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Abstract

Motivation: Neural activities of the brain occur through the formation of spatio-temporal patterns.

In recent years, macroscopic neural imaging techniques have produced a large body of data on

these patterned activities, yet a numerical measure of spatio-temporal coherence has often been

reduced to the global order parameter, which does not uncover the degree of spatial correlation.

Here, we propose to use the spatial autocorrelation measure Moran’s I, which can be applied to

capture dynamic signatures of spatial organization. We demonstrate the application of this tech-

nique to collective cellular circadian clock activities measured in the small network of the suprachi-

asmatic nucleus (SCN) in the hypothalamus.

Results: We found that Moran’s I is a practical quantitative measure of the degree of spatial coher-

ence in neural imaging data. Initially developed with a geographical context in mind, Moran’s I

accounts for the spatial organization of any interacting units. Moran’s I can be modified in accord-

ance with the characteristic length scale of a neural activity pattern. It allows a quantification of

statistical significance levels for the observed patterns. We describe the technique applied to syn-

thetic datasets and various experimental imaging time-series from cultured SCN explants. It is

demonstrated that major characteristics of the collective state can be described by Moran’s I and

the traditional Kuramoto order parameter R in a complementary fashion.

Availability and implementation: Python 2.7 code of illustrative examples can be found in the

Supplementary Material.

Contact: christoph.schmal@charite.de or grigory.bordyugov@hu-berlin.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Oscillatory brain activities emerge with spatial patterns.

Historically, purely temporal recordings with very little spatial reso-

lution were used to study processes in the brain. More recently,

with improved recording techniques that introduced high spatial

resolution, spatial patterning of brain activities began to gain focus.

Using measurements from high-density electrodes, a deep sleep

electroencephalogram, previously characterized only by the low

temporal frequency, is now reinterpreted as a traveling wave

(Massimini et al., 2004). Transitions between waking state and

coma can be understood as a competition between spatial and tem-

poral instabilities, which causes distinctive spatial patterning (Steyn-

Ross et al., 2013). Spatial patterning is also a feature of epilepsy, the

pathologically synchronized state once thought to generate a transi-

ently homogeneous state (Muldoon et al., 2013). From the theoret-

ical viewpoint, spontaneous pattern formation in time and space has
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been understood as a natural consequence of neural network activ-

ities (Ermentrout, 1998).

Spontaneous spatial organization is an important universal fea-

ture of brain activities, existing both in the normal and in abnormal

operating states with unique signature patterns. In this paper, we are

interested in a measure of spatial coherence in spatially extended

oscillating systems as a consequence of synchronization, in particu-

lar on the circadian time scale. As one of the most important charac-

teristics of precise time-keeping, synchronization has usually been

assessed quantitatively using the Kuramoto order parameter

(Kuramoto, 2012). This order parameter, however, was developed

for mean-field coupled systems and does not take into account the

spatial organization of the underlying oscillating system. As a conse-

quence, it might sometimes fail to adequately quantify the degree of

synchronization in oscillating systems where the spatial extension

plays a definitive role.

Our main motivating example here is the circadian spatio-

temporal dynamics recorded in the suprachiasmatic nucleus (SCN),

which is a networked ensemble of circadian oscillators (Reppert and

Weaver, 2002) that can be entrained by external light conditioning

(Evans et al., 2013; Myung et al., 2015). A significant portion of

SCN neurons has been found to be potent oscillators (Webb et al.,

2009). Yet, it is the coupling between them that is thought to be the

main contribution to the robustness and precision of the SCN as an

oscillator (Aton and Herzog, 2005).

Starting some fifteen years ago, it became possible to look into

the spatio-temporal patterns of clock-gene expression in the SCN

from living cells by time-lapse microscopy (Kuhlman et al., 2000).

A typical technique would be to introduce a reporter construct

(either GFP or luciferase) downstream from the promoter region of

what is called the ‘clock’ gene (e.g. Per1, Per2, or Bmal1) that is

rhythmically expressed or engineered to be fused to a clock protein.

In the case of a luciferase reporter system, the strength of biolumin-

escence is then considered a proxy for the abundance of the product

of the target gene (Yoo et al., 2004). Next, the single-cell reporter

expression in the intact network of the SCN explant can be observed

in real time by a cooled-CCD camera through a microscope, thus

providing detailed information on the spatio-temporal pattern for-

mation. In the seminal paper focusing on the synchronization in the

SCN (Yamaguchi et al., 2003), it was found that the phase distribu-

tion of the rhythmic gene expression across the SCN is governed by

the presence of stable patterns. Neurons in different regions of the

SCN showed stable phase relations to each other. It was also found

that suppressing inter-neuronal communication by applying the so-

dium channel blocker TTX led to the disruption of the synchronized

neuron rhythmicity in the neonatal SCN. Following that paper, a

number of technically similar studies appeared, aimed at capturing

the features of the spatio-temporal pattern formation of rhythmicity

in the SCN, focusing on either the wave-like patterns (Fukuda et al.,

2011), regional specificity (Evans et al., 2011), or spatial clustering

(Foley et al., 2011; Myung et al., 2012).

To assess the degree of synchronization in such spatio-temporal

patterns, the Kuramoto order parameter (Kuramoto, 2012) has been

the measure of choice and applied to experimental datasets (Fukuda

et al., 2011; Myung et al., 2012). The order parameter accounts for

the global degree of the temporal phase coherence among an ensem-

ble of oscillators. In the context of spatio-temporal pattern analysis,

the order parameter has a substantial drawback: it does not assume

any particular order of interacting oscillators (e.g. the spatial rela-

tion of neighbors) and treats all oscillators as indistinguishable from

each other. A hypothetical situation with half of the oscillators being

out of phase from the other half would result in a zero order

parameter. Our intuition, however, tells us that there is a significant

amount of order in such a constellation.

Here, we argue that Moran’s I (MI) (Moran, 1950) is a more in-

sightful measure for synchronization in oscillators with spatial struc-

ture, such as rhythmic gene expression in data series of brain

images. The basic idea of MI is to prescribe a notion of distance be-

tween each of two oscillating units. If we are interested in patterns

in space, the Euclidean distance between units would be the most

natural choice.

We start by giving illustrative examples of MI with artificial

datasets and explaining typical behaviors of MI depending on the

underlying patterns. As a biological application, we turn to the time

series of luciferase imaging from the SCN explants. MI reveals

spatial order in paradoxical cases, such as the spiral state where

Kuramoto order parameter R produces a null value. We also show

that MI has potential for characterizing the coupling topology of a

network. The experimental data reveal cases in which MI and R di-

verge, and it is demonstrated that complementary use of MI and

R can capture a collective state in fuller detail.

2 Materials and methods

2.1 Moran’s I
‘Spatial autocorrelation’ usually describes the correlation among

values of a given variable in dependence on the relative locations be-

tween the spatial units (Getis, 2007). If ‘neighbors’ tend to have

similar values, one generally speaks of a positive spatial autocorrel-

ation, while one speaks of a negative spatial autocorrelation if they

tend to have dissimilar values. One of the most prominent measures

of spatial autocorrelation is Moran’s index I (MI), which is defined

as the ratio between the local and the global coherence in accord-

ance with the following formula:

I ¼ 1P
ij wij

P
ij wij Xi � �X

� �
Xj � �X
� �

N�1
P

i Xi � �X
� �2

: (1)

Here, N denotes the number of observables or spatial units

Xi; i ¼ 1;2; . . . ;N, while �X :¼ 1
N

P
i Xi is the mean of Xi. The notion

of ‘local’ as opposed to ‘global’ is prescribed by the spatial weights

matrix wij between the i-th and j-th observables.

2.2 Spatial weight matrix
The above formula implies that MI depends on the choice of the

neighborhood topology, i.e. the spatial weights matrix wij, and

hence the arrangement of locations Zi associated with the random

variates Xi. A common ordering is the arrangement of random vari-

ates on a grid or lattice, e.g. pixel locations in a digital image or

two-dimensional cellular automata based on square cells (Moore,

1962). In such a case, the locations Zi ¼ xi; yið Þ are tuples represent-

ing coordinates on a two-dimensional raster. A natural definition of

adjacency can be then given, e.g. by the von Neumann neighbor-

hood of range r via

N r xi; yið Þ ¼ f x; yð Þ : jx� xij þ jy� yij � rg (2)

of a given location (xi, yi), leading to the corresponding weight

matrix

wij :¼
1 if j 2 N r xi; yið Þ and i 6¼ j

0 in all other cases :

(
(3)

It is often the case that the locations Zi of the random variates of

interest Xi are not arranged in a regular pattern such as grids, but
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can be distributed freely on a two-dimensional plane. Under such

circumstances, a common definition (Getis, 2007) of a spatial

weight matrix is based on the inverse Euclidean distance between

two locations Zi and Zj and is given by

wij :¼
jjZi � Zjjj�a

2 ; if i 6¼ j

0 ; else

(
(4)

where a denotes the decay parameter specifying the typical inter-

action range.

2.3 Image analysis and time series extraction
Previously published bioluminescence time-lapse recordings are ana-

lyzed for their spatio-temporal order in Sections 3.3 and 3.4. In

Section 3.3, average intensity values are calculated from square-

shaped regions of interest (ROIs) that are arranged as a grid that

overlays the original image (Myung et al., 2012). The edge lengths

of the ROIs are usually chosen to approximately resemble the size of

a single neuron (Myung et al., 2012). In Section 3.4, time-series data

and locations of the circular ROIs that correspond to single neurons

have been obtained directly from the published dataset (Abel et al.,

2016). For both datasets, the corresponding time-series data is

baseline-detrended by means of a Hodrick-Prescott filter, as previ-

ously described (Myung et al., 2012; St. John and Doyle, 2015).

2.4 Instantaneous phase
We extracted the instantaneous phase h tð Þ and amplitude A(t)

of a given time series s(t) by means of the analytic signal

z tð Þ ¼ s tð Þ þ iH s tð Þð Þ, where H s tð Þð Þ :¼ p�1 p:v:
Ð
R

ds s sð Þ
t�s is the

Hilbert transform, with the integral being evaluated in the sense

of Cauchy’s principle value. Within this two-dimensional

embedding in the complex plane, the instantaneous phase and

amplitude can be naturally defined via h tð Þ :¼ arg z tð Þð Þ and

A tð Þ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
< z tð Þð Þ2 þ= z tð Þð Þ2

q
, respectively. Here, = z tð Þð Þ and <

z tð Þð Þ denote the imaginary and real part of the complex analytic

signal z(t) at time t, respectively, and arg z tð Þð Þ is the argument of

z(t). Note that arg z tð Þð Þ can be easily computed by the atan2

= z tð Þð Þ; < z tð Þð Þð Þ function that computes the arctan = z tð Þð Þ
< z tð Þð Þ

� �
func-

tion with respect to the signs of < z tð Þð Þ and = z tð Þð Þ. Throughout

this paper, Hilbert transformation of discrete real-valued experi-

mental circadian time-series is performed numerically by the

SCIentificPYthon function hilbert.

2.5 Circular statistics and an alternative Moran’s I
Since the domain of instantaneous phases h tð Þ, numerically obtained

as described in Section 2.4, is cyclic in the range �p < 0 � p,

descriptive statistics cannot be attempted without defining an ap-

propriate distance measure. In this cyclic dataset, Euclidean dis-

tances can fail to measure the displacement of two adjacent

points on the unit circle, e.g. point x2 ¼ p and x1 ¼ �pþ � are

separated by x2 � x1 ¼ 2p� �. A convenient way of defining a

distance measure for circular data is to regard each phase as a

point on the unit circle of the complex plane. From standard

arithmetic with complex numbers, it follows that the distance

between two phases X1 and X2 on the unit circle S1 is given by

dh X1;X2ð Þ :¼ atan2 sin X1 �X2ð Þ; cos X1 �X2ð Þð Þ.
Along these lines, the mean value �X of a given set of phases fXigN

i¼1

can be evaluated via �X :¼ atan2 �S; �C
� �

, with �C :¼ 1
N

PN
i¼1 cos Xið Þ

and �S :¼ 1
N

PN
i¼1 sin Xið Þ. Thus, a modified Ih, defined to take into ac-

count the cyclic nature of the spatial units Xi of interest, is given by

Ih :¼ 1P
ij wij

P
ij wij dh Xi; �X

� �
dh Xj; �X
� �

N�1
P

i dh Xi; �X
� �2

: (5)

2.6 Statistical properties
To assess whether a certain index I, calculated for a given set of val-

ues Xi and a well-defined weight matrix wij, deviates significantly

from the null hypothesis of no spatial autocorrelation, we first deter-

mine the sampling distribution of I under such a null hypothesis.

Two conceptually different ways to obtain the sampling distribution

have been proposed, depending on how the null hypothesis of no

spatial autocorrelation is realized. One can either randomly sample

the values of the spatial units Xi from a given distribution (re-

sampling approach), or randomly shuffle (randomization approach)

the positions of the spatial units for a fixed set of values Xi (Cliff

and Ord, 1971; Goodchild, 1986). Throughout this paper, we com-

putationally determine the sampling distribution of I values under

both realizations of the null hypothesis using the Monte-Carlo ap-

proach. Subsequent statistical inferences, i.e. whether an observed

value of I statistically significantly deviates from the null hypothesis,

are based on these Monte-Carlo sampling distributions.

2.7 Dynamical systems simulations
Systems of ordinary differential equations as given by Equation (8)

are solved using the SCIentificPYthon function odeint.

3 Main results

3.1 Intuition behind Moran’s I and its distribution
To get an intuition of how Moran’s I (MI) measures the degree of spa-

tial coherence in two-dimensional patterns, we start with synthetic

data and its interpretation in terms of MI in Figure 1. The panels (A),

(B) and (C) show three different examples of spatial patterns with

qualitatively different values of I. In all three cases, the spatial weights

wij are chosen to be one for immediate neighbors in the same row or

column, and otherwise zero, as determined by Equation (3).

Fig. 1. Moran’s I detects non-random spatial patterns. (A–C) Illustrative ex-

amples of spatial distributions on a binary 10�10 grid where each grid cell ei-

ther adopts a value of 0 (white) or 1 (gray). D) Distribution of all possible values

of I on a 10� 10 grid conditioned to a von Neumann neighborhood of range

r¼ 1. The histogram was obtained by determining I for N ¼ 106 randomly gen-

erated patterns under the assumption of an unbiased probability of occurrence

of the binary values. The bold black line denotes a fit of a normal distribution to

the data, resulting in l � �0:01 and r � 0:07. Dashed black lines highlight the

specific indices I determined for the patterns in panels (A)–(C)
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First, as illustrated in Figure 1(A), the value of MI is close to one

if the majority of the domain is occupied by homogeneous patterns.

The high positive value of I reflects the fact that the majority of the

cells are in the same or a similar state as their neighbors and the

number of cells that differ from their neighbors is small. In contrast,

Figure 1(B) shows a pattern in which every cell is in a state opposite

that of its four immediate neighbors. This dominance of the state op-

position is reflected by the negative value of I¼ –1 for the pattern

observed in Figure 1(B). Last, in Figure 1(C), there is an intermediate

case where values in each cell are picked randomly from zero and

one with an unbiased probability of 0.5. Despite some subjective re-

semblance to a spatial pattern in Figure 1(C), Moran’s I recognizes

the randomness of the distribution of cell values and produces a

value very close to zero. In Figure 1(C), cells on average have an

equal number of neighbors in the same as in the opposite state.

MI can also be used to prescribe statistical significance to observed

patterns. In Figure 1(D) we plot the histogram and the fitted distribu-

tion of I for the 10�10 grid geometry as in Figure 1(A)–(C), obtained

by numerical sampling with binary values randomly prescribed to

the elements of the grid. The resulting distribution of I can be

approximated by a normal distribution with mean l � �0:01 and a

standard deviation of r � 0:07. Comparing the values of MI from

Figure 1(A)–(C), we see that both (A) (nearly perfect spatial coher-

ence) and (B) (the highest possible degree of spatial incoherence)

indeed represent extremely rare events, sitting on the tails of the distri-

bution. The case in Figure 1(C), in contrast, lies close to the mean

value of the distribution and is hence characterized by a larger prob-

ability to be found in a random experiment.

3.2 Using Moran’s I to measure synchronization in

oscillating lattices
We now turn to making use of MI to characterize dynamic syn-

chronization processes on a lattice of locally coupled oscillatory

units. The motivation for using an alternative measure of synchron-

ization in spatially extended oscillating systems is the following.

Originally, the complex order parameter

R tð Þeiw tð Þ :¼ 1

N

XN
j¼1

eihj tð Þ (6)

was introduced by Kuramoto to characterize the degree of synchron-

ization in globally coupled oscillator systems. Here, R tð Þ 2 0;1½ �
measures the phase coherence, while w tð Þ denotes the ensemble aver-

age over all phases hj tð Þ. In this measure, spatial neighborhoodness

between oscillators is not present and the presence of local coher-

ence is completely ignored. In the cases of oscillators arranged in a

two-dimensional array with local interactions, the global order par-

ameter fails to quantify the degree of synchronization in the emerg-

ing pattern.

To make this point clear, we contrast the Kuramoto order par-

ameter and MI in assessing spatial autocorrelation in a two-

dimensional oscillating system. The model most widely used to

study synchronization phenomena in large populations of oscillating

units is the Kuramoto model (Kuramoto, 1975), governed by the

equation

_h i tð Þ ¼ xi þ
XN
j¼1

Cij hj tð Þ � hi tð Þ
� �

: (7)

Each of the N oscillators is described by a single phase variable hi tð Þ
2 S1 that has an intrinsic frequency xi and is influenced by any other

oscillator j via the coupling function Cij hj tð Þ � hi tð Þ
� �

. In the

following, we consider a set of Kuramoto oscillators that couple

through nearest neighbor interactions, i.e.

_h i tð Þ ¼ xi þ K
X

j2N 1 xj ;yjð Þ
sin hj tð Þ � hi tð Þ
� �

; (8)

a system that has been shown to obey a variety of interesting spatial

dynamics, such as the emergence of phase clustering, phase waves, or

spirals (Acebr�on et al., 2005; Ermentrout and Ko, 2009; Kuramoto,

2012). The control parameters are the coupling strength K between

the oscillators and the spread of their intrinsic frequencies xi ¼ 2p
si

.

Each of the intrinsic periods sið Þ has been sampled from a normal

distribution with a mean value of l¼24 h and a standard deviation

of r � 2 h, which approximately resembles the period dispersal of sin-

gle SCN neurons from mice in the absence of cell-to-cell communica-

tion (Bloch et al., 2013; Herzog et al., 2004; Liu et al., 2007).

In Figure 2A–F, we plot representative solutions for different val-

ues of K, captured at the end (t¼100 days) of the integration time to

remove the transient dynamics following initial conditions. Figure 2G

and H show the dynamical evolution of Moran’s index Ih tð Þ and the

global phase coherence R(t) for different values of K, respectively.

Each simulation starts from the same set of randomly generated initial

conditions and an identical distribution of intrinsic frequencies. At

Fig. 2. Moran’s Ih reliably detects spatial ordering in the phase dynamics of a

two-dimensional array of coupled Kuramoto phase oscillators with nearest

neighbor interactions. (A–F) Spatial phase distributions at time t ¼ 100 d for

different values of coupling strength K but identical distributions of initial con-

ditions and intrinsic periods that were sampled from a uniform as well as a

normal distribution, respectively. The corresponding coupling strengths K in

panels (A-F) are K ¼ 0; 0:01; 0:1; 1;�0:01;�0:1, respectively. G-H) Dynamical

evolution of Moran’s index IhðtÞ and the phase coherence R(t). Note that IhðtÞ
and R(t) correspond to the same simulations that lead to the phase distribu-

tions at t ¼ 100 d as represented in panels (A-F). The gray-shaded area de-

picts the range of Ih values for which the null hypothesis of no spatial

autocorrelation cannot be withdrawn at a significance level 0.05 with a two--

sided test. The corresponding sampling distribution is depicted in

Supplementary Figure S3
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first glance, we see that increasing the coupling strength K between

the oscillators in the array leads to increasing synchronization among

them and, as a rule, to an increase in Ih tð Þ: while Ih tð Þ mostly fluctu-

ates around a value close to zero in the absence of coupling with

K¼0 (see Fig. 2A and G), phase clusters that increase in size emerge

with an increasing coupling strength of K¼0.01 and K¼0.1

(compare Fig. 2B and C), respectively. After a short transient dy-

namics, Ih tð Þ evolves toward higher values and the null hypothesis of

no spatial autocorrelation can be rejected with a high degree of cer-

tainty (P<0.05). A further increase in coupling strength to a value of

K¼1 leads to the formation of a stable spiral with a center close to

the midpoint of the two-dimensional array (see Fig. 2D). Since the

phases are arranged nearly radially around the center of the spiral

across their whole co-domain, the mean-field phase coherence R(t)

adopts low values, close to those in the case of K¼0.01, see Figure

2H. Without prior knowledge of the spatial phase ordering as seen in

Figure 2D, this thus does not speak in favor of a high degree of syn-

chrony. In this case, Ih tð Þ is much more reliable.

The high probability of a cell having a neighbor with a proximal

phase is reflected by high values of Ih tð Þ, and hence the null hypothesis

of no spatial autocorrelation can be rejected with a high degree of cer-

tainty (P<0.05, see also Fig. 2G). A similar picture can be drawn in

the case of negative, i.e. K<0, nearest-neighbor couplings. In the

negative coupling case, two interacting oscillators tend to attract each

other when they are anti-phasic and push each other apart when their

phases are close. Such a tendency to adopt phases that are in anti-

phasis with respect to the nearest neighbors leads to low values of the

classical mean-field phase coherence R(t), suggesting no synchrony of

the ensemble (compare Fig. 2E, F and H). Again, the time-dependent

form of MI Ih tð Þ reliably detects the spatial anti-correlation inherent

in the system, while indicating that the assumption of no spatial auto-

correlation can be reliably rejected (P<0.05, see Fig. 2G).

Figure 3 summarizes these findings by plotting the steady-state

values of MI, I1h , against R1 for different coupling strength K either

for nearest-neighbor (black dots) or for mean-field (gray dots) cou-

pling. The corresponding Supplementary Figures S1 and S2 plot I1h
and R1 against different values of K. Notice that I1h and R1 in-

crease with increasing K in the case of nearest-neighbor coupling

until the particular dynamical state of a stable spiral emerges. In

these cases, which occur at 0:1�K�0:124 and K � 2:232 for the

particular initial conditions chosen in this example, R1 drops to

lower values while I1h remains high, indicating a high degree of spa-

tial autocorrelation. The locality of coupling matters, since a mean-

field coupling topology leads to qualitatively different results in

simulations under the same initial conditions of phases and intrinsic

frequencies. In the case of the global coupling, increasing coupling

strength generally leads to a higher degree of phase coherence R1

but no increase in I1h , reflecting the absence of any particular spatial

structure in the network of coupled oscillators.

In conclusion, MI is a reliable method for detecting spatial autocor-

relation that can be seen as a proxy for synchronization in oscillator

ensembles with spatial extension. As we have shown in the synthetic

datasets, MI sometimes provides more insights than the classical

Kuramoto order parameter R(t), which fails to recognize synchroniza-

tion reliably in spatially extended systems with local coupling.

3.3 Using Moran’s I to measure synchronization in

SCN slices
The mammalian master circadian clock SCN has been shown to

obey plasticity with respect to experienced environmental cues.

In the SCN tissue, re-organizations in spatio-temporal order of

clock-gene expression dynamics have been shown to be correlated

with the previously applied light schedule. Entrainment of mice to

long photoperiods leads to an increasing phase gap of clock-gene os-

cillations between the ventro-lateral, and dorso-medial neurons in

coronal SCN slices when compared with equinoctial (12:12 light:-

dark) photoperiods (Evans et al., 2013; Myung et al., 2012).

Additionally, in vivo electrophysiological recordings in the SCN of

freely moving mice show broader neuronal activity profiles under

long-day conditions than under short-day entrainment (VanderLeest

et al., 2007).

To investigate such spatio-temporal re-orderings on different

light-schedules, we apply MI to a previously published dataset,

where the gene expression of the core clock-gene Period 2 (Per2)

was measured in SCN tissue slices for mice that experienced differ-

ent photoperiods (Evans et al., 2013). Therein, genetically modified

adult male mice, carrying a PER2::LUC reporter construct, were en-

trained for 12 weeks either under equinoctial or long-day LD20:04

conditions before recording.

Coronal slices of SCN tissue explants were maintained ex vivo,

and bioluminescence recordings were made for more than six days

using a charge-coupled device (CCD) at a sampling interval of

Dt ¼ 0:5h, see Figure 4 A and B for the corresponding baseline-

detrended time series and (Evans et al., 2011, 2013) for experimen-

tal details. After coarse graining the individual images as described

in Section 2.3, instantaneous phases hi tð Þ of each grid element i are

determined by means of a discrete Hilbert transformation as

described in Section 2.4. Figure 4 C and D shows two examples of

the resulting instantaneous phases fhi tð Þgi estimated at time

t¼20 hours in the SCN explants from mice entrained under equi-

noctial or long-day conditions, respectively. The corresponding

histograms of the phase values (see Fig. 4E and F) clearly display the

emergence of two disjoint phase clusters upon entrainment to long

photoperiods, as previously described (Evans et al., 2013). The two

clusters correspond to the ventro-lateral (VL) and the dorso-medial

(DM) regions of the SCN. Here, the oscillations of the VL region

peak earlier than those of the DM region as found previously (Evans

et al., 2013). A fit of a bimodal von Mises distribution to the data in

Figure 4F reveals a separation of the two clusters’ mean values by

Dl � 1:93rad � 0:61p. Such a strong phase separation leads to a

low mean-field phase coherence value of R t ¼ 20hð Þ � 0:49, which

Fig. 3. Time averages of steady-state dynamics (i.e. after the decay of transi-

ent dynamics) of Moran’s index (I1h ) plotted versus the steady state global

phase coherence (R1) for different coupling strength K 2 ½�0:2; 1�, either for

the case of nearest neighbor couplings (black dots) or a global mean field

coupling (gray dots). Details on the numerical calculation of steady state val-

ues can be found in the caption of Supplementary Figure S1. Each dot corres-

ponds to one particular simulation for a given coupling strength K. Lines

connect dots that correspond to experiments sharing the smallest differences

in coupling strength K. Black and gray arrows denote the direction of increas-

ing coupling strength K in case of nearest-neighbor and mean-field couplings,

respectively. The gray-shaded area depicts the range of Ih values for which

the null hypothesis of no spatial autocorrelation cannot be withdrawn at a sig-

nificance level 0.05 with a two-sided test, similar to Figure 2
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contrasts with the high phase coherence observed in the SCN tissue

after entrainment to equinox photoperiods (see Fig. 4C and E).

Although the global phase coherence differs qualitatively between

the two cases, an investigation of Moran’s index Ih tð Þ shows that a

high degree of spatial autocorrelation is retained for both entrain-

ment conditions. A comparison of the dynamical evolution of R(t)

and Ih tð Þ throughout the experiment, as depicted in Figure 4G and

H, confirms the findings of the snapshot at t ¼ 20 h. While the glo-

bal phase coherence R(t) is generally high throughout the in vitro

recordings in the case of equinoctial entrainment (Fig. 4G), it

wobbles around 0.5 in the case of long-day entrainment (Fig. 4H).

Although Ih evolves toward lower values throughout the course

of the experiment, the observed patterns significantly deviate from

the null hypothesis of no spatial autocorrelation (P� 0:05) at all

times t.

In conclusion, we state once again that a significant spatial auto-

correlation, rather than a high value of the mean field phase coher-

ence R(t), is indicative of a successful synchronization between SCN

neurons. By means of a simultaneous analysis of the dynamical evo-

lution of MI and the global phase coherence in a Ih tð Þ � R tð Þ dia-

gram, as depicted in Figure 4I, one can readily distinguish between

qualitatively different synchronization behaviors.

3.4 Using Moran’s I to measure synchronization

among single SCN neurons
In the mammalian circadian clock, inter-cellular coupling between

individual SCN neurons has been shown to constitute the quintes-

sential mechanism in generating its remarkable precision, as can be

observed on the SCN tissue or behavioral level. This coupling relies

on multiple mechanisms, including neuropeptidergical (Aton et al.,

2005), gap junction (Shinohara et al., 2000) and synaptic couplings

(Yamaguchi et al., 2003). It has been shown, for example, that a

pharmacological suspension of synaptic couplings by the application

of the action potential blocker tetrodotoxin (TTX) can lead to a

lower degree of phase coherence and a reduced amplitude of oscilla-

tions in clock-gene expression activity in neonatal mice (Yamaguchi

et al., 2003).

MI can be used to show the effect of TTX on spatial autocorrel-

ation in the SCN-wide circadian oscillations. For this purpose, we

re-analyzed a previously published dataset of PER2::LUC biolumin-

escence recordings in coronal slices of SCN tissue from neonatal to

seven-day-old mice that, before being sacrificed, were entrained to

equinoctial light-dark cycles. After four days of recordings under

culture conditions, TTX was applied to the SCN tissue for a dur-

ation of six subsequent days. It was then washed out and the record-

ings continued for another eight days. By manually identifying and

tracking the individual neurons, as done in (Abel et al., 2016), each

time trace in the dataset can be associated with the rhythm of a sin-

gle cell i that has a well defined location Zi. The single cell time

traces of every tracked cell under all three conditions are depicted in

Figure 5A. Instantaneous phases of these time traces were calculated

as described in Section 2.4 after detrending the data by means of a

Hodrick-Prescott filter, as described in Section 2.3. Subsequently, Ih

tð Þ is calculated by using a spatial weight matrix that is based on the

inverse Euclidean distance between two locations as given by

Equation (4) for a¼1. Figure 5B depicts the dynamical evolution of

Ih tð Þ and R(t) throughout the experiment. Figure 5C–E shows repre-

sentative situations from all three conditions.

Initially, all cells show robust coherent circadian rhythms of bio-

luminescence reporter oscillations (see Fig. 5A). An inspection of the

spatial organization of instantaneous phases reveals a phase wave

that propagates from the dorsal to the ventral part of the SCN, see

Figure 5C for an example. This spatial organization is reflected in a

high MI value, i.e. Ih � 0:22, which deviates significantly from

the null hypothesis of no spatial autocorrelation (P� 0:05).

Application of TTX leads to a reduced oscillation amplitude (see

Fig. 5A), decreased phase coherence R(t) as shown in (Taylor et al.,

2016) as well as Figure 5B and, on top of that, a gradual decline in

spatial autocorrelation as measured by Moran’s index Ih tð Þ, see

Figure 5B and D. Although still significantly different from a purely

random pattern (compare Fig. 5B, D and Supplementary Fig. S5),

Fig. 4. (A, B) PER2::LUC expression, averaged over all grid elements that con-

tain SCN tissue (bold black lines), and the corresponding standard deviations

(gray shaded area) for each SCN tissue after equinoctial (A) or long-day

(B) entrainment. (C, D) Color-coded instantaneous phases fhtgi at time t ¼ 20

h of the equinox (C) or long-day (D) entrained tissue. The abbreviations DM

and VL indicate rough positions of the dorso-medial and ventro-lateral re-

gions of the SCN, respectively. (E, F) Zero-centered histogram of the phase

values as depicted in (C) and (D), respectively. (G, H) Dynamical evolution of

R(t) (gray bold line) as well as IhðtÞ (black bold line) in case of equinox (G) and

long-day (H) entrainment. Dashed black lines correspond to the upper critical

values of I, estimated computationally from the sampling distribution as

described in Section 2.6 at a significance level of 0.05 using a two-sided test.

Corresponding sampling distributions are depicted in Supplementary Figure

S4. (I) Dynamical evolution of Moran’s index and the global phase coherence

in the IhðtÞ � RðtÞ plane. Bold lines connect two circles of ðRðtÞ; IhðtÞÞ tuples

subsequent to each other
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i.e. the probability that adjacent cells have a similar phase is high,

Ih tð Þ experiences a substantial decrease under TTX. After washing

out the neurotoxin, the spatial organization in the form of a phase

wave gradually re-emerges while the phase coherence returns to the

control level immediately, and Moran’s index Ih tð Þ increases until it

reaches a value that is comparable to the control condition before

the application of TTX.

4 Conclusion

The concept of spatial autocorrelation found broad application

in diverse disciplines such as geography (Cliff and Ord, 1981;

Getis, 2007), ecology (Sokal and Oden, 1978a,b) and economics.

Curiously, it escaped the attention of neuroscientists, with a few ex-

ceptions, e.g. (Iannella et al., 2010; Lee, 2015; Robinson et al.,

2016). One reason for this neglect might be that the spatio-temporal

patterns have been difficult to measure from the brain or neural tis-

sues. Another reason might be that a spatio-temporal pattern has

not been a clear parameter associated with a neural function and has

therefore been discarded as an epiphenomenon.

We showed that a suitable application of MI successfully charac-

terizes spatio-temporal patterning in the collective circadian time-

keeping of the SCN neurons. Spatial patterning is one aspect of

synchronization in collective activities of neurons that occurs spon-

taneously. In the modular structure of the brain, this can mean local-

ized activation of specific functional modules. The emergent pattern

formation is also a key feature of the spatial sectioning of gene

expression during development (Tsiairis and Aulehla., 2016).

Adaptation and learning drive complex yet patterned organization,

such as pinwheel-like arrangements of orientation columns (Kang

et al., 2003). All of these are hallmarks of the synchronized brain

state that creates spatially heterogeneous patterns.

Here, we showed that a suitable application of Moran’s I (MI), a

global index for spatial autocorrelation, can successfully character-

ize the spatio-temporal patterning of brain activities. The self-

contained network of the SCN makes an ideal platform for such

studies. It has been shown that by controlling the coupling between

neurons in either phase-attractive (positive) or phase-repulsive

(negative) polarity, the pattern of oscillation phases in clock-gene

expression can be made tunable (Azzi et al., 2017; Myung et al.,

2015). Conversely, by observing the spatial patterns, the underlying

coupling structure in the network can be deduced, as shown in

Section 3.2 for synthetic data, produced by nearest-neighbor cou-

pling versus mean-field coupling in an ensemble of phase oscillators.

A proper quantification of patterns is instrumental for this purpose.

MI in combination with Monte-Carlo simulations of the underlying

sampling distributions flexibly offers a statistical test for the pres-

ence of spatial autocorrelation (i.e. patterns) for a broad range of

different system sizes, neighborhood specifications (i.e. weight

matrices wij), and variates (Xi). We introduced a modified index Ih

to identify spatial autocorrelations in systems with cyclic variates

such as oscillation phases. On top of that, by plotting the order par-

ameter R and I in the same plane, we can discriminate qualitatively

different synchronization behaviors in both synthetic and experi-

mental data, as we have shown in Sections 3.2–3.4.

Throughout this paper, we applied MI exclusively to spatially

extended data in two dimensions. The method can also be adapted

to systems in other spatial dimensions. It has the potential to quan-

tify the spatio-temporal organization in a variety of biological and

neural systems, such as one-dimensional chains of oscillators

(Ermentrout and Kopell, 1984) in developing animals (Horikawa

et al., 2006) or three-dimensional fMRI data (Cohen et al., 2017).

Finally, it should be noted that any measure of spatial autocorrel-

ation for a given pattern in space depends on the characteristic

length one implicitly chooses by defining a specific neighborhood re-

lationship, i.e. the spatial weights wij. Spatial correlograms, i.e. plots

where I is plotted against different distance classes or spatial lags,

can be useful for identifying the characteristic length scale of spa-

tially recurrent patterns such as zebra stripes or segmentation pat-

terns that occur in the larval development of insects. There are

potential alternatives to MI, such as the phase coherence Ri on spa-

tial subsets i. However, its conceptual simplicity and historical use

in other fields makes MI an intuitive yet quantitative measure of

spatial order in neural imaging data.
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Fig. 5. Suspension of synaptic couplings decreases the degree of spatial

order in clock gene expression dynamics: (A) Bioluminescence time series.

(B) Moran’s index IhðtÞ (bold black line) and mean-field phase coherence R(t)

(bold gray line) for the time series plotted in the panel (A). (C–E) Color coded

instantaneous phases hi ðtÞ estimated by means of a Hilbert transform.

Plotted phase distributions correspond to the time instances depicted by cir-

cles in the panel (B). Stars denote statistically significant deviations from the

null hypothesis of no spatial autocorrelation. The abbreviations DM and VL

indicate rough positions of the dorso-medial and ventro-lateral regions of the

SCN, respectively. The dashed black line in (B) corresponds to the upper crit-

ical value of Ih, as described in Figure 4. The corresponding sampling distribu-

tion is depicted in Supplementary Figure S5
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