork’s simulation

(solid vertical lines in Fig. 4). We chose this relatively small magni-

tude to reflect the effect size observed in many real bioinformatics

data sets such as gene expression or functional MRI. In contrast, the

effect size of 6 standard deviations simulated in Ref. (Dwork et al.,

2015) has nearly 100% detection power for an adjusted t-test

(dashed vertical line in Fig. 4B). Moreover, we simulate a much

smaller, more challenging sample size than that of Dwork’s

simulation.

In the second type of simulation with interaction effects, the par-

ameter that controls effect size is the variance in the added noise

term. Smaller variance creates stronger correlation between features,

and thus increases the interaction effect. In particular, if sint is very

small (e.g. 0.1), the effect size will be very large, which leads to accu-

racies of almost 1.0 in all methods when a significant number of at-

tributes is included in the model. Similarly, a large value of sint

would result in clustering of accuracies at 0.5. These extreme simu-

lation cases with very close accuracy values make it difficult to com-

pare the performance of the different methods. Because of the

complex relationship among attributes in this second type, a simple

t-test is not helpful in selecting an appropriate variance value.

Hence, in this case, we choose a heuristic variance value of sint ¼ 0:4

that seems to yield intermediate accuracies on the validation sets.

3.2 Comparison of privacy preserving methods
We compare the accuracy of each method for r ¼ 100 replicate

simulated data sets with main effect b ¼ 0:4 (results in Fig. 5) and

interaction effect where sint ¼ 0:4 (results in Figs. 6, 7). These values

of the effect size in the simulations generate adequately challenging

data sets so that the methods’ accuracies stay moderate and do not

cluster around 0.5 or 1 (too hard or too easy). Each replicate data

set is split into training, holdout and validation sets. We make sure

that each set has an equal number of cases and controls (50 in each

group) to protect the sensitivity to class-label imbalance of the linear

classifier in TO. The privacy preserving algorithms are applied to

the train and holdout datasets with the holdout accuracy reported

(dashed lines), and the trained model is then applied to the inde-

pendent test data to obtain the true generalization accuracy (solid

lines). In all simulations, pEC starts with the initial privacy tempera-

ture T0 ¼ 0:1 that approximately balances the amount of privacy

loss and overfitting. The smaller T0, the more initial privacy loss we

incur in the pEC algorithm. For example, lowering T0 to 0.05 would

likely yield more overfitting on the holdout data due to less stability.

Furthermore, to utilize the budget more efficiently, our implementa-

tion of pEC removes 50 attributes per iteration. Our main goal is to

test the performance of methods to identify features that discrimin-

ate between groups and optimize the classification accuracy.

Because of the adaptive attribute evaporation rate, the accuracy

values are computed at a different number of attributes across all

simulations. To combine the results of 100 simulations, we interpol-

ate the accuracies in each simulation simply with a linear function at

all number of attributes, from 1 to 5000. We display the mean inter-

polated accuracy of each method on 100 simulated data sets.

Besides reporting the accuracy from pEC (blue), rfTO (green)

and TO (red), we also report the accuracies from standard random

forest (sRF) (ntree¼100) solely as reference accuracies. This aver-

age out of bag (OOB) error is computed using the training and hold-

out data sets combined. It is not proper to compare the output from

sRF with other methods because sRF does not consist of any safe-

holdout-reuse guarantee that the other methods ensure. In other

words, one cannot use sRF’s outcome to make further data-

dependent decisions. We still note that in all simulations sRF reports

relatively good accuracy and tends to yield the smallest variation in

its accuracy.

As we exclude irrelevant attributes (going from right to left in

Figs. 5–7), the accuracies of rfTO and pEC increase until too many

Data: n samples x p features

Training set: train classifier 

with penalized feature 

selection or nested cross-

validation feature selection

On validation set: Test classifier

Data: n samples x p features

Private use of training and 

holdout set: iteratively 

evaporate features

Private estimate of accuracy 

on Holdout

Split data: Train + Holdout

Split data: Training + Validation

Standard validation workflow Private Evaporative Cooling workflow

Privacy budget allows for 

possible further analysis 

Fig. 3. Comparison of pEC workflow with a validation workflow. In each scen-

ario, there is a training set and a data set that is set aside for validation. The

pEC mechanism allows the analyst to use the holdout set during feature se-

lection and classification. Privacy also permits reuse of the holdout set

A B

Fig. 4. Result of a two-sample, unpaired t-test on simulated data using two simula-

tion methods: Leek’s linear model (left panel) and Dwork’s experiment (right

panel). Simulation parameters: 5000 attributes (500 functional) with 50 cases and

50 controls. Note the vertical scales are different. Each point represents the true

positive rate (red) and false positive rate (blue) for a simulated data set with the ef-

fect size/bias given on the horizontal axis. The true and false percentages were

computed based on an adjusted P-value of 0.05. The vertical dash line displays

the effect bias used in Dwork’s simulation (6=
ffiffiffiffi

n
p

). The vertical solid line displays

the value of effect size we choose for the linear model simulation and its corres-

ponding bias in Dwork’s simulation that yields the same detection power (� 12%)

(Color version of this figure is available at Bioinformatics online.)
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relevant attributes are removed and the accuracy drops off. For each

attribute removal step, the holdout and validation (true) accuracy are

very consistent for pEC and rfTO (i.e. they do not overfit). In the

interaction case (Figs. 6, 7) rfTO overfits more than pEC when too

many attributes are removed. Thresholdout with the linear classifier

(TO) significantly overfits for main effect simulations: its holdout ac-

curacy approaches 1.0 as the number of attributes considered in-

creases while its validation accuracy stays around 0.75 (Fig. 5). We

believe this overfitting is because of the small number of observations

in the data, which is typical of bioinformatics and leads to a reduction

in the privacy budget. In simulations with interactions (Figs. 6, 7), al-

though TO does not overfit, it essentially gives null accuracy.

In addition to showing consistent accuracy between holdout and

validation sets, pEC and rfTO yield comparable accuracy in main ef-

fect simulations (0.9–0.95 across different number of attributes),

larger than the accuracy reported by the standard random forest

method with 100 trees of 0.832, and much larger than TO’s valid-

ation accuracy at approximately 0.75 (Fig. 5). We also remark a

slight ‘underfitting’ at the higher numbers of attributes in both rfTO

and pEC, which is likely the result of a small pessimistic bias in the

out of bag accuracy reported by the random forest classification in

both algorithms.

In simulations with interaction effects, the underlying correlation

network of attributes uses Erdos-Renyi (Fig. 6) and scale-free (Fig. 7) as

base connectivity distributions. When the attributes interact (Figs. 6, 7),

pEC outperforms other privacy preserving methods (and even the non-

privacy-preserving standard random forest accuracy � 0.74) with better

accuracies at all number of selected attributes with peak validation ac-

curacy of 0.87. These patterns hold for larger data sets as well. When

the number of variables is increased to 15000, similar accuracy patterns

to Figure 5 are observed in a simulated data set with main effects (results

not shown). In an Erdos-Renyi interaction simulation, the pEC algo-

rithm performs similarly as in smaller data sets (Fig. 6). However, rfTO

yields lower accuracy when more attributes are added to the data

(Supplementary Fig. S2). We believe this decrease is due to the random

forest’s independence assumption in the tree node splitting and its under-

estimation of the interacting attributes’ importance scores when the data

contain too many background variables (McKinney et al., 2009).

In fMRI data, pEC and rfTO yield comparable holdout accuracy

with maximum accuracies 0.771 (pEC) and 0.743 (rfTO) (Fig. 8).

The maximum pEC accuracy uses 52 fMRI connectivities in the

model (Supplementary Table S1). Similar to the result in simulations

with interaction effects, TO is ineffective, yielding an accuracy of

0.5 at all numbers of connectivity variables. Standard random forest

on the entire data set gives an out of bag accuracy of 0.547, which is

just slightly above the null accuracy.

4 Discussion

Using feature selection to find optimal classification models while

controlling overfitting is an important challenge in bioinformatics

data due to its large feature space and low sample sizes (Krawczuk

and Lukaszuk, 2016). The problem is most severe when a holdout

set is not used carefully, such as running feature selection and later

classification on the same data set to build models. Differential priv-

acy methods have been recently proposed to deal with feature

Fig. 5. Main effect simulation results. r ¼ 100 replicate simulations, n ¼ 100

samples, d ¼ 5000 attributes, k ¼ 500 functional attributes, effect size b ¼ 0:4.

Standard thresholdout (TO/red) overfits the independent validation data set;

private Evaporative Cooling (pEC/blue) and thresholdout random forest (rfTO/

green) give holdout accuracies that are very close to validation accuracies;

for reference, standard random forest mean OOB accuracy¼0.832 (Color ver-

sion of this figure is available at Bioinformatics online.)

Fig. 6. Erdos-Renyi Interaction effect simulation results. r ¼ 100 replicates,

n ¼ 100 samples, d ¼ 5000 attributes, k ¼ 500 functional attributes, effect size

s ¼ 0:4. Standard thresholdout (TO/red) is virtually ineffective (accuracy around

0.5); Private Evaporative Cooling (pEC/blue) yields the best accuracy and pre-

vents overfitting; for reference, standard random forest mean OOB accur-

acy¼0.736 (Color version of this figure is available at Bioinformatics online.)

Fig. 7. Scale-free Interaction effect simulation results. Comparisons are the same

as Figure 6 except the random network has a uniform random degree distribu-

tion as opposed to scale free. For reference, standard random forest OOB accur-

acy¼0.743 (Color version of this figure is available at Bioinformatics online.)
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selection and overfitting. In the current study, we developed a new

algorithm called private Evaporative Cooling (pEC) that uses private

Relief-F with Evaporative Cooling feature selection as a mechanism

for a safe reuse of the holdout set. While simultaneously preventing

overfitting, the combination of powerful machine learning methods

with Relief-F and random forest provides good prediction accuracy

on independent data sets.

We showed that the type of classifier used with the thresholdout al-

gorithm contributes to the degree of overfitting. A simple linear classi-

fier showed very large differences in the holdout and validation

accuracy rates, whereas replacing this classifier with random forest and

using the same noise and threshold parameters reduces the overfitting to

a negligible level. The main reason for this is that the out of bag accur-

acy which random forest computes from the training set is a reasonable

estimate of the generalization accuracy. Hence, even when thresholdout

reveals only the training accuracy when this value is close to that from

the holdout set, the reported accuracy is a good representation of the

predicting accuracy on an independent data set, resulting in no overfit-

ting. Random forest is also better able to handle the smaller effect and

sample sizes. pEC, which uses random forests for classification and

Relief-F for feature selection, shows negligible overfitting and better val-

idation accuracy than the other thresholdout methods.

In addition to replacing the classification and feature selection

components of the original thresholdout algorithm, pEC also in-

volves a simulated annealing-like cooling process of removing irrele-

vant attributes while maintaining privacy between the training and

holdout sets. When interactions exist among attributes, we demon-

strated that pEC, among the three comparison methods that include

thresholdout, yields the highest validation accuracy and most cor-

rectly detected functional attributes (results not shown). In the case

of main effect simulations, pEC does not detect the highest number

of functional attributes (results not shown); however, its prediction

accuracy on validation sets remains higher than the other methods

without overfitting.

Evaluating each method’s performance based on selecting fea-

tures poses a few challenges. In the first simulation with only main

effects, because of the randomness generated in the effect size for

each ‘functional attribute’, some of the effect sizes could by chance

be very small (e.g. on the order of 10�6) and thus could be masked

by the added noise. In other words, some of these intended-to-be-

functional attributes can be essentially non-functional and correctly

excluded in classification. For the second simulation with inter-

actions, the permutation of attributes within the cases creates a cas-

cading effect. Therefore, the set of functional attributes not only

contains these permuted attributes but also their immediate neigh-

bors. Moreover, with the complex structure of the feature’s net-

work, these features have very different weights of importance,

which makes it difficult to assess the efficiency in selecting attributes

of the algorithms. Thus, we do not compare the algorithms’ feature

selection ability in either type of simulation.

We also applied pEC to a real-world fMRI data set and com-

pared its performance with other privacy methods. We demon-

strated that pEC gives reliable accuracy and proves to be

competitive with private random forest. Among the crucial func-

tional connections in discriminating the diagnostic status, most fre-

quent connections are within the default mode and salience

networks and their interactions with other regions (Supplementary

Table S1), which is consistent with findings from previous studies

(Liang et al., 2013; Sambataro et al., 2014; Yao et al., 2009; Zhu

et al., 2012). Moreover, executive control networks are also shown

to be part of important connections in distinguishing MDD from

HC. Although few resting-state studies have focused on control net-

works in MDD (Dutta et al., 2014), decreased connectivity between

the default mode and executive control networks has been found in

patients with MDD (Manoliu et al., 2013; Mulders et al., 2015).

Depending on the goal of an analysis, pEC can be modified with

a different set of feature selection and classification techniques other

than Relief-F and random forest. The importance score of the attri-

butes q að Þ and the prediction will change according to the new

learning methods, but the algorithm’s privacy-preserving ability will

remain constant. Moreover, although we illustrated the pEC work-

flow with a 50–50 2-fold split, one can apply this workflow on an

unbalanced split (e.g. 75–25) if one wishes to increase the training

set’s size. A current limitation of pEC is the inexact quantification of

the amount of privacy loss that results in the choice of the initial

privacy temperature. In future work, we plan to use the Boltzmann

formalism to develop a mathematical theory mapping pEC’s rela-

tionship to the theory of differential privacy and information theory.

The current study focused on quantitative attributes and a cat-

egorical response variable. To widen the applicability in bioinfor-

matics, it will be important to implement pEC for regression with

quantitative trait data. For categorical predictors, like variants in

GWAS, the current pEC method can be directly applied. We also

plan to more fully develop a mathematical theory of pEC’s relation-

ship with the theory of differential privacy and information theory.
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