
Structural bioinformatics

Machine learning in computational biology to

accelerate high-throughput protein expression

Anand Sastry1, Jonathan Monk1, Hanna Tegel2, Mathias Uhlen2,3,

Bernhard O. Palsson1,3, Johan Rockberg2,* and Elizabeth Brunk1,3,*

1Department of Bioengineering, University of California, San Diego, CA, USA, 2KTH - Royal Institute of Technology,

Department of Proteomics and Nanobiotechnology, SE-106 91 Stockholm, Sweden and 3The Novo Nordisk

Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on December 8, 2016; revised on March 3, 2017; editorial decision on April 1, 2017; accepted on April 5, 2017

Abstract

Motivation: The Human Protein Atlas (HPA) enables the simultaneous characterization of thou-

sands of proteins across various tissues to pinpoint their spatial location in the human body. This

has been achieved through transcriptomics and high-throughput immunohistochemistry-based

approaches, where over 40 000 unique human protein fragments have been expressed in E. coli.

These datasets enable quantitative tracking of entire cellular proteomes and present new avenues

for understanding molecular-level properties influencing expression and solubility.

Results: Combining computational biology and machine learning identifies protein properties that

hinder the HPA high-throughput antibody production pipeline. We predict protein expression and

solubility with accuracies of 70% and 80%, respectively, based on a subset of key properties (aro-

maticity, hydropathy and isoelectric point). We guide the selection of protein fragments based on

these characteristics to optimize high-throughput experimentation.

Availability and implementation: We present the machine learning workflow as a series of IPython

notebooks hosted on GitHub (https://github.com/SBRG/Protein_ML). The workflow can be used as

a template for analysis of further expression and solubility datasets.

Contact: ebrunk@ucsd.edu or johanr@biotech.kth.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Since its initial release in 2005, the Human Protein Atlas (Uhlén et al.,

2010, 2015) has evolved into an extensive knowledge base capable of

detecting 84% of the human proteome (v.15) through antibody-based

proteomics. Reaching high proteome coverage requires tremendous

numbers of recombinant protein fragments to be expressed and

sampled, which, in turn, can lead to significant technical challenges

for high-throughput experimental pipelines. Challenges, in part, stem

from the complexity of producing high amounts of heterologous pro-

tein fragments in E. coli, due to a host of systems-level effects that

impede expression, such as toxicity, codon bias, limiting factors in

batch cultivation and formation of inclusion bodies, among others. In

addition, the high-dimensionality of protein fragment expression

systems makes systematically extracting biologically meaningful infor-

mation for a single protein fragment, let alone thousands of protein

fragments, a significant challenge. In the majority of cases, improve-

ments in expression platforms are based on relatively few outputs

(Rosano and Ceccarelli, 2014), which severely limits the capability of

large-scale projects like the Human Protein Atlas. This motivates the

development of in silico tools to better characterize the biological

components of these complex systems, decrease the heavy reliance on

iterative trial-and-error, and ultimately, bring this technology closer

to other, more rational, engineering disciplines.

Relating a protein’s physical properties to its characteristic expres-

sion and solubility has paved the way for structural genomics initia-

tives (Williamson, 2000); analysis of standardized protein expression
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data (at the scale of over 16 900 protein-coding genes generated under

uniform conditions) was not possible until recently. Datasets gener-

ated by the Human Protein Atlas provide new avenues for characteriz-

ing molecular-level properties of protein fragments and improving the

performance of high-throughput experimental pipelines. For example,

chemical and biophysical characteristics of protein fragments provide

extensive insight into what factors influence a protein’s amenability to

high-throughput experimentation (Goh et al., 2004).

While standardized datasets are becoming increasingly available,

major impediments still prevent the realization of the potential

impact of big data resources (Berger et al., 2013). Modern machine

learning methods bring the promise of leveraging large-scale omics

data to make accurate predictions (Angermueller et al., 2016; Berger

et al., 2013), but the required skill sets to apply such methods extend

outside the traditional scope of biochemistry and molecular biology.

Thus, development of appropriate in silico tools and sufficient cross-

disciplinary training resources are paramount for further progress in

big data science (Rolfsson and Palsson, 2015). In this contribution,

we hope to lower the barrier of entry into computational biology

and data science by providing a computational framework, com-

plete with IPython tutorials, upon which large-scale omics data

from HPA can be analyzed and interpreted.

Here, we take advantage of two synergistic, accelerating

domains of science—computational biology and machine learning—

to develop a workflow that reconciles systems-level, multi-omic and

computational biology with high-throughput protein expression and

solubility. Using a machine learning approach, we probed the influ-

ence of biological and physical properties of over 45 000 recombi-

nant Protein Epitope Signature Tags (PrESTs) used as antigens to

generate antibodies for profiling tissue microarrays. Our workflow

applies multiple machine learning-based methods, including linear

regression, support vector machines (SVMs), random forest decision

trees and neural networks, to characterize the diverse landscape of

expression and solubility characteristics. Application of this work-

flow identified the roles of chemical and biophysical properties of

the PrESTs in observed experimental expression and solubility lev-

els. This characterization further facilitated the rational de novo

selection of highly expressed protein tags to significantly reduce the

total number of required experiments. The contributed workflow is

available as an open-source tool, in the format of IPython

notebooks.

2 Materials and methods

2.1 High-throughput expression of human protein frag-

ments in E. coli
Human protein fragments were cloned, expressed in E. coli as

fusion-proteins, and purified by immobilized metal affinity chroma-

tography (IMAC). Briefly, PrEST sequences (ranging from 20 to 150

amino acids) representing a unique part of each human protein were

selected (Berglund et al., 2008) and cloned (Lundqvist et al., 2015)

as cDNA from human tissue lysates into a pET-vector for expres-

sion. E. coli BL21 and Rosetta were used for IPTG induced intracel-

lular protein expression and the produced proteins were purified by

IMAC (Tegel et al., 2009), and validated by mass spectrometry.

Protein solubility was determined as previously published in Stenvall

et al. (2005).

2.2 Characterizing molecular features of protein tags
A variety of features intended to capture a broad characterization of

the data were calculated from the nucleotide and amino acid

sequence for each PrEST, separated into five main functional catego-

ries. The mRNA features include nucleotide and codon composition,

GC content of the full sequence and the first 30 nucleotides, pres-

ence of Shine-Dalgarno and Shine-Dalgarno-like sequences, the

RNA folding energy of the full sequence and the first 40 nucleotides,

and the tRNA adaptation index (tAI). The folding energy was calcu-

lated using Mfold (Markham and Zuker, 2008), and the tAI was cal-

culated from the CodonR program (dos Reis et al., 2004). The

primary structure features included the amino acid composition and

the fraction of various types of residues (e.g. polar, aliphatic). In

addition, various physical properties were computed using

Biopython’s implementation of ProtParam (Cock et al., 2009;

Gasteiger et al., 2003), such as isoelectric point, grand average of

hydropathy (GRAVY), fragment length and charge. We used the

SCRATCH suite to predict secondary structures for each PrEST

from the primary sequence, using both a 3-letter and 8-letter system

(Cheng et al., 2005). In addition, we utilized SCRATCH’s solvent

accessibility predictor to calculate the solvent accessibility of each

protein, and the hydrophobicity of solvent accessible and inaccessi-

ble regions. The disorder was predicted through three programs,

DisEMBL HOTLOOPS, COILS and REM465 (Linding et al.,

2003), DISOPRED3 (Jones and Cozzetto, 2015) and RONN (Yang

et al., 2005). DISOPRED3 was also used to predict protein binding

for each PrEST. A total of 147 features were calculated for each

PrEST in the expression dataset, and a limited set of 38 features was

calculated for the solubility dataset (See Table 1). Since the PrESTs

are short fragments of whole human proteins, we assumed that the

PrESTs did not maintain the same biological functions as the whole

proteins, such as post-translational modifications or conformational

state. The IPython notebook ‘create_feature_matrix.ipynb’ guides

the interested reader through the calculation of these features.

2.3 Targets and the initial dataset
The initial expression dataset reported 45 206 unique PrESTs

expressed in E. coli BL21 and Rosetta with concentrations at 0–

20 mg/mL and lengths ranging from 20 to 150 amino acids. In order

to coarse-grain the analysis, PrESTs with concentrations in the top

25th percentile (11 301 PrESTs) were designated as ‘highly

expressed’ and the PrESTs with concentrations in the bottom 25th

percentile (11 302 PrESTs) were labeled as ‘poorly expressed’. The

remaining PrESTs were removed from the dataset as their labels

would be highly susceptible to noise. The solubility dataset reported

16 082 unique PrESTs in five solubility classes based on percentiles.

The PrESTs in the highest class were designated as highly soluble

(7667 PrESTs), whereas the bottom three classes were designated as

insoluble (3324 PrESTs). One solubility class was removed to

improve separation.

2.4 Machine learning algorithms
We applied four machine learning algorithms to the dataset: logistic

regression, random forest classification, support vector machine

(SVM) classification and a deep neural network. Additionally, we

used a decision tree-based approach to determine which features

generally separate highly expressed PrESTs from those that are

poorly expressed. The effects of these features were measured using

a Mann–Whitney-U test to determine the P-value of the separations.

The outcome of such an analysis pipeline is to preferentially select

PrESTs based on a subset of selective features to maximize their pro-

duction in high-throughput experimentation.
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2.5 Machine learning workflow
Each dataset was randomly split, with 70% of the data used to

train the machine learning models, and the remaining 30% of the

data used to validate the results. Each algorithm has a set of

hyperparameters that define the configuration of the model. We

optimized these hyperparameters using a subset of the training data,

and then applied the final tuned model to the holdout testing data to

compare the four algorithms. An ensemble model was generated by

averaging the prediction probabilities from the top two models, and

the final accuracy was measured using 5-fold cross validation. The

entire workflow for this project has been compiled into a series of

user-friendly, scalable IPython notebooks, located at https://github.

com/SBRG/Protein_ML.

3 Results and discussion

3.1 High-throughput proteomics generates a large-scale

protein expression dataset
Recently, Uhlén et al. (2015) presented a map of protein expression

across 32 different tissue types in the human body (Fig. 1A). The

high-throughput workflow utilized a combination of RNA sequenc-

ing technology and antibody profiling to understand the dynamic

expression and functioning of over 20 000 protein-coding genes.

While transcriptomics data provided quantitative information on

gene expression levels across the tissues and organs, the antibody-

based protein profiles show the spatial distribution at a single cell

Table 1. List of features used in the expression data analysis and their sources

Feature category Features Source software Citations Number of features

mRNA features Codon composition (64 features) Mfold, tAI Markham and Zuker (2008)

Chan and Lowe (2009)

81

Nucleotide composition (4 features)

Number and fraction of SD and SD-like sequences

on forward and reverse strands (8 features)

GC content of full sequence and first 30 nt

RNA folding energy of full sequence and first 40 nt

tRNA adaptation index

Amino acid properties Amino acid composition (20 features)a 29

% Aliphatic, Uncharged Polar, Polar,

Hydrophobic, Positive, Negative, Sulfur-

containing, Amide-containing and Alcohol-

containing residuesa

PrEST physical

properties

PrEST Lengtha, Isoelectric Pointa, Molecular

Weighta
Biopython ProtParam Cock et al. (2009)

Gasteiger et al. (2003)

9

Aromaticity and Instabilitya

Grand Average of Hydropathy (GRAVY)a

Absolute Charge and Charge per Residuea

Average Absolute Charge per Residuea

Structural predictions 3-category Secondary Structures (3 features) SCRATCH-1D Cheng et al. (2005) 19

8-category Secondary Structures (8 features)

Solvent-accessible fraction

Mean accessibility score

GRAVY of outer and inner residues

% Hydrophobic solvent-accessible residues

% Hydrophobic solvent-inaccessible residues

% Hydrophilic solvent-accessible residues

% Hydrophilic solvent-inaccessible residues

Disorder predictions Fraction of Disordered Residues as predicted by: DisEBML

DISOPRED3

RONN

Linding et al. (2003)

Jones and Cozzetto (2015)

Yang et al. (2005)

9

�DisEMBL COILS, HOTLOOPS and REM 465

�RONN and DISOPRED3

Average Disorder Index (RONN and

DISOPRED3)

Protein-binding Fraction (DISOPRED3)

Protein-binding Index (DISOPRED3)

aSubset of features computed for solubility data

expressed
not expressedCoverage of proteins in 

human tissue
KLLKVVKFGE VISYEHLAAL AGNPAATAAV ETALSGNPVP
KLLKVVKFGE VISYHHLAAL AGNPAATAAV NTALSGNPVP

select low similarity sequences

cDNA library

transform into
E. coli to express
peptides

PrEST (Protein Epitope Signature Tag)

corresponding protein fragment
chains (20-150 amino acids long)

35% 21%

15% 14%

22%
40% 5,000 10,000

A B C

Fig. 1. The data for this study was generated by the Human Proteome Atlas

project. (A) Coverage of protein fragments (PrESTs) in the expression dataset

for six (out of 44 total tissues) major biological tissues. (B) Distribution of highly

and poorly expressed proteins across 11 tissue types. (C) Experimental work-

flow to produce PrESTs from a known protein. Low similarity sequences rang-

ing from 20 to 150 amino acids from the protein are selected and transformed

into E. coli to produce each PrEST
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level for the corresponding protein in the various substructures and

cell types of the tissues. To achieve the antibody-based profiles, a

high-throughput approach to human proteomics was developed and

applied to streamline the production of antibodies, using tissue

microarray (TMA) technology for immunohistochemistry. The

high-throughput approach consists of several steps, including: (i)

using informatics to select unique regions of protein-coding genes

for expression (Linding et al., 2003); (ii) cloning the sequences from

RNA pools using specifically designed primers (Lundqvist et al.,

2015) and (iii) producing the heterologous protein fragments,

expressed under an identical T7 promoter in E. coli and purified by

immobilized metal affinity chromatography (IMAC) before being

quantified by bicinchoninic acid (BCA) assay (Tegel et al., 2009).

The expression and/or solubility of these protein fragments were

assessed (Fig. 1B) to determine whether the protein fragment could

serve as a reliable protein tag, or a Protein Epitope Signature Tag

(PrEST). These PrESTs serve as antigens with multiple epitopes for

the generation of specific polyclonal antibodies (Agaton et al.,

2003). The overall pipeline is illustrated in Figure 1C.

It became apparent that the initial selection of PrESTs deter-

mined the total number of experiments needed in later steps of the

pipeline. In the first stage of this high-throughput protocol, short

protein fragments are chosen from a human protein such that spe-

cific polyclonal antibodies can be generated. This is achieved by

identifying a unique stretch of 20–150 amino acids with as low simi-

larity as possible with respect to other proteins. Aside from this ini-

tial selection criteria, and avoidance of hydrophobic transmembrane

regions, no other computational approaches have yet been applied

to optimize the high-throughput expression of the fragments. As

such, many of the PrESTs fail expression or solubility tests and

require selecting different regions of the same protein. The process

of selecting short amino acid sequences currently is carried out in a

random manner, leading to an unnecessarily large number of trial-

and-error experiments later on in the pipeline. We were therefore

interested in knowing whether computational analyses of the PrEST

expression profiles could aid and reduce the number of experiments

needed.

The dataset used to generate the antibody-based profiles involves

the tissue atlas of 44 different human tissues and organs with anno-

tation data for 83 different cell types. To date, this is the most exten-

sive database of proteins or protein fragments used for applications

in machine learning to guide our understanding in global expression

and solubility characteristics. This dataset differs from that of other

datasets [for a recent review, please see (Habibi et al., 2014)] in sev-

eral ways: (i) it is over 50-fold larger than that of any other reported

dataset, which presents a novel challenge for both feature extraction

(i.e. finding appropriate features that determine global expression

behavior) as well as the learning capability of the machine learning

algorithm; (ii) it is an in vivo standardized dataset, in which all

expression and solubility information has been generated in the

same high-throughput manner in the same laboratory; and (iii) the

class sizes are similar, obviating the imbalance problem (Zhao et al.,

2008a, 2008b).

3.2 Molecular characterization of protein tags
The first step in our computational workflow entails characteriza-

tion of the protein fragments (PrESTs) themselves. As PrESTs

are not whole proteins, we rely on a number of tools from

computational biology to characterize their chemical and biophysi-

cal properties. As regulation of protein expression involves the inter-

play of transcription, translation, RNA degradation and protein

degradation, we assessed each of these properties for 45 206 PrESTs.

Different properties are computed on the basis of local and global

mRNA sequence and amino acid sequence properties (Fig. 2). The

descriptions of each of the properties and their biological implica-

tions for protein expression are described below. These computed

properties are used as features to guide machine learning and classi-

fication of highly versus poorly expressed protein fragments. All fea-

tures and the methods used to compute them are delineated in Table 1

and an IPython notebook titled ‘create_feature_matrix.ipynb’.

3.2.1 Codon usage and mRNA sequence effects

Variation in mRNA sequence plays a key role in regulating protein

expression in a range of different organisms, from E. coli to humans

(Tuller et al., 2010; Sharp and Li, 1987; Li et al., 2014, 2012;

Bazzini et al., 2016; Bo€el et al., 2016). We computed several proper-

ties related to both local and global mRNA sequence and codon

usage bias. The properties include codon composition, nucleotide

composition and GC content (globally and locally, within the first 30

nucleotides of the transcript) (Table 1). These properties were calcu-

lated directly from sequence information and had among the largest

coefficients of variation. The nucleotide compositions all varied

from<10% to 50%, and the GC content ranged from 20% to 80%.

3.2.2 mRNA folding and degradation

One of the codes embedded in mRNA specifies how the genetic code

is translated into an amino acid sequence, whereas another code

shapes mRNA stability (Bazzini et al., 2016; Kozak, 2005; Shakin-

Eshleman and Liebhaber, 1988; Goodman et al., 2013; Kudla et al.,

2009). Furthermore, translational regulatory information is con-

tained in the codon code itself, influencing transcript decay (Bazzini

et al., 2016) and the dynamics of ribosomal elongation (Bo€el et al.,

2016). To address these properties, we have computed RNA folding

energy, considering both the entire length of the transcript as well as

the first 40 nucleotides (Table 1). The free energy of the most stable

structure represents the folding energy of the sequence, which

ranged from �4 to �221 kcal/mol.

3.2.3 tRNA and amino acid availability

The concentration of the cognate transfer RNA (tRNA) is known to

correlate with codon usage frequency (Ikemura, 1981; Dong et al.,

1996), and these parameters potentially play key roles in influencing

in vitro protein elongation rates (Spencer et al., 2012; Caskey et al.,

1968) and protein yield in vivo (Chen and Inouye, 1994; Deana

Fraction of A, C, T, G

GC content

Codon counts

Human vs. E. coli codon usage

Physical properties

 - Length, MW, pI, etc

Amino acid properties:

- Fraction polar, aromatic etc.

Predicted sheet/helix/turn

fractions

Predicted solvent accessibility

Predicted disorder

mRNA

Primary

Structure

Secondary

Structure

Tertiary 

Structure

Factors involved and effectsBiological Feature Level

beta sheet alpha helix

Fig. 2. The spread of features, from mRNA to protein structure, examined to

capture the many characteristics that may affect protein expression and solu-

bility levels
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et al., 1996). In this case, more frequent codons are thought to be

translated more accurately, as their levels of cognate tRNAs are sys-

tematically higher.

3.2.4 Translational efficiency

The transient pausing of ribosomes has been shown to affect a vari-

ety of co-translational processes, including protein targeting and

folding. Using ribosome profiling, we previously found that Shine-

Dalgarno (SD) like sequences account for 20–22% of ribosome den-

sity at pause sites, which is consistent with recent studies

(Mohammad et al., 2016; Ebrahim et al., 2016), and four times less

frequent than what is found previous studies (Li et al., 2012). Thus,

we included the number and fraction of SD and SD-like sequences

on the forward and reverse strands of all transcripts encoding

PrESTs in our dataset (Table 1).

3.2.5 Biophysical composition of protein fragments

Amino acid composition has been shown to influence mRNA stabil-

ity, based on the stabilizing and destabilizing effects of certain syn-

onymous codons (Bazzini et al., 2016). Furthermore, predictions of

protein solubility routinely find strong correlations with the chemi-

cal properties of peptides and proteins (Smialowski et al., 2007;

Diaz et al., 2010; Habibi et al., 2014). To this end, we computed

both sequence-based and 3D structure-based properties of PrESTs in

the dataset. Sequence-based properties include fragment length, per-

centage of physical composition (e.g. aliphatic, charged, polar, etc.),

isoelectric point, molecular weight, aromaticity, hydropathy, charge

distribution and others (Table 1). Structural-based properties

include composition of predicted secondary structural content (e.g.

alpha helix, coil, beta sheet), fraction of the PrEST that is predicted

to be disordered, predicted solvent-accessible regions, and protein

binding fraction. It is important to note that our workflow does not

incorporate structural characterization (i.e. folding and 3D structure

prediction) of protein fragments, as it is computationally demand-

ing, requiring long-timescale molecular dynamics simulations (Piana

et al., 2014).

3.3 Machine learning-based classification of protein

expression
Once the dataset of molecular properties has been built, it is used to

guide learning which PrESTs express well and to pinpoint which

characteristics distinguish them from the lowly expressed counter-

parts. Our overall approach to identifying which properties affect

expression and solubility is 2-fold. First, we employ four types of

machine learning algorithms to determine the spread of sequence-,

structure- and biophysical-based features that influence whether a

protein fragment is expressed and/or soluble. Here, we have applied

logistic regression, support vector machines (SVMs), random forest

classifiers and a neural networks approach. Each of these methods

has advantages and disadvantages when considering large-scale data

mining applications. For example, logistic regression is a simple clas-

sification algorithm that produces results that are straightforward to

interpret, however it is not capable of learning higher-order interac-

tions between protein properties, which is often crucial for complex

biological data. In contrast, SVMs and random forest ensemble clas-

sifiers introduce more complexity to the learning process and

accommodate features that interact in unintuitive ways. While these

approaches tend to achieve better results (i.e. prediction accuracy)

than logistic regression, their predictions are more challenging to

interpret (i.e. what specific features lead to high versus low expres-

sion), due to the effect of permutations of features. Finally, a deep

neural network approach provides the most unbiased method of fea-

ture learning, which is especially useful when the important features

are unknown. For more details, we direct the interested reader to a

detailed review discussing the scope of these methods in predicting

solubility of recombinant proteins in E. coli (Habibi et al., 2014). A

general pipeline, common to most machine learning approaches,

was applied in each of the four models consisting of three stages: (i)

feature matrix construction; (ii) model training; and (iii) model test-

ing (Fig. 3A). The outcome of this pipeline is a model prediction

accuracy which indicates how predictive a subset or combination of

features is with respect to the expression level of all PrESTs (See

IPython notebook titled ‘classification_workflow.ipynb’).

3.3.1 Ensemble classifiers outperform other machine learning-

based approaches

Sequence and expression level were collected for 45 206 PrESTs,

which were linked back to their representative proteins. We per-

formed four separate machine learning analyses, as well as an

ensemble approach (which combines the top two methods), on all

the PrESTs in this dataset to discover features, described above, that

are the strongest predictors for high versus low expression. We

grouped the PrESTs into categories based on their overall expression

level: high, moderate, or poor expression (Fig. 3B). To ensure the

largest separation of features and most selective rules, we focused on

the classification of highly and poorly expressed protein fragments,

discarding the moderately expressed fragments. Each model was

trained on 15 822 PrESTs (70% of the resulting dataset) to predict

which features most accurately separated the highly expressed PrESTs

from the poorly expressed PrESTs. The combination of features lead-

ing to the highest reported prediction accuracy was then tested on the

remaining subset of PrESTs (30%) and the predicted expression levels

were compared to the true expression levels (Fig. 3B).

Results from the ensemble classifiers approach indicated that

this method outperforms all other machine learning methods, with a

prediction accuracy of 70% and an AUC score of 0.77. Various per-

formance metrics are reported in Table 2, and receiver operating

characteristic (ROC) curves were constructed for all five models

(Fig. 4A). Individually, the deep learning neural network and ran-

dom forest algorithms outperformed the other two models, both

with final accuracies of 69%, and the area under the ROC curve

Prediction
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Fig. 3. Machine learning-based approach to classify expression and solubility

of protein fragments. (A) Classification workflow, starting with mRNA and

amino acid sequences. The features described in Table 1 are generated for

each PrEST and compiled into a feature matrix. Some of the data is used to

train the models, and the rest is used to validate them. (B) The fraction of

PrESTs in each expression level for each protein. (C) Multi-scale illustration of

a protein in this study. Each protein is coded in a chromosome, and contains

a number of PrESTs. Each PrEST has an experimental expression level and a

predicted expression level from the machine learning algorithm
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(AUC) of 0.76 and 0.75, respectively. We report accuracies in the

range of 70–72%, which are similar to the reported accuracies of

similar studies (Magnan et al., 2009; Smialowski et al., 2007, 2012;

Hirose and Noguchi, 2013; Kumar et al., 2007; Idicula-Thomas

et al., 2006; Diaz et al., 2010).

Solubility is another important factor in determining whether a

protein fragment is amenable to affinity purification. A separate

analysis was performed on a standardized dataset of 10 991 PrESTs

with solubility characteristics to understand which properties influ-

ence solubility. The deep learning approach achieved an accuracy of

82% (Fig. 4B), which is significantly higher than accuracies reported

by other machine learning studies (Magnan et al., 2009; Smialowski

et al., 2007, 2012; Hirose and Noguchi, 2013; Kumar et al., 2007;

Idicula-Thomas et al., 2006). In this case, aromaticity and hydropa-

thy are the major determining factors for protein fragment solubil-

ity. Over 50% of insoluble PrESTs have a high fraction of aromatic

amino acids, are negatively charged, and have a grand average of

hydropathy above �0.69, compared to only 16% of soluble proteins

(Supplementary Fig. S1a). Similar to protein expression, average

charge and isoelectric point play an important role in protein solu-

bility, which suggests that such properties can be adjusted to simul-

taneously optimize both expression and solubility during high-

throughput experimentation.

3.3.2 Main protein features that separate protein fragment

expression

Results from the random forest and decision tree analysis suggest

that, for heterologous protein fragments, PrEST properties such

as isoelectric point, the leucine content and various hydrophobicity

indicators tend to correlate with protein expression level (Fig.

4C,D). Previous studies have found that the isoelectric point, molec-

ular weight, charge and prevalence of specific amino acids were

most important in both solubility and expression of whole proteins

(Diaz et al., 2010; Mehlin et al., 2006). Surprisingly, none of the

mRNA properties significantly influence protein expression in this

dataset. This finding contrasts with evidence from recent studies

that suggests codon content and mRNA-folding properties (in the

initial 16 codons) influences protein expression (Bo€el et al., 2016).

Although the tRNA adaptation index had the highest level of varia-

tion among all the features, it did not have much predictive power

for the expression levels of the PrESTs (Supplementary Table S1).

These findings highlight that the properties that influence expression

or solubility of heterologous short sequence protein fragments are

likely different than those that affect recombinant (or endogenous)

full length proteins. Thus, our pipeline will likely identify an entirely

different set of properties to predict expression level from protein

fragments as compared to full proteins that are either endogenous or

heterologously expressed. However, this pipeline can be adapted to

whole proteins given a sufficiently large, standardized dataset.

While our analysis does not point to any one specific property

capable of separating highly expressed PrESTs and poorly expressed

PrESTs, we can observe how interactions between various properties

affect expression (Supplementary Fig. S2), and identify general pat-

terns that have implications to guide future engineering efforts.

Increased separation of high and low expression can be achieved by

constructing multi-dimensional rules; combining a low isoelectric

point with a low hydropathy score and a higher fraction of polar res-

idues correlates with high expression (Supplementary Fig. S1b). A

decision tree analysis suggests that protein fragments meeting this

multi-dimensional rule have a much higher chance of being highly

expressed compared to those without these properties (65% com-

pared to 43%, P-value<0.001). This suggests that an optimal

combination of such properties can promote higher chances of

recombinant protein fragment expression.

3.3.3 Potential bottlenecks occurring during protein expression

or solubility

The next step of our pipeline deals with identifying potential bottle-

necks to high-throughput expression and solubility. In general, we

find that the properties that have the most influence on expression

and solubility and thus are the most amenable to further engineering

are: (i) the number of hydrophobic, polar and charged residues; (ii)

residues that influence isoelectric point; (iii) and aromatic content.

Our decision tree analysis suggests that several bottlenecks exist that

prevent a PrEST from being highly expressed. The first bottleneck

occurs when a PrEST has low isoelectric point (�9.4). The second

bottleneck is related to PrESTs with lower hydropathy scores

(��0.0328), in which high expression can be selected for if PrESTs

Table 2. Various scoring metrics for all five models applied to the expression dataset

Deep neural network Ensemble model Logistic regression Random forest classifier Support vector classifier

Accuracy 0.690 6 0.007 0.700 6 0.008 0.672 6 0.007 0.686 6 0.010 0.673 6 0.008

Precision 0.649 6 0.010 0.671 6 0.011 0.670 6 0.015 0.674 6 0.014 0.670 6 0.016

F1 score 0.728 6 0.012 0.723 6 0.012 0.674 6 0.010 0.696 6 0.013 0.674 6 0.011

Recall 0.829 6 0.017 0.785 6 0.013 0.678 6 0.010 0.719 6 0.014 0.679 6 0.010

AUC 0.764 6 0.010 0.767 6 0.011 0.738 6 0.008 0.750 6 0.010 0.738 6 0.008

Note: Error values refer to standard deviation from 5-fold cross validation
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Fig. 4. Result of machine learning workflow. Receiver Operating Curve (ROC)
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have a minimum fraction of polar residues (35%). For solubility, the

bottleneck appears to mainly lie in the degree of aromaticity

(�0.07). For PrESTs that meet this criteria, the majority (84%) are

highly expressed. For cases that do not meet this criteria, the average

charge and grand average of hydropathy of the PrEST determines

whether or not it is likely to be highly expressed. The decision trees

for both expression and solubility indicate that these features are

strong determinants for whether a protein fragment can be purified.

In general, the expressed proteins that are not soluble have a higher

number of hydrophobic residues (43% compared to 41%, P-val-

ue<0.001) and they have more extreme hydropathy scores (�0.59

compared to �0.33, P-value<0.001). Similarly, the protein frag-

ments that are soluble have lower aromaticity compared to their

counterparts (6% compared to 9%, P-value<0.001).

3.4 Computer-aided prediction of highly expressed

proteins accelerates experimental throughput
The last stage of our computational pipeline entails applying the

knowledge of what causes a bottleneck in expression or solubility to

accelerate high-throughput experimentation. We do this by selecting

PrESTs that are predicted to express well, based on the computa-

tional profile of the most important properties (e.g. isoelectric point,

etc.). As mentioned before, PrESTs are currently selected at random,

(i.e. without knowing their amenability to expression a priori),

which results in a trial-and-error approach to express and purify

PrESTs for each individual protein. In this case, numerous experi-

ments must be attempted to express multiple PrESTs before success-

fully generating a soluble fragment. Here, we demonstrate that our

pipeline to select fragments based on likelihood of expression

reduces the total number of required experiments by 39%.

In order to test the utility of our pipeline, we generated predic-

tions that (i) informed which PrESTs would most likely be highly

expressed and (ii) determined the economization of experiments (i.e.

the number of experiments that would be saved by running our

pipeline before experimentation). First, we selected a subset of

PrESTs belonging to the same protein that had a range of different

expression outcomes (Fig. 5A). Based on the current dataset, we

could link the PrESTs to over 16 000 proteins, where, in some cases,

several PrESTs map to the same protein. An example is that of

human metallo-beta-lactamase protein, which is associated with

four distinct PrESTs from different parts of the protein, ranging

from residues 135 to 263. In total, our prediction dataset consisted

of 11 533 PrESTs, which are linked to 4759 total human proteins

(on average 2.4 PrESTs per protein). From this set, we iteratively

selected the PrESTs that were most likely to be highly expressed for

each protein, based on our machine learning predictions (Fig. 5B).

Once the PrESTs were selected, their expression was validated

by comparison with experimental measurements (Fig. 5C). The pro-

teins with low expressing PrESTs were submitted back into the

workflow for four total iterations, when the prediction dataset was

exhausted. We find that our computer-aided prediction pipeline

spared a total of 4464 experiments (a 39% reduction) (See Table 3

and an IPython notebook titled ‘retrospective_analysis.ipynb’). Our

findings correctly predicted the expression groups for 7892 out of

11 533 cases (Fig. 5D).

4 Conclusion

The Human Protein Atlas provides a wealth of data informing the

molecular details of whole cell proteomes. The high-throughput

nature of the expression and solubility platforms used to generate

these datasets provide invaluable resources from which to discover

insights into structure-function properties of protein fragments and

heterologously expressed peptides. Combining these large-scale

datasets with advanced methods in machine learning, we can move

beyond trial-and-error-based experimental approaches to heterolo-

gous expression and incorporate computer-aided predictions to

guide the rational design of experiments.

As the amount of data for tissue-specific proteome-wide studies

increases in scope and scale, data collected from these efforts can

continually aid in developing and improving optimization platforms

that accelerate high-throughput approaches like microarray-based

immunohistochemistry. This study suggests that several key proper-

ties can already guide the design of better experiments: hydropho-

bicity, charge, aromaticity and secondary structure. A series of rules,

or criteria, have been constructed to determine the likelihood that a

recombinant peptide or protein fragment is expressed and/or soluble

at a high or low concentration, based on each of these features. Such

rules can be used to determine a priori whether a recombinant pro-

tein fragment will advance successfully through a cell factory pipe-

line. As demonstrated in the application of our computational

workflow, mining sequences based on their expected properties not

only optimizes the PrESTs that advance through the pipeline, but
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Fig. 5. Computer-aided selection of highly expressed PrESTs. (A) The four

possible PrESTs for human metallo-b-lactamase cover varying regions of the

protein. (B) Prediction of expression levels reduces the number of experi-

ments required to produce valid PrESTs, while enabling shareable workflows

and electronic notebooks. Any dataset of proteins or peptides can be fed to

the workflow to generate predictions on expression or solubility classes.

Proteins with higher probabilities of expression can be selected for experi-

mentation. (C) Retrospective validation on the dataset shows that computer-

aided design could have reduced the number of experiments to generate

PrESTs for a set of proteins from 11 533 experiments to 7069 experiments. (D)

Confusion matrix for the results of the retrospective validation, comparing

the amounts of true and false results

Table 3. Number of proposed experiments in each iteration of the

computer-aided prediction workflow compared to the total number

of performed experiments

Number of experiments Expressed proteins

Iteration 1 4759 2947

Iteration 2 1812 543

Iteration 3 416 75

Iteration 4 82 7

Total 7069 3572

Actual Experiments 11 533 3572
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economizes the number of experiments needed to achieve an optimal

PrEST-per-protein ratio. This study opens new avenues for selecting

protein fragments in proteins without prior detection information

based on sequence- and structure-based characteristics.

Combining computational biology and machine learning brings

promise to finding meaning in large-scale biological datasets. A large

dataset is generally required to accurately analyze protein expression

(principal component analysis shows that over 55 dimensions are

required to capture 90% of the variability in the dataset;

Supplementary Fig. S3). The fact that an ensemble classifier

approach outperforms all other machine learning approaches used

in this study indicates the highly non-linear nature and complexity

of the dataset as well as the limit of other approaches to deal with

the size of the current dataset. Advanced machine learning algo-

rithms, such as tree-based models and deep neural networks are able

to find high-dimensional patterns in noisy data, such as those

encountered in heterologous protein expression. Using these analy-

ses to select optimal sequences will improve the efficiency and reli-

ability of high-throughput pipelines and extensively decrease the

cost and time associated with naive experimentation.
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