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Abstract

Motivation: Recent advances in technology for brain imaging and high-throughput genotyping

have motivated studies examining the influence of genetic variation on brain structure. Wang et al.

have developed an approach for the analysis of imaging genomic studies using penalized multi-

task regression with regularization based on a novel group l2;1-norm penalty which encourages

structured sparsity at both the gene level and SNP level. While incorporating a number of useful

features, the proposed method only furnishes a point estimate of the regression coefficients; tech-

niques for conducting statistical inference are not provided. A new Bayesian method is proposed

here to overcome this limitation.

Results: We develop a Bayesian hierarchical modeling formulation where the posterior mode cor-

responds to the estimator proposed by Wang et al. and an approach that allows for full posterior in-

ference including the construction of interval estimates for the regression parameters. We show

that the proposed hierarchical model can be expressed as a three-level Gaussian scale mixture and

this representation facilitates the use of a Gibbs sampling algorithm for posterior simulation.

Simulation studies demonstrate that the interval estimates obtained using our approach achieve

adequate coverage probabilities that outperform those obtained from the nonparametric boot-

strap. Our proposed methodology is applied to the analysis of neuroimaging and genetic data col-

lected as part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), and this analysis of the

ADNI cohort demonstrates clearly the value added of incorporating interval estimation beyond

only point estimation when relating SNPs to brain imaging endophenotypes.

Availability and Implementation: Software and sample data is available as an R package ‘bgsmtr’

that can be downloaded from The Comprehensive R Archive Network (CRAN).

Contact: nathoo@uvic.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Imaging genetics involves the use of structural or functional neuroi-

maging data to study subjects carrying genetic risk variants that may

relate to neurological disorders such as Alzheimer’s disease (AD). In

such studies the primary interest lies with examining associations

between genetic variations and neuroimaging measures which repre-

sent quantitative traits. Compared to studies examining more trad-

itional phenotypes such as case-control status, the endophenotypes

derived through neuroimaging are in some cases considered closer to

the underlying etiology of the disease being studied, and this may
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lead to easier identification of the important genetic variations.

A number of settings for statistical analysis in imaging genetics have

been studied involving different combinations of gene versus

genome-wide and region of interest (ROI) versus image-wide ana-

lysis, all of which have different advantages and limitations as dis-

cussed in Ge et al. (2013).

The earliest methods developed for imaging genomics data analysis

are either based on significant reductions to both data types or they em-

ploy full brain-wide genome-wide scans based on a massive number of

pairwise univariate analyses (e.g. Stein et al., 2010). While these

approaches are convenient in terms of their implementation they ignore

potential multi-collinearity arising from variants within the same link-

age disequilibrium (LD) block, and they also ignore the potential rela-

tionship between the different neuroimaging endophenotypes. Ignoring

these relationships precludes the borrowing of information about the

genetic associations across components of the response vector. Hibar

et al. (2011) use gene-based multivariate statistics and avoid having col-

linearity of SNP vectors by using dimensionality reduction. Vounou

et al. (2010) develop a sparse reduced-rank regression approach for

studies involving high-dimensional neuroimaging phenotypes, while Ge

et al. (2012) develop a flexible multi-locus approach based on least

squares kernel machines. In the latter case, the authors employ permu-

tation testing procedures and take advantage of the spatial information

inherent in brain images by using random field theory as an inferential

tool (Worsley, 2002). More recently, Stingo et al. (2013) develop a

Bayesian hierarchical mixture model for relating brain connectivity to

genetic information for studies involving functional magnetic resonance

imaging (fMRI) data. The mixture components of the proposed model

correspond to the classification of the study subjects into subgroups,

and the allocation of subjects to these mixture components is linked to

genetic covariates with regression parameters assigned spike-and-slab

priors. The proposed model is used to examine the relationship be-

tween functional brain connectivity based on fMRI data and genetic

variation.

In contrast, the focus of our work concerns the development of

methodology for studies where the neuroimaging phenotypes consist

of volumetric and cortical thickness measures derived from MRI

which summarize the structure (as opposed to the function) of the

brain over a relatively moderate number (e.g. up to 100) ROI’s, and

we are interested in relating brain structure to genetics.

We develop a Bayesian approach based on a continuous shrink-

age prior that encourages sparsity and induces dependence in the re-

gression coefficients corresponding to SNPs within the same gene,

and across different components of the imaging phenotypes. Our ap-

proach is related to the Bayesian group lasso (Kyung et al., 2010;

Park and Casella, 2008) but it is adapted to accommodate multivari-

ate phenotypes and it is extended to allow for grouping penalties

both at the gene and SNP level. Our work is primarily motivated by

the recent work of Wang et al. (2012) who propose an estimator

based on group sparse regularization applied to multivariate regres-

sion where SNPs are grouped by genes or LD blocks. In what fol-

lows we will assume for specificity that the groups correspond to

genes; however, this assumption is not necessary and any approach

for grouping the SNPs (e.g. LD blocks) may be used. Let y‘ ¼
ðy‘1; . . . ; y‘cÞT denote the imaging phenotype summarizing the struc-

ture of the brain over c ROIs for subject ‘; ‘ ¼ 1; . . . ; n. The corres-

ponding genetic data are denoted by x‘ ¼ ðx‘1; . . . ; x‘dÞT;
‘ ¼ 1; . . . ;n, where we have information on d SNPs, and x‘j 2 f0;1;
2g is the number of minor alleles for the jth SNP. We further assume

that the set of SNPs can be partitioned into K groups, for example K

genes, and we let pk;k ¼ 1; 2; . . . ;K, denote the set containing the

SNP indices corresponding to the kth group and mk ¼ jpkj. We

assume that Eðy‘Þ ¼WTx‘; ‘ ¼ 1; . . . ; n, where W is a d � c matrix,

with each row characterizing the association between a given SNP

and the brain summary measures across all ROIs. The estimator

proposed by Wang et al. (2012) takes the formcW ¼ arg min
W

Xn

‘¼1
jjWTx‘ � y‘jj

2
2 þ c1jjWjjG2;1

þ c2jjWjjl2;1 (1)

where c1 and c2 are regularization parameters weighting a G2;1-

norm penalty jjWjjG2;1
¼
PK

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2pk

Pc
j¼1 w2

ij

q
and an ‘2;1-norm

penalty jjWjjl2;1 ¼
Pd

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPc
j¼1 w2

ij

q
respectively. The G2;1-norm

addresses group-wise association between SNPs and encourages

sparsity at the gene level. This regularization differs from group

lasso (Yuan and Lin, 2006) as it penalizes regression coefficients for

a group of SNPs across all imaging phenotypes jointly. As an im-

portant gene/group may contain irrelevant individual SNPs, or a less

important group may contain individually significant SNPs, the se-

cond penalty, an ‘2;1-norm (Evgeniou and Pontil, 2007), is added to

allow for additional structured sparsity.

The estimator (1) provides a novel approach for assessing associ-

ations between neuroimaging phenotypes and genetic variations as it

accounts for several interrelated structures within genotyping and

imaging data. The incorporation of biological group structure in re-

gression analysis with genetic data has been developed in a variety of

contexts (see e.g. Rockova et al., 2014; Stingo et al., 2011; Wen,

2014; Zhu et al., 2014). Wang et al. (2012) show that such an ap-

proach when applied to imaging genetics is able to achieve enhanced

predictive performance and improved SNP selection compared with a

number of alternative approaches in certain settings. Notwithstanding

these advantages, a limitation of the proposed methodology is that it

only furnishes a point estimate cW and techniques for obtaining valid

standard errors or interval estimates are not provided. The primary

contribution of this article is to provide an approach for doing this.

Resampling methods such as the bootstrap are a natural starting

point for this problem; however, as discussed in Kyung et al. (2010)

the bootstrap estimates of the standard error for the lasso or lasso

variations such as the estimator (1) might be unstable and not perform

well. An alternative way forward is to exploit the connection between

penalized regression methods and hierarchical modeling formulations.

Following the ideas of Park and Casella (2008) and Kyung et al.

(2010) we develop a hierarchical Bayesian model that allows for full

posterior inference. The spread of the posterior distribution then pro-

vides valid measures of posterior variability along with credible inter-

vals for each regression parameter. Along similar lines, Bae and

Mallick (2004) develop a two-level hierarchical model for gene selec-

tion that incorporates the univariate Laplace distribution as a prior

that favors sparsity and employ the representation of the Laplace dis-

tribution as a Gaussian scale mixture in their model hierarchy. In our

work, we use a multivariate prior based on a Gaussian scale mixture

representation which is assigned independently to the set of coeffi-

cients corresponding to each gene. The prior is chosen so that the cor-

responding posterior mode is exactly the Wang et al. (2012)

estimator. To our knowledge this specific form of multivariate shrink-

age prior has not been considered previously, though the formulation

is related to the general ideas developed in Kyung et al. (2010).

The remainder of the article proceeds as follows. In section 2, we

specify the hierarchical model and its motivation based on the esti-

mator (1). The scale mixture representation is specified and a Gibbs

sampling algorithm for computing the posterior distribution is pre-

sented. Section 3 presents a study of computation time and scaling,

while simulation studies are presented in section 4. Section 5 applies

our methodology to a dataset obtained from the Alzheimer’s Disease
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Neuroimaging Initiative (ADNI) database, where we relate MRI

based structural brain summaries at 56 ROIs to 486 SNPs belonging

to 33 genes. The final section concludes with a discussion of poten-

tial model extensions.

2 Materials and methods

Let WðkÞ ¼ ðwijÞi2pk
denote the mk � c submatrix of W containing

the rows corresponding to the kth gene, k ¼ 1; . . . ;K. The hierarch-

ical model corresponding to the estimator (1) takes the form

y‘jW;r2 �ind
M VNcðWTx‘; r2IcÞ ‘ ¼ 1; . . . ;n; (2)

with the coefficients corresponding to different genes assumed con-

ditionally independent

WðkÞjk2
1; k

2
2;r

2 �ind
pðWðkÞjk2

1; k
2
2;r

2Þk ¼ 1; . . . ;K; (3)

and with the prior distribution for each WðkÞ having a density func-

tion given by

pðWðkÞjk2
1; k

2
2; r

2Þ / exp � k1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2pk

Xc

j¼1
w2

ij

r� �
�
Y
i2pk

exp � k2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXc

j¼1
w2

ij

r� �
:

(4)

The shrinkage prior (4) is not a multivariate Laplace distribution;

however, each term of the product on the right-hand side of (4) is

the kernel of a form of the multivariate Laplace distribution dis-

cussed in Kotz et al. (2012), and so we refer to this prior as the

product multivariate Laplace distribution. The prior is specified

conditional on r and the dependence of the prior density on r fol-

lows the parameterization of the univariate Laplace distribution

considered in Park and Casella (2008) who show that this param-

eterization guarantees a unimodal posterior for the Bayesian lasso.

By construction, the posterior mode, conditional on k2
1; k

2
2; r

2, cor-

responding to the model hierarchy (2)–(4) is exactly the estimator

(1) proposed by Wang et al. (2012) with c1 ¼ 2rk1 and c2 ¼ 2rk2.

This equivalence between the posterior mode and the estimator of

Wang et al. (2012) is the motivation for our model; however, we

note that generalizations that allow for a more flexible covariance

structure in (2) could also be considered. For the current model

each component of y‘ is scaled to have unit variance across sub-

jects, making the assumption of a single variance component r2

tenable. We also note that while (2) assumes conditional independ-

ence across imaging phenotypes, the prior distribution (4) induces

dependence in the regression coefficients across the imaging

phenotypes for coefficients corresponding to the same gene

(group).

Proposition 1. (Prior Propriety) The prior for W based on (3) and

(4) is proper.

Proof For each k 2 f1; . . . ;Kg we define Ik as

Ik ¼
ð

exp � k1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2pk

Xc

j¼1
w2

ij

r� �
�
Y
i2pk

exp � k2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXc

j¼1
w2

ij

r� �
dWðkÞ:

It is sufficient to show that
QK

k¼1 Ik is finite. We note that

Ik �
ð

exp � k1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2pk

Xc

j¼1
w2

ij

r� �
dWðkÞ (5)

since exp ð�xÞ � 1 for x � 0. The integrand on the right-hand side

of (5) is proportional to the probability density function of a particu-

lar form of the multivariate Laplace distribution discussed in Kotz

et al. (2012). Given this form, the integral can be evaluated asð
exp � k1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2pk

Xc

j¼1
w2

ij

r� �
dWðkÞ ¼ pðmkc�1Þ=2

�Cððmkcþ 1Þ=2Þ2mkcðk2
1=r

2Þ�mkc=2 < 1;

so that Ik < 1 and therefore
QK

k¼1 Ik < 1 as required. h

If the hyper-parameters r2, k1 and k2 are fixed or assigned proper

priors then Proposition 1 is sufficient to ensure that the posterior

distribution is proper. The following proposition provides a stochas-

tic representation of the prior based on a Gaussian scale mixture.

This representation is important as it facilitates computation of the

posterior distribution using a simple Gibbs sampling algorithm.

Proposition 2. (Scale mixture representation) For each i 2 f1; . . . ;dg
let kðiÞ 2 f1; . . . ;Kg denote the gene associated with the ith SNP.

The prior (4) can be obtained through the following scale mixture

representation:

wij j r2; s2; x2 �ind
N 0; r2 1

s2
kðiÞ
þ 1

x2
i

 !�1
0@ 1A; (6)

with continuous scale mixing variables s2 ¼ ðs2
1; . . . ; s2

KÞ
0 and

x2 ¼ ðx2
1; . . . ;x2

dÞ
0 distributed according to the density

p s2;x2jk2
1; k

2
2

� �
/
QK

k¼1

k2
1

2

 ! mkcþ 1

2

� �
s2

k

� � mkcþ 1

2

� �
�1

exp � k2
1

2

 !
s2

k

( )

�
Q

i2pk

k2
2

2

 ! cþ 1

2

� �
x2

i

� � cþ 1

2

� �
�1

exp � k2
2

2

 !
x2

i

( )

� s2
k þ x2

i

� �� c

2:

(7)

Proof. From Kyung et al. (2010) we have the following:

exp � k1

r
jjW ðkÞjj2

� �
/
ð1

0

1

2pr2s2
k

 !mkc

2

�exp � jjW
ðkÞjj22

2r2s2
k

( ) k2
1

2

 ! mkcþ 1

2

� �

C
mkcþ 1

2

� � ðs2
kÞ

mkcþ 1

2

� �
�1

�exp � k2
1

2

 !
s2

k

( )
ds2

k;

(8)

and

exp � k2

r
jjwijj2

� �
/
ð1

0

1

2pr2x2
i

� �c

2
exp � jjw

ijj22
2r2x2

i

( )

�

k2
2

2

 ! cþ 1

2

� �

C
cþ 1

2

� � ðx2
i Þ

cþ 1

2

� �
�1

exp � k2
2

2

 !
x2

i

( )
dx2

i ;

(9)
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where wi denotes the ith row of W . Beginning with (4) we substitute (8)

and (9), apply some algebra, and simplify to obtain pðWðkÞjk2
1; k

2
2; r

2Þ

/
ð1

0

� � �
ð1

0

Y
i2pk

r2 1

s2
k

þ 1

x2
i

 !�1
0@ 1A�c

2
24 35

� exp �
X
i2pk

Pc
j¼1 w2

ij

2r2 1
s2

k

þ 1
x2

i

	 
�1

0B@
1CA

8><>:
9>=>; exp � k2

1

2
s2

k

( )

�
Y
i2pk

r2 1

s2
k

þ 1

x2
i

 !�1
0@ 1Ac

2
24 35� k2

1

2

 ! mkcþ1

2

� �
ðs2

kÞ
�1

2

�
Y
i2pk

k2
2

2

 ! cþ1
2ð Þ
ðx2

i Þ
�1

2 exp � k2
2

2
x2

i

( )
dx2

i

24 35ds2
k

From (3), we are able to take the product of the expression above over

k 2 f1; . . . ;Kg, and after simplification we obtain p Wjk2
1; k

2
2; r

2
� �

/
ð1

0

� � �
ð1

0

YK
k¼1

Y
i2pk

N wij; 0;r2 1

s2
k

þ 1

x2
i

 !�1
0@ 1A

�
YK
k¼1

k2
1

2

 ! mkcþ 1

2

� �
s2

k

� �mkcþ 1

2
� 1

exp � k2
1

2
s2

k

( )

�
Y
i2pk

k2
2

2

 ! cþ 1

2

� �
x2

i

� �cþ 1

2
� 1

exp � k2
2

2
x2

i

( )264
375

�
Y
i2pk

s2
k þ x2

i

� �� c

2 dx2
i

" #
ds2

k;

(10)

where Nðx; l;r2Þ denotes the density of a normal distribution with

mean l, variance r2 evaluated at x. The first line of the integrand in

(10) corresponds to (6), while the remaining lines of (10) correspond

to (7), and the integration is over the scale mixing variables s2 and

x2. It follows that (3) and (4) can be represented through the

Gaussian scale mixture (6) and (7). h

This hierarchical representation of the shrinkage prior (7) intro-

duces gene specific latent variables s2
1; . . . ; s2

K as well as SNP specific

latent variables x2
1; . . . ;x2

d that modulate the conditional variance of

each regression coefficient in (6). Unlike other formulations for

Bayesian lassos the scale mixing variables are not assumed inde-

pendent. The dependence in the joint distribution arises from the

term ðs2
k þx2

i Þ
�c

2 in (7) and this is required to ensure that the result-

ing marginal distribution for W has the required form (4). The par-

ameter r2 is assigned a proper inverse-Gamma prior

r2 � Inv�Gammaðar;brÞ; (11)

and the hierarchical model (2), (6), (7) and (11) has a conjugacy

structure that facilitates posterior simulation using a Gibbs sampling

algorithm. As the normalizing constant associated with (7) is not

known and may not exist, we work with the unnormalized form

which yields proper full conditional distributions having standard

form. Our focus of inference does not lie with the scale mixing vari-

ables themselves, rather, the use of the scale mixture representation

is a computational device that leads to a fairly straightforward

Gibbs sampling algorithm which enables us to draw from the mar-

ginal posterior of W . By Proposition 1 and the fact that (11) is

proper we are assured that this posterior distribution is always

proper. The Gibbs sampler is presented in Algorithm 1 while the

corresponding derivations are presented in the Supplementary

Material. Starting values for the algorithm can be obtained in part

by first computing the estimator (1) and using these to initialize the

Markov chain Monte Carlo (MCMC) sampler.

The tuning parameters c1, c2 in (1) and k2
1; k2

2 in the hierarchical

model (2), (6), (7) and (11) control the strength of the regularization

terms and thus the structure of the penalty that governs the bias-

variance tradeoff associated with the estimator of W. Wang et al.

(2012) suggest the use of 5-fold cross-validation (CV) over a discrete

2D grid f10�5; 10�4; . . . ; 104; 105g2 of possible values. A problem

with the use of CV when MCMC runs are required to fit the model

is that an extremely large number of parallel runs are needed to

cover all points on the grid for each possible split of the data. To

avoid some of this computational burden we approximate leave-

one-subject-out CV using the Watanabe-Akaike information crite-

rion (WAIC) (Gelman et al., 2014; Watanabe, 2010)

WAIC ¼� 2
Xn

l¼1

log EW;r2 ½pðy‘jW; r2Þjy1; . . . ; yn�

þ 2
Xn

l¼1

VARW;r2 ½log pðy‘jW; r2Þjy1; . . . ; yn�

where pðy‘jW; r2Þ is the probability density function associated with

(2) and the required posterior means and variances are approxi-

mated based on the output of the MCMC sampler at each point of

the grid. These samplers are run in parallel using a high performance

computing cluster. The values of k2
1 and k2

2 are then chosen as those

Algorithm 1. Gibbs Sampling Algorithm

(i) Set tuning parameters k2
1 and k2

2.

(ii) Initialize W ; s2; x2 and repeat steps (3)–(6) below to ob-

tain the desired Monte Carlo sample size after burn-in.

(iii) Update r2 � Inv�Gamma a	r; b
	
r

� �
, a	r ¼ c

2 nþ dð Þ þ ar

b	r ¼
1

2

Xn

l¼1
jjy‘ �WTx‘jj22

þ1

2

Xd

i¼1

1

s2
k ið Þ
þ 1

x2
i

0@ 1AXc

j¼1
w2

ij þ br:

(iv) For k ¼ 1; . . . ;K update s2
k, through

1=s2
k � Inverse�Gaussian

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1r
2

jjW kð Þjj2F

s
; k2

1

 !
:

(v) For i ¼ 1; . . . ;d update x2
i , through

1=x2
i � Inverse�Gaussian

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

2r
2Pc

j¼1 w2
ij

s
; k2

2

 !
:

(vi) For k ¼ 1; . . . ;K update W kð Þ, based on

vec W kð Þ0
	 


�MVNmkc lk;Rkð Þ where

lk ¼ �A�1
k

Pn
l¼1 x

kð Þ
‘ 
 Ic

	 

x
�kð Þ0
‘ 
 Ic

	 

vec W �kð Þ0
	 


þA�1
k

Pn
l¼1 x

kð Þ
‘ 
 Ic

	 

y‘; Rk ¼ r2A�1

k ; Ak ¼

Xn

l¼1

x
kð Þ
‘ 
 Ic

	 

x

kð Þ0
‘ 
 Ic

	 

þDiag

1

s2
k

þ 1

x2
i

8<:
9=;

i2pk


 Ic

and where W �kð Þ¼ wij

� �
i2=pk ;j

;x
kð Þ
‘ ¼ x‘j

� �
j2pk

, and x
�kð Þ
‘ ¼ x‘j

� �
j2=pk

.
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values that minimize the WAIC across the grid and no data-splitting

is required. We note that alternative approaches based on either em-

pirical Bayes (EB) or hierarchical Bayes (HB) could also be used to

choose the tuning parameters; however, for the model under consid-

eration we have found (Nathoo et al., 2016) that using both EB and

HB to select the tuning parameters can lead to severe over-shrinkage

of the posterior mean of the regression coefficients when d > n or

when the genetic effects are weak.

3 Computation time and scaling

In this section, we report on computation times and scaling as the

number of subjects n, the dimension of the phenotype c, and the

number of SNPs d changes. Three experiments are performed with

each examining how the computation time scales with one of the

three input dimensions. The computation times reported here are

based on a total of 10 000 MCMC iterations (5000 iterations was a

sufficient burn-in in all cases considered) with each run employing

49 cores (each 2.66-GHz Xeon x5650) on a computing cluster with

20 GB of RAM requested for each job. To be clear on the parallel as-

pect of the computing, each core is simply used to run the Gibbs

sampler with a different value of ðk2
1; k

2
2Þ and the value minimizing

the WAIC is used for inference in each case. The computational al-

gorithm itself runs on a single core. The use of multiple cores and

MCMC chains along with the WAIC is the recommended approach

for choosing the model tuning parameters based on the investiga-

tions of Nathoo et al. (2016). When multiple cores are not available,

our R package ‘bgsmtr’ provides an alternative ad hoc approach for

choosing the tuning parameters with the computations requiring

only a single core. This approach is based on applying the original

estimator of Wang et al. (2012) and choosing the tuning parameters

for that estimator, c1 and c2, using 5-fold CV. Given the values ob-

tained for c1 and c2, we use the relationship between these param-

eters and the tuning parameters of our model, namely, c1 ¼ 2rk1

and c2 ¼ 2rk2 to obtain the values of k1 and k2 for each sampled

value of r.

We choose baseline values of c ¼ 12, d ¼ 500, n ¼ 600, and in

each of the three experiments the data are simulated from the model

with one dimension varying while the other two are fixed at the

baseline values. The results from the three experiments are displayed

in Figure 1. In each case the computation time scales approximately

linearly with the given input when the other two inputs are fixed,

and overall, the computation time scales as O(ndc). For a fully

Bayesian approach with implementation based on MCMC, the com-

putation time is not extensive even for the most extreme values (d ¼
5000, c ¼ 100, n ¼ 10 000) and larger values can be considered if

more memory is available, or alternatively, thinning can be applied

to the MCMC chains to reduce the memory requirements.

4 Simulation studies

We conduct four simulation studies in which our proposed method-

ology is evaluated with the primary objective of evaluating the

coverage probabilities of the 95% equal-tail credible intervals for

the regression coefficients W : We focus on evaluating coverage

probabilities as the ability to quantify uncertainty through interval

estimation is the primary value-added of our methodology over and

above the estimator proposed by Wang et al. (2012). We also com-

pare our approach to a more standard approach, the nonparametric

bootstrap applied to the estimator (1).

The application of the non-parametric bootstrap involves resam-

pling the data with replacement and recomputing the estimator (1) for

each bootstrap sample. The bootstrap distribution of the resulting esti-

mators over a large number B ¼ 1000 bootstrap samples is then used to

construct �95% CIs. In this case the bootstrap resampling is done at

the level of subjects. The tuning parameters c1 and c2 are recomputed

for each simulated dataset in the simulation study but they are fixed

across all bootstrap replicates corresponding to a single simulated data-

set. The selection for these tuning parameters is based on 5-fold CV.

The simulation studies are based on genetic data obtained from

the ADNI database. The data comprise information on d ¼ 486

SNPs belonging to K ¼ 33 genes obtained from a total n ¼ 632 sub-

jects [179 cognitively normal (CN), 144 AD, 309 late mild cognitive

impairment (LMCI) stage]. The genes for which we have informa-

tion along with the number of SNPs included for each gene are de-

picted in Supplementary Figure S1.

We include all 486 SNPs and simulate imaging data from c ¼ 12

ROIs, with Study I having n ¼ 632 subjects, and Study II having n ¼
250 (83 CN, 83 AD, 84 LMCI) subjects. Study II differs from Study

I in that we move to a high-dimensional setting by reducing the

value of n so that n < d. In each case we set the true values as

k2
1 ¼ k2

2 ¼ r2 ¼ 2, and set the true values for W by first simulating

Fig. 1. Computation time in minutes (y-axis) as a function of the number of SNPs d (c ¼ 12, n ¼ 600), the number of phenotypes c (d ¼ 500, n ¼ 600), and the num-

ber of subjects n (c ¼ 12, d ¼ 500). In each case, the computation time reported is based on 10 000 MCMC iterations (5000 iterations was a sufficient burn-in in all

cases considered) with each run employing 49 cores (each 2.66-GHz Xeon x5650) on a computing cluster with 20 GB of RAM requested for each job. Each core is

used to run the MCMC algorithm with a unique setting for the tuning parameters and a total of 49 settings are considered. Increasing or decreasing the number

of settings, and hence the number of cores used, has no impact on the reported computation times
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ind
Gamma

cþ1
2 ;

k2
2
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; i ¼ 1; . . . ;d; and then simulating the regression coeffi-

cients from (6), and finally, the true values for W are obtained by

setting the entries of all but 50 rows of W to zero. This adds add-

itional sparsity to the SNP effects and makes the simulation setup

more realistic. We note that the simulation of s2 and x2 from

Gamma distributions is not based on our assumed model and the

additional sparsity added after simulation from (6) does not corres-

pond to the prior from our model, so that we are not assuming that

the model is correctly specified. The non-zero rows correspond to 5

genes containing exactly 14, 10, 6, 4 and 1 SNP(s) respectively (for a

total of 35 SNPs), along with an additional 15 rows corresponding

to additional SNPs. The imaging data are simulated from (2) and we

note that the model assumption (2) is common to both of the

approaches being compared, so neither has an advantage.

To further investigate the robustness of our approach relative to

the bootstrap in settings where the model assumptions do not match

the model from which the data have been generated we conduct two

additional simulation studies, labelled Studies III and IV, which

have the same settings as Studies I and II, respectively, with the ex-

ception that the regression errors are drawn from a heavy-tailed

multivariate t4 distribution.

For each of 100 simulation replicates we compute the bootstrap

95% CI based on the estimator (1) and the posterior distribution

from our Bayesian model using the Gibbs sampling algorithm. In

total each simulation study involves d � c ¼ 5832 regression param-

eters and we use the 100 simulation replicates to estimate the cover-

age probability of the 95% equal-tail confidence/credible intervals

for each parameter. The results are presented in Table 1.

In Study I we find that the mean (over all 5832 parameters) cover-

age probability is 95% for intervals constructed based on our ap-

proach, while that for the nonparametric bootstrap applied to the

estimator of Wang et al. (2012) is 85%, below the nominal level.

Considering only those 600 parameters with non-zero effects the

mean coverage probability for our approach drops to 83%, while

that for the nonparametric bootstrap drops to an unreasonable 45%.

In Study II (n < d) we find that the mean (over all 5, 832 parameters)

coverage probability is 94% for our approach while that obtained for

intervals constructed using the nonparametric bootstrap is 85%.

Considering only those parameters with non-zero true values the

mean coverage probabilities associated with both approaches drops

as in Study I, to 72% for our approach and to 42% for the nonpara-

metric bootstrap. The results for Studies III and IV generally indicate

the same patterns as those seen in Studies I and II, demonstrating that

our comparisons exhibit some robustness to model misspecification.

We find that the Bayesian approach is clearly outperforming the

estimator of Wang et al. (2012) combined with the non-parametric

bootstrap in all cases. In all four studies the mean coverage probabil-

ity for both methods drops when considering only active SNPs. This

is expected since both approaches are based on estimators that

shrink to zero, and for active SNPs this implies shrinkage away from

the true value. In this case the values obtained from the

Table 1. Simulation studies—interval estimation

Study I

Method MCP (overall) MCP (wij 6¼ 0)

Bayesian model 0.95 0.83

Non-parametric bootstrap 0.85 0.45

Study II

Method MCP (overall) MCP (wij 6¼ 0)

Bayesian Model 0.94 0.72

Non-parametric bootstrap 0.85 0.42

Study III

Method MCP (overall) MCP (wij 6¼ 0)

Bayesian model 0.97 0.77

Non-parametric bootstrap 0.86 0.49

Study IV

Method MCP (overall) MCP (wij 6¼ 0)

Bayesian model 0.95 0.73

Non-parametric bootstrap 0.84 0.41

The coverage probability of each �95% credible/confidence interval is esti-

mated based on 100 simulation replicates and then averaged (mean coverage

probability, MCP) overall and also separately over the parameters that corres-

pond to active SNPs.

Table 2. Imaging phenotypes defined as volumetric or cortical

thickness measures of 28 � 2 ¼ 56 ROIs from automated

Freesurfer parcellations

ID Measurement ROI

AmygVol Volume Amygdala

CerebCtx Volume Cerebral cortex

CerebWM Volume Cerebral white matter

HippVol Volume Hippocampus

InfLatVent Volume Inferior lateral ventricle

LatVent Volume Lateral ventricle

EntCtx Thickness Entorhinal cortex

Fusiform Thickness Fusiform gyrus

InfParietal Thickness Inferior parietal gyrus

InfTemporal Thickness Inferior temporal gyrus

MidTemporal Thickness Middle temporal gyrus

Parahipp Thickness Parahippocampal gyrus

PostCing Thickness Posterior cingulate

Postcentral Thickness Postcentral gyrus

Precentral Thickness Precentral gyurs

Precuneus Thickness Precuneus

SupFrontal Thickness Superior frontal gyrus

SupParietal Thickness Superior parietal gyrus

SupTemporal Thickness Superior temporal gyrus

Supramarg Thickness Supramarginal gyrus

TemporalPole Thickness Temporal pole

MeanCing Mean thickness Caudal anterior cingulate, isth-

mus cingulate, posterior cingu-

late, rostral anterior cingulate

MeanFront Mean thickness Caudal midfrontal, rostral mid-

frontal, superior frontal, lat-

eral orbitofrontal, and medial

orbitofrontal gyri, frontal pole

MeanLatTemp Mean thickness Inferior temporal, middle tem-

poral, and superior temporal

gyri

MeanMedTemp Mean thickness Fusiform, parahippocampal, and

lingual gyri, temporal pole and

transverse temporal pole

MeanPar Mean thickness Inferior and superior parietal

gyri, supramarginal gyrus, and

precuneus

MeanSensMotor Mean thickness Precentral and postcentral gyri

MeanTemp Mean thickness Inferior temporal, middle tem-

poral, superior temporal, fusi-

form, parahippocampal,

lingual gyri, temporal pole,

transverse temporal pole

Each of the phenotypes in the table corresponds to two phenotypes in the

data: one for the left hemisphere and the other for the right hemisphere.
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nonparametric bootstrap are unreasonably low while those obtained

from our approach are still somewhat reasonable.

5 Application to ADNI data

We illustrate our methodology by applying it to a dataset obtained

from the ADNI-1 database. This dataset includes both genetic and

structural MRI data and is similar to a dataset analyzed by Wang

et al. (2012); however, we use a larger number of regions of interest

in our analysis leading to 56 imaging phenotypes rather than the 12

imaging phenotypes analyzed by Wang et al. (2012). The imaging

phenotypes used in our analysis are listed in Table 2.

Registered ADNI investigators may obtain the preprocessed data

used in this analysis by contacting the corresponding author. These

data can be used in conjunction with our R package ‘bgsmtr’ imple-

menting our methodology to reproduce the results presented here.

The data are available for n ¼ 632 subjects (179 CN, 144 AD,

309 LMCI), and among all possible SNPs we include only those

Table 3. The 45 SNPs selected from the Bayesian model along with corresponding phenotypes where (L), (R) and (L,R) denote that the

phenotypes are on the left, right and both hemispheres, respectively

SNP Gene Phenotype ID (hemisphere)

rs4305 ACE LatVent (R)

rs4311 ACE InfParietal (L,R), MeanPar (L,R), Precuneus (L,R), SupParietal (L), SupTemporal (L), CerebCtx (R),MeanFront (R),

MeanSensMotor (R), MeanTemp (R), Postcentral (R), PostCing (R), Precentral (R), SupFrontal (R), SupParietal (R)

rs405509 APOE AmygVol (L), CerebWM (L), Fusiform (L), HippVol (L), InfParietal (L,R),SupFrontal (L,R), Supramarg (L,R),

InfTemporal (L), MeanFront (L,R), MeanLatTemp (L,R), MeanMedTemp (L,R), MeanPar (L,R),

MeanSensMotor (L,R), MeanTemp (L,R), MidTemporal (L,R), Postcentral (L,R), Precuneus (L,R)

SupTemporal (L,R), Precentral (R), SupParietal (R)

rs11191692 CALHM1 EntCtx (L)

rs3811450 CHRNB2 Precuneus (R)

rs9314349 CLU Parahipp (L)

rs2025935 CR1 CerebWM (R), Fusiform (R), InfLatVent (R)

rs11141918 DAPK1 CerebCtx (R)

rs1473180 DAPK1 CerebCtx (L,R),EntCtx (L), Fusiform (L), MeanMedTemp (L), MeanTemp (L), PostCing (L)

rs17399090 DAPK1 MeanCing (R), PostCing (R)

rs3095747 DAPK1 InfLatVent (R)

rs3118846 DAPK1 InfParietal (R)

rs3124237 DAPK1 PostCing (R), Precuneus (R), SupFrontal (R)

rs4878117 DAPK1 MeanSensMotor (R), Postcentral (R)

rs212539 ECE1 PostCing (R)

rs6584307 ENTPD7 Parahipp (L)

rs11601726 GAB2 CerebWM (L), LatVent (L)

rs16924159 IL33 MeanCing (L), PostCing (L), CerebWM (R)

rs928413 IL33 InfLatVent (R)

rs1433099 LDLR CerebCtx.adj (L), Precuneus (L,R)

rs2569537 LDLR CerebWM (L,R)

rs12209631 NEDD9 CerebCtx (L), HippVol (L,R)

rs1475345 NEDD9 Parahipp (L)

rs17496723 NEDD9 Supramarg (L)

rs2327389 NEDD9 AmygVol (L)

rs744970 NEDD9 MeanFront (L), SupFrontal (L)

rs7938033 PICALM EntCtx (R), HippVol (R)

rs2756271 PRNP EntCtx (L), HippVol (L,R), InfTemporal (L), Parahipp (L)

rs6107516 PRNP MidTemporal (L,R)

rs1023024 SORCS1 MeanSensMotor (L), Precentral (L)

rs10787010 SORCS1 AmygVol (L), EntCtx (L,R), Fusiform (L), HippVol (L,R), InfLatVent (L), InfTemporal (L), MeanFront (L),

MeanMedTemp (L,R), MeanTemp (L), Precentral (L), TemporalPole (R)

rs10787011 SORCS1 EntCtx (L,R), HippVol(R)

rs12248379 SORCS1 PostCing (R)

rs1269918 SORCS1 CerebCtx (L), CerebWM (L), InfLatVent (L)

rs1556758 SORCS1 SupParietal (L)

rs2149196 SORCS1 MeanSensMotor (L), Postcentral (L,R)

rs2418811 SORCS1 CerebWM (L,R), InfLatVent.adj (L)

rs10502262 SORL1 MeanCing (L), InfTemporal (R), Supramarg (R)

rs1699102 SORL1 MeanMedTemp (R), MeanTemp (R)

rs1699105 SORL1 MeanCing (L), Precuneus (L)

rs4935774 SORL1 CerebWM (L,R)

rs666004 SORL1 InfTemporal (L)

rs1568400 THRA Precentral (L), TemporalPole (R)

rs3744805 THRA MeanSensMotor (R), Postcentral (R), Precentral (R)

rs7219773 TNK1 MeanSensMotor (L), Precentral (L), Postcentral (R)

SNPs also ranked among the top 45 using the Wang et al. (2012) estimate are listed in bold.
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SNPs belonging to the top 40 AD candidate genes listed on the

AlzGene database as of June 10, 2010. The data presented here are

queried from the most recent genome build as of December 2014,

from the ADNI-1 data.

After quality control and imputation steps, the genetic data used

for this study includes 486 SNPs from 33 genes and these genes

along with the distribution of the number of SNPs within each gene

is depicted in Supplementary Figure S1. The freely available soft-

ware package PLINK (Purcell et al., 2007) was used for genomic

quality control. Thresholds used for SNP and subject exclusion were

the same as in Wang et al. (2012), with the following exceptions.

For SNPs, we required a more conservative genotyping call rate of

at least 95% (Ge et al. 2012).

For subjects, we required at least one baseline and one follow-up

MRI scan and excluded multivariate outliers. Sporadically missing

genotypes at SNPs in the HapMap3 reference panel (Gibbs et al.,

2003) were imputed into the data using IMPUTE2 (Howie et al.,

2009). Further details of the quality control and imputation procedure

can be found in Szefer (2014). The MRI data from the ADNI-1 data-

base are preprocessed using the FreeSurfer V4 software which conducts

automated parcellation to define volumetric and cortical thickness

values from the c ¼ 56 brain regions of interest that are detailed in

Table 2. Each of the response variables are adjusted for age, gender,

education, handedness, and baseline total intracranial volume (ICV)

based on regression weights from healthy controls and are then scaled

and centered to have zero-sample-mean and unit-sample-variance.

We fit our model, which for the current dataset has 27 216 re-

gression parameters, by running a total of 49 Gibbs sampling chains

in parallel on a computing cluster with each chain corresponding to

a different value of ðk2
1; k

2
2Þ. The WAIC is applied to select which of

the 49 chains to use for posterior inference. The Wang et al. (2012)

estimator is also computed with tuning parameters c1 and c2 in (1)

based on c1 ¼ 2rk1 and c2 ¼ 2rk2, with the values of k1 and k2

chosen using WAIC and the posterior mean for r from the Gibbs

sampler are used.

To select potentially important SNPs we evaluate the 95%

equal-tail credible interval for each regression coefficient and select

those SNPs where at least one of the associated credible intervals ex-

cludes 0. In total there are 45 SNPs and 152 regression coefficients

for which this occurs. Table 1 in the supplementary material lists

each of the 152 SNP–ROI associations along with the corresponding

point and interval estimates.

The 45 selected SNPs and the corresponding phenotypes at

which we see a potential association based on the 95% credible

interval are listed in Table 3. Three SNPs, rs4311 from the ACE

gene, rs405509 from the APOE gene, and rs10787010 from the

SORCS1 gene stand out as being potentially associated with the

largest number of ROIs. The 95% credible intervals for the coeffi-

cients relating rs4311 to each of the c ¼ 56 imaging measures are de-

picted in Figure 2, while similar figures for rs405509 and

rs10787010 are presented in Supplementary Figures S2 and S3. In

the original methodology of Wang et al. (2012) the authors suggest

ranking and selecting SNPs by constructing a SNP weight based on

the point estimate cW and a sum of the absolute values of the esti-

mated coefficients of each single SNP over all of the tasks. Doing so,

the top 45 highest ranked SNPs contain 21 of the SNPs chosen using

our approach and these 21 SNPs are highlighted in Table 3. The

number 1 ranked (highest priority) SNP using this approach is SNP

rs3026841 from gene ECE1. In Figure 3 we display the correspond-

ing point estimates along with the 95% credible intervals (obtained

via our Gibbs sampler) relating this SNP to each of the c ¼ 56 imag-

ing measures. We note that all 56 of the corresponding 95% credible

intervals include the value 0. This result demonstrates clearly the im-

portance of accounting for posterior uncertainty beyond the point

estimate and illustrates the potential problems that may arise when

estimation uncertainty is ignored. It thus serves to illustrate the prac-

tical value of our proposed methodology.

6 Conclusion

We have proposed a framework for the analysis of data arising in

studies of imaging genomics that extends a previously developed

Fig. 2. The 95% equal-tail credible intervals relating the SNP rs4311 from ACE

to each of the c ¼ 56 imaging phenotypes. Each imaging phenotype is repre-

sented on the x-axis with a tick mark and these are ordered in the same order

as the phenotypes are listed in the rows of Table 2, first for the left hemi-

sphere and then followed by the same phenotypes for the right hemisphere

Fig. 3. The 95% equal-tail credible intervals relating the SNP rs3026841 from

ECE1 to each of the c ¼ 56 imaging phenotypes. Each imaging phenotype is

represented on the x-axis with a tick mark and these are ordered in the same

order as the phenotypes are listed in the rows of Table 2, first for the left hemi-

sphere and then followed by the same phenotypes for the right hemisphere
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regularization approach in order to allow for the quantification of

estimation (posterior) uncertainty in multi-task regression with a

G2;1 � norm penalty. The value added of our approach has been

demonstrated using both simulation studies as well as the analysis of

a real dataset from the ADNI database. We have compared our ap-

proach to the nonparametric bootstrap applied to (1) and have dem-

onstrated that our methodology clearly outperforms the latter in

terms of mean coverage probability, for the settings considered. We

note that our implementation of the bootstrap estimates the tuning

parameters from the dataset using CV and subsequently these par-

ameters are fixed across all bootstrap replicates. To keep the compu-

tational burden down, it is routine to fix tuning parameters when

bootstrapping; however, fixing these parameters does ignore the un-

certainty associated with the estimated tuning parameters and this

may be contributing to the bias towards below-nominal coverage in

the bootstrap intervals. Re-estimating the tuning parameters for

each bootstrap replicate is computationally infeasible without mas-

sively parallel computers.

It should be noted that we have not addressed statistical adjust-

ments for multiplicity; however, our contribution is a step forward

in moving from point estimation to posterior distributions for this

regression model. Bayesian false discovery rate procedures (Morris

et al., 2008) can be used to adjust for multiplicity in the selection of

SNPs based on the output of the Gibbs sampler and this will be con-

sidered in future work.

We are currently investigating an extension of the model that

allows for a more flexible covariance structure in the specification

(2), and alternative shrinkage prior formulations such as the

horseshoe prior (Carvalho et al., 2010) that could potentially be

further developed for the type of bi-level penalization we have

considered here. An alternative approach that is potentially of

interest in allowing for increased scalability of the proposed model

is the use of a low-rank approximation to the regression coeffi-

cient matrix W as considered in Marttinen et al. (2014), though

this would require an appropriate choice for the rank of the re-

gression model. This potential improvement to scalability is an im-

portant direction for future work as the run times reported in

Section 3 for a model with 5000 SNPs would make our approach

difficult to apply to genome-wide analyses without applying some

screening to reduce the number of SNPs first. The sparsity struc-

ture we propose in this article could then be incorporated into

such an approximation as an extension to the current approach. In

addition, extending our model to accommodate potential hidden

confounding factors through a joint modelling approach as con-

sidered in Fusi et al. (2012), and the incorporation of terms allow-

ing for gene–gene interactions are interesting avenues for future

work.
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