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Abstract

Motivation: The minimizers scheme is a method for selecting k-mers from sequences. It is used in

many bioinformatics software tools to bin comparable sequences or to sample a sequence in a de-

terministic fashion at approximately regular intervals, in order to reduce memory consumption

and processing time. Although very useful, the minimizers selection procedure has undesirable be-

haviors (e.g. too many k-mers are selected when processing certain sequences). Some of these

problems were already known to the authors of the minimizers technique, and the natural lexico-

graphic ordering of k-mers used by minimizers was recognized as their origin. Many software tools

using minimizers employ ad hoc variations of the lexicographic order to alleviate those issues.

Results: We provide an in-depth analysis of the effect of k-mer ordering on the performance of the

minimizers technique. By using small universal hitting sets (a recently defined concept), we show

how to significantly improve the performance of minimizers and avoid some of its worse behav-

iors. Based on these results, we encourage bioinformatics software developers to use an ordering

based on a universal hitting set or, if not possible, a randomized ordering, rather than the lexico-

graphic order. This analysis also settles negatively a conjecture (by Schleimer et al.) on the ex-

pected density of minimizers in a random sequence.

Availability and Implementation: The software used for this analysis is available on GitHub: https://

github.com/gmarcais/minimizers.git.

Contact: gmarcais@cs.cmu.edu or carlk@cs.cmu.edu

1 Introduction

The winnowing scheme was introduced by Schleimer et al. (2003) to

fingerprint documents for plagiarism detection. Independently, the

minimizers algorithm was introduced by Roberts et al. (2004b) to

compute overlaps between sequencing reads. Even though these algo-

rithms were designed for different purposes, they are essentially identi-

cal. The original minimizers scheme compares nucleotide k-mers using

the lexicographic ordering, while the winnowing scheme hashes the

k-grams of letters in a document, effectively randomizing the order.

In the bioinformatics field, minimizers have since been used in

many different settings, such as binning input sequences (Deorowicz

et al., 2015; Li and Yan, 2015; Roberts et al., 2004a,b), generating

sparse data structures (Grabowski and Raniszewski, 2015; Ye et al.,

2012), and sequence classification (Wood and Salzberg, 2014). All

these applications share the need for a small signature, or finger-

print, in order to recognize longer exact matches between sequences.

The winnowing scheme is defined as follows: given an input se-

quence S and parameters k and w, select the smallest k-mer (accord-

ing to a predefined ordering) in each window of w consecutive

k-mers in S (such a window contains wþ k� 1 bases). In this paper,

we will interchangeably use the terms ‘minimizers scheme’ or ‘win-

nowing scheme’. Either term does not imply a particular ordering as

we study the effect of various orderings on these schemes. The min-

imizers (or fingerprints), are, depending on the application, either

the set of positions in S of the selected k-mers, or the set of selected

k-mers itself. The terms fingerprint and minimizer are interchange-

able in the remainder of this paper.

These schemes are designed to select a set of k-mers that is as

sparse as possible while satisfying the following two properties.

First, the sequence is approximately uniformly sampled; that is, the

distance between two selected k-mers is always less than w. Second,

if two sequences share an exact subsequence of length at least
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kþw� 1, then those two sequences have at least one minimizer in

common.

Many of the tools mentioned above do not use lexicographic

ordering of the k-mers, as originally proposed in Roberts et al.

(2004b). It was recognized early on that homo-polymer runs, par-

ticularly repeated As, can cause a lexicographic minimizer algorithm

to select many consecutive k-mers as minimizers in genomics appli-

cations, leading to a high minimizer density. Because A is the small-

est letter, if the 5-mer AAAAC is selected as a minimizer in a

window, it is likely that the shifted 5-mer AAACx (for any base x)

will also be selected as a minimizer in a subsequent window, and

AACxy in the following window, and so on.

Another problem with the lexicographic ordering is that any one

of the 4k possible k-mers can theoretically be chosen as a minimizer

in some window. In particular, when k is short, many or even all

possible k-mers could appear as a minimizer. If the minimizers are

used for binning sequences, then potentially a very large number of

bins will be necessary.

Schleimer et al. defined the density of a k-mer selection scheme

for a given sequence S as the fraction of the k-mers that are selected.

Formally, let d A; S; kð Þ denote the density of procedure A and

A(S, k) as the set of selected k-mers positions by A on sequence S,

then

d A; S; kð Þ ¼ jA S;kð Þj
jSj � kþ 1

: (1)

The expected density of procedure A, d(A, k), is calculated by taking

the expectation over all possible sequences S, with every base chosen

independently with equal probability.

Schleimer et al. show that the winnowing scheme with a random

ordering has expected density of 2= wþ 1ð Þ. In practice, the minim-

izers scheme with lexicographic ordering has density greater than

2= wþ 1ð Þ. In addition, they define a local scheme as a procedure

that only has access to the sequence within a given window when se-

lecting a k-mer. In other words, the k-mer selected from a window

can be expressed as a function of only the identity and relative

ordering of the bases within the window itself, and does not depend

on the content of any other window or on the position of the win-

dow within the overall sequence. They prove that the expected dens-

ity of a local scheme has a lower bound of 1:5= wþ 1ð Þ, but they

conjecture that this bound cannot be achieved in practice, and that

the true lower bound is in fact 2= wþ 1ð Þ. This conjecture would

therefore imply that the winnowing scheme with random order is an

optimal local scheme.

In this paper, we investigate the effect of different orderings of

the k-mers on the density of the winnowing scheme. Here we only

consider local schemes, and exclude global schemes, such as the

counting-based orderings used in Chikhi et al. (2015, 2016).

By using universal k-mer hitting sets, as defined in Orenstein et al.

(2016a), we show how to create orderings that lead to densities

smaller than with the lexicographic or randomized ordering. The

small universal hitting sets created by the DOCKS algorithm de-

veloped in Orenstein et al. (2016a) achieve densities below

1:8= wþ 1ð Þ. As a consequence, the above conjecture of Schleimer

et al. does not hold and densities below 2= wþ 1ð Þ are achievable

with a local scheme. Using some properties of the universal k-mer hit-

ting sets, we also show that, surprisingly, the winnowing scheme with

random ordering can itself have a density slightly below 2= wþ 1ð Þ.
We also explain why the original minimizers procedure, using the lex-

icographic order, performs worse than random ordering.

Finally, we look at the potential effect of using universal hitting

set orderings on bioinformatics applications. In the case of DNA

sequence binning, such as performed by the k-mer counters KMC2

(Deorowicz et al., 2015) and MSPKmerCounter (Li and Yan, 2015),

we compare the distribution of the number and sizes of bins created

by different orderings proposed in the literature. The universal hit-

ting sets ordering perform better than the other ordering in couple

of ways. First, the number of bins created has a known bound, un-

like other orderings that can create as many bins as there are k-mers

(4k). In practice, this bound is also much lower than the actual num-

ber of bins created by other orderings. Second, the sizes of the bins

are more uniform than with other orderings.

Based on this analysis of the performance of the minimizers algo-

rithm, we advise bioinformatics tool authors to use the winnowing

scheme with an appropriate universal hitting set in their application

if possible, and a random ordering otherwise, in lieu of the default

lexicographic ordering.

2 Approach

We will first give an overview of the results in this paper. Formal

proofs for the results mentioned in this section are presented in sub-

sequent sections.

In the original papers on minimizers and the winnowing schemes,

the density is computed by considering any window of wþ1 consecu-

tive k-mers. They make use of the following hypothesis:

HYPOTHESIS 1. Every k-mer in a wþ 1ð Þ-long window has an equal

probability of 1= wþ 1ð Þ of being the smallest k-mer.

Although not strictly true in practice, this hypothesis is reason-

able and reflects reality accurately when using a randomized order-

ing. We define the density factor df of a k-mer selection scheme A as

the density times wþ 1ð Þ, i.e.

df A;kð Þ ¼ d A;kð Þ � wþ 1ð Þ: (2)

Assuming that Hypothesis 1 holds, we can rephrase the theorems of

Schleimer et al. and Roberts et al. as:

THEOREM 1 (Roberts et al., 2004b; Schleimer et al., 2003). Under

Hypothesis 1, the density factor of the minimizers is df ¼ 2.

A universal k-mer hitting set for given k and w is a set Uk;w of

k-mers such that every window of w consecutive k-mers must contain

an element from Uk;w. In Orenstein et al. (2016a), we introduced uni-

versal hitting sets, and provided an efficient algorithm for construct-

ing a compact universal set. These universal hitting sets do not need

to contain all possible k-mers, and typically contain only about 1=k of

all the k-mers. Here, we connect the ideas of universal k-mer hitting

sets with minimizers by creating an ordering where the elements of

Uk;w are the smallest elements. Because every window contains an

element of Uk;w and these elements are smaller than other k-mers,

only elements of Uk;w can be selected as minimizers. Consequently,

k-mers that are not in Uk;w have probability 0 of being selected as

minimizers and Hypothesis 1 does not hold anymore.

We now consider a refined hypothesis.

HYPOTHESIS 2. If a wþ 1ð Þ-long window contains j k-mers from a

universal hitting set, each of these k-mers has an equal probability of

1=j of being the smallest k-mer.

Motivated by the proof of Theorem 3 (see below), we define:

DEFINITION 2. The sparsity of a universal hitting set Uk;w; SP Uk;w

� �
,

is the proportion of wþ 1ð Þ-long windows containing only one k-

mer from Uk;w.

Assuming that Hypothesis 2 holds, we obtain a new estimation

of the density factor.
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THEOREM 3. Under Hypothesis 2, the density factor for the minim-

izers scheme with universal hitting sets Uk;w is

df ¼ 2 1� SP Uk;w

� �� �
: (3)

Note that when using the scheme we propose below, Hypothesis 2

provides no practical constraint on the use of minimizers in applica-

tions. Since any window will contain an element of Uk;w by definition,

any application assuming Hypothesis 1 can be made to work under

Hypothesis 2 through the use of the appropriate k-mer ordering.

The expected density of the minimizers scheme for a given order-

ing is defined by an expectation over the set of all random se-

quences. So the density of minimizers computed for a given

sequence might differ from the expected density. On the other hand,

we will show how the expected density can be computed exactly by

computing the density of minimizers on a particular sequence.

LEMMA 4. The expected density of a minimizers scheme with param-

eters k and w is equal to the density of minimizers on any de Bruijn

sequence of order kþw.

We also show that Theorem 3 provides a good approximation to

the density for minimizers with universal hitting sets and exhibit

counterexamples to the Schleimer et al. conjecture.

THEOREM 5. The density factor of a local scheme can be less than 2.

The original intent of the minimizers is to select k-mers from a

sequence as uniformly and sparsely as possible. Theorem 5 shows

that schemes based on universal hitting set get closer to that goal.

Using these schemes can greatly improve the performance of bio-

informatics applications (See Section 4).

3 Proofs and mathematical details

3.1 Density with random ordering
First, we succinctly reproduce the proof from Schleimer et al. (2003)

and Roberts et al. (2004b) of Theorem 1.

THEOREM 1. (Roberts et al., 2004b; Schleimer et al., 2003). Under

Hypothesis 1, the density factor of the minimizers is df ¼ 2.

PROOF: Define a charged window Wi of w consecutive k-mers start-

ing at position i in a sequence S as a window such that the smallest

k-mer is different in Wi than in Wi�1. That is, as we sweep through

the sequence from left to right, we charge the left-most window in

which a given fingerprint is first selected. The number of fingerprints

selected by the winnowing scheme is equal to the number of win-

dows that are charged. Define the random variable Xi to be 1 if Wi

is charged and 0 if not. Then the expected density can be written as

d ¼ E
P

i Xi

� �
=n ¼

P
i E Xi½ �=n, where n ¼ jSj � kþ 1 is the number

of k-mers in the sequence.

Consider the larger window W0
i of wþ1 k-mers starting at pos-

ition i – 1 (Wi �W0
i), and the smallest k-mer m in W0

i (see Fig. 1). If

m starts at position i – 1, then Wi must be charged, as the previous

fingerprint is now outside of the window Wi. If m starts at position

iþw� 1, then Wi must be charged, as the new smallest k-mer just

arrived in Wi. In all other cases, Wi and Wi�1 selected the same fin-

gerprint and Wi is not charged. Assuming that the minimum m has

equal probability to be in any of the positions i� 1; iþw� 1½ �, then

E Xi½ � ¼ P Xi ¼ 1½ � ¼ 2= wþ 1ð Þ. So d ¼ 2= wþ 1ð Þ and df¼2. h

3.2 Computing the density
Even though the density is defined as an expectation over all pos-

sible random sequences where the bases are uniformly and

independently chosen, for small values of k and w, it is possible in

practice to compute the exact value of the expected density.

A de Bruijn sequence (de Bruijn, 1946) of order k on the alpha-

bet R is a cyclic sequence that contains every possible k-mer as a sub-

string exactly once and has length rk, where r is the number of

symbols in the alphabet.

LEMMA 4. The expected density of a minimizers scheme with param-

eters k and w is equal to the density of minimizers on any de Bruijn

sequence of order kþw.

PROOF: As seen in the proof of Section 3.1, whether a window Wi is

charged depends only on the sequence of the wþ 1ð Þ-long window

W0
i. Under the assumption that the input sequence is random, each

wþ 1ð Þ-long window has a probability of 1=rwþk. Hence, the

density is the number of wþ 1ð Þ-long windows W0 that cause the

window W to be charged, divided by rwþk. By computing the dens-

ity on increasingly long random input sequences, the density would

converge to the expected density as the proportion of the wþ 1ð Þ-
windows converge to 1=rwþk.

A de Bruijn sequence of order kþw contains every one of the

rwþk possible wþ 1ð Þ-windows of k-mers exactly once (since it con-

tains every wþ kð Þ-long sequence exactly once). In other words, this

de Bruijn sequence has all the wþ 1ð Þ-windows in exactly the

desired proportion. Therefore, we can compute the expected density

exactly by computing the density on the de Bruijn sequence of order

wþk. h

3.3 Universal hitting set ordering
The de Bruijn graph Gk on a fixed alphabet R of size r is a directed

graph whose vertices are all the k-mers and a directed edge (u, v) rep-

resents a kþ 1ð Þ-mer with u as its prefix and v as its suffix. A univer-

sal hitting set for the parameters k and w is a set of k-mers, Uk;w, so

that any string of length wþ k� 1 over R contains a substring from

Uk;w. Equivalently, every walk of length w over the nodes in the de

Bruijn graph Gk contains at least one k-mer from Uk;w. In other

words, it is a set of nodes that covers (has non-empty intersection

with) all the length-w walks. (Here and throughout, the length of a

walk is the number of vertices along it.) The set V Gkð Þ of all the

nodes of Gk is trivially a universal hitting set, showing that the con-

cept is well defined. In Orenstein et al. (2016a), a heuristic is given to

generate smaller universal hitting sets. The existence of such sets with

certain desired properties is further discussed in Section 3.5.

Given a universal hitting set Uk;w, we define an ordering < Uk;w

on the k-mers as follows: u< Uk;w
v if u 2 Uk;w and v 62 Uk;w; other-

wise, u< Uk;w
v if u is less than v in lexicographical order. In other

words, the ordering makes the elements of the universal hitting set

Fig. 1. Windows Wi, starting at position i, and window W 0
i starting at position

i – 1. There are 3 different qualitative cases for the start position of the small-

est k-mer m: i – 1 (left dot), i þw � 1 (right dot) or in the range ½i ; i þw � 2�
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the smallest elements, and uses lexicographic order within the uni-

versal hitting set and its complement.

The most important property of this ordering is that, in each

window of w consecutive k-mers, the smallest element must be an

element of Uk;w.

3.4 Density with universal hitting sets
With the ordering defined by a universal hitting set, we use the more

appropriate Hypothesis 2 to prove the following theorem.

THEOREM 3. Under Hypothesis 2, the density factor for the minim-

izers scheme with universal hitting sets Uk;w is

df ¼ 2 1� SP Uk;w

� �� �
: (3)

PROOF: We adapt the proof of Section 3.1 to the ordering < Uk;w
. With

this ordering, only the elements of Uk;w are selected as fingerprints, and

the number of such elements in the wþ 1ð Þ-long window varies be-

tween 1 and wþ1. We can compute the probability that a window is

charged depending on how many elements from Uk;w it contains. Let’s

define the event Yi;j that the window Wi is charged, given that there are

j elements of Uk;w in the longer window W0
i that contains it. Then:

Yi;j ¼ Xi ¼ 1 jjUk;w \W0
ij ¼ j

n o
(4)

P Xi ¼ 1½ � ¼
Xwþ1

j¼1

P Yi;j

� �
P jUk;w \W 0

ij ¼ j
� �

: (5)

We can further condition the event Yi;j on whether the k-mers mi�1

and miþw�1, respectively at positions i – 1 and iþw� 1, are in the

universal hitting set. For 2 � j < w:

P Yi;j

� �
¼

w� 1
j� 1

� �
wþ 1

j

� �P Yi;jjmi�1 2 Uk;w;miþw�1 62 Uk;w

� �
(6)

þ

w� 1

j� 1

� �
wþ 1

j

� �P Yi;j jmi�1 62 Uk;w;miþw�1 2 Uk;w

� �
(7)

þ

w� 1

j� 2

� �
wþ 1

j

� �P Yi;j jmi�1 2 Uk;w;miþw�1 2 Uk;w

� �
(8)

þ

w� 1

j

� �
wþ 1

j

� �P Yi;j jmi�1 62 Uk;w;miþw�1 62 Uk;w

� �
: (9)

The factor w� 1
j� 1

� 	
= wþ 1

j

� 	
in (6) expresses the number of ways

to place the j – 1 k-mers of Uk;w in the w – 1 positions available

(from i to iþw� 2), given that mi�1 is in Uk;w and miþw�1 is not in

Uk;w. The other factors are analogous.

For 2 � j < w, we assume, based on Hypothesis 2, that all of

the j k-mers from Uk;w \W 0
i have equal probability to be the small-

est for the order < Uk;w
. Therefore the conditional probabilities equal

1=j for (6) and (7), 2=j for (8) and 0 for (9). Hence

P Yi;j

� �
¼

2
w� 1

j� 1

� �
þ w� 1

j� 2

� �� �

j
wþ 1

j

� � ¼
2

w

j� 1

� �

j
wþ 1

j

� � ¼ 2

wþ 1
:

For j¼w, term (9) is omitted, as all of but one the k-mers in W 0
i are

in Uk;w. For j ¼ wþ 1, which corresponds to the case in the proof of

Section 3.1, only term (8) is present, as all the k-mers in W0
i are in

Uk;w. Both these cases lead to the same result as the general case,

hence P Yi;j

� �
¼ 2= wþ 1ð Þ; for 2 � j � wþ 1.

On the other hand, for j¼1, P Yi;1

� �
¼ 0. (This distinction motiv-

ates our definition of SP Uk;w

� �
.) This corresponds to the case where

there is only one element from the universal hitting set in the wþ 1ð Þ-
long window W0

i. In that case, this element cannot be located at pos-

ition i – 1 or iþw� 1 as that would leave a window of size w with-

out any k-mer from Uk;w, which is impossible by construction. Hence,

when j¼1, Wi cannot be charged and P Yi;1

� �
has to be 0.

Finally, because
Pwþ1

j¼1 P jUk;w \W0
ij ¼ j

� �
¼ 1, we get from equa-

tion (5) that

E Xi½ � ¼ P Xi ¼ 1½ � ¼
2 1� P jUk;w \W0

ij ¼ 1
� �� �

wþ 1
: (10)

Under the assumption of random input sequence, the sparsity SP Uk;w

� �
is precisely P jUk;w \W 0

ij ¼ 1
�

and we have the main result

df ¼ 2 1� SP Uk;w

� �� �
:

h

Equation (3) implies that if the universal hitting set Uk;w is such

that there exist wþ 1ð Þ-long walks in Gk with only one element

from Uk;w, then the expected density factor is less than 2.

A universal hitting set Uk;w that satisfies this condition, that is,

SP Uk;w

� �
> 0, will be called w-sparse. A w-sparse universal hitting

set has density factor less than 2. See Section 3.7 for an example of

w-sparse universal hitting set with low density.

Similarly to Section 3.2, the sparsity of a universal hitting set Uk;w

can be computed exactly as the proportion of wþ 1ð Þ-long windows

with only one k-mer from Uk;w in the de Bruijn sequence of order kþw.

3.5 Existence of a sparse universal hitting set
We propose here a simple construction of w-sparse universal hitting

sets to show their existence. This construction is not immediately

useful in practice as the universal hitting sets it generates are large

and have small sparsity (even though they are w-sparse). Different,

more practical constructions are used when we discuss applications

of this technique, in Sections 3.7 and 4.1.

Let C ¼ c0; . . . ; c‘�1ð Þ be a simple cycle of length ‘ > 3 in Gk�1,

the de Bruijn graph of order k – 1. C is not necessarily an induced

cycle, that is, it may have chords. Because Gk is the line graph of

Gk�1, the edges of cycle C induce a simple cycle C0 of the same

length in Gk. That is, using indices modulo ‘, node c0i of Gk repre-

sents the edge ci; ciþ1ð Þ of Gk�1 and C0 ¼ c00; . . . ; c0‘�1

� �
.

We claim that the cycle C0 must be chordless. Suppose it is not

the case, and there is an edge ðc0i; c0jÞ where j 6¼ iþ 1. This implies

that in Gk�1 the head of edge ci; ciþ1ð Þ is equal to the tail of

cj; cjþ1

� �
, that is ciþ1 ¼ cj. Because j 6¼ iþ 1 and the cycle is simple,

this is a contradiction.

Let Uk;w be all the k-mers, minus the nodes of C0 unless their

index is a multiple of w. That is Uk;w ¼ V Gkð ÞnC0ð Þ [ fc0igwji.

Because C0 is chordless, there is no cycle using only nodes not in

Uk;w. Also, by construction, there is no path of length w in GknUk;w.

Hence Uk;w is a universal hitting set (though not a minimally
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sized one). By construction, for every i that is not a multiple of w,

W0
i ¼ c0i; c

0
iþ1; . . . c0iþw

� �
contains only one element from Uk;w, which

implies that Uk;w is w-sparse.

So any cycle of length ‘ in Gk�1 induces a w-sparse hitting set for

any w � 2 ‘� 1ð Þ. In particular, any Hamiltonian cycle of Gk�1 in-

duces a chordless cycle of length rk�1 in Gk (these are the longest

possible chordless cycles of Gk). Therefore, for any given k, there

are w-sparse universal hitting sets for all w � 2 rk�1 � 1
� �

. Hence,

there are sets for which SP Ukw

� �
is strictly greater than 0, indicating

that sets with density factor<2 exist.

Moreover, for small value of w, given that every cycle of length

w=2� 1 in Gk�1 induces a w-sparse universal hitting set in Gk, there

exists a large number of w-sparse universal hitting sets for the par-

ameters k and w.

3.6 Universal hitting sets in random orderings
Consider again the winnowing scheme with random ordering, as we

did in Section 3.1. In Section 3.1, it was assumed that all wþ1

k-mers in the window W0
i can potentially be selected as a fingerprint

(Hypothesis 1). That assumption is likely not valid because of the

existence and abundance of universal hitting sets. That is, even

though the ordering of the k-mers is randomized, not all k-mers can

be selected as minimizers with this ordering.

The following gives hints on why this is true. Consider a random

ordering, or permutation, of the k-mers. Let h(m) be the index of the

k-mer m in this permutation. In other words, m< hm0 ()
h mð Þ < h m0ð Þ. More precisely, consider a k-mer bm that has a high

index value in the permutation (h bmð Þ close to rk). If there exists a

universal hitting set Uk;w such that u< h bm for all u 2 Uk;w, then the

k-mer bm cannot ever be selected by the winnowing scheme with that

random ordering. This holds because every window of size w must

contain a k-mer from Uk;w, which is less than bm in the ordering. Let

U be the set of all universal hitting sets of minimum size and let

M ¼ minU2Ufmaxm2Uh mð Þg. Then any k-mer with an index greater

than M can never be selected.

As a test, we ran the minimizers scheme (k¼10, w¼10, binary

alphabet) for 1000 different random orderings on a de Bruijn se-

quence of order wþk. For each ordering Ri, we obtain a set of min-

imizers Mi, 1 � i � 1000. Because we used a de Bruijn sequence of

order wþk, the set Mi contains a k-mer from every possible w-win-

dow. Hence Mi is a, possibly trivial, universal hitting set for param-

eters k and w. Even though it is possible for Mi to be the set of all k-

mers, this was never the case in our 1000 random orderings, and the

sets Mi contain on average 51% of the k-mers (see Table 1).

Furthermore, we computed the sparsity SP Mið Þ of the sets Mi. In

every case, the sparsity was small (average of 0.07%, see Table 1),

but always greater than 0. Therefore, every observed universal hit-

ting set Mi is w-sparse. In other words, a random ordering implicitly

defines a universal hitting set, and empirically this set is w-sparse in

all randomized orderings we tested.

3.7 Density factor of various ordering schemes
Orenstein et al. (2016a) introduces the concept of universal hitting

sets and provides a heuristic algorithm, called DOCKS (Design Of

Compact K-mer Sets), to generate small (although not necessarily

optimal) universal hitting sets. Table 1 reports the actual density fac-

tor, computed as explained in section 3.2, of the winnowing scheme

using three different orderings: randomized, DOCKS universal hit-

ting sets and lexicographic. Because the densities are computed on a

de Bruijn sequence of order kþw (binary alphabet, k¼10 and

w¼10), the density computed is equal to the expected density.

In Schleimer et al. (2003), the authors prove a lower bound of

1.5, as well as a slight improvement of 1:5þ 1=2w, on the density

factor for any local scheme. In addition, they conjecture that 2 is in

fact the lowest possible density factor. The density factor of 1.737

obtained for DOCKS disproves this conjecture, but is not equal to

the lower bound of 1:5þ 1=2w ¼ 1:55, leaving a gap between the

empirical results and the best known lower-bound.

The density factor estimation is obtained from the sparsity using

equation 3. For the random and DOCKS orderings, this formula

provides a good estimation of the density factor. The average spars-

ity of the random ordering is very low but not 0.

The DOCKS ordering, on the other hand, has a relatively high

sparsity, which accounts for the low density factor. Also, the number

of k-mers that are minimizers picked by the random and DOCKS

orderings is significantly less than the total number of 10-mers.

The situation is very different for the lexicographic ordering,

which selected all possible 10-mers and whose sparsity is 0. The esti-

mation of its density factor from its sparsity is erroneous. This

means that in addition to not being w-sparse, the lexicographic

ordering does not satisfy Hypothesis 1. This is most likely due to the

homo-polymer runs.

4 Application: binning

4.1 Binning DNA sequences
We consider the application of binning subsequences of a large

DNA sequence, for example, as is done in k-mer counters such as

KMC2 (Deorowicz et al., 2015) and MSPKmerCounter (Li and

Yan, 2015). These applications compute the number of occurrences

of each k-mer in a DNA sequence. They are disk-based programs:

first the input sequence is split into bins written to files on disk, then

k-mer occurrences are computed in each bin independently. The

number and size of bins considerably affects the running time of

these programs.

For example, suppose we count L-mers in the human genome.

Typically, for this application, 16 � L � 30. Following KMC2, we

set k¼7 and w ¼ L� kþ 1, and we bin together all the w-long sub-

sequences that have the same minimizer for parameters k and w.

Then, it is possible to count the L-mers in each bin independently

and in parallel to obtain the desired counts.

Ideally we would like a large number of bins, to allow for good

parallelism, but not too large, to avoid extra overhead of creating

and writing to many small files. Say at least a few hundred bins, but

no more than a few thousand. For example, KMC2 uses a heuristic

to merge in the same file the smaller bins so as to create at most

2000 files. Also, we would like the amount of data in each bin to be

Table 1. Statistics on the sparsity and density factor of the universal

hitting sets generated by random ordering, the DOCKS universal

hitting set and the lexicographic ordering

Ordering SPðUk;wÞ jUk;wj=rk df df ;SP

% %

random 0.07 51 1.999 1.998

DOCKS 13.3 21 1.737 1.733

lexicographic 0.00 100 2.236 2.000

The computation is done with k¼ 10, w¼ 10 on a binary alphabet. The

values for the random ordering are averages over 1000 different randomized

orderings. df is the density factor and df ;SP is the density factor estimated given

the sparsity of the set by equation 3. The difference between these numbers is

due to the imperfect nature of Hypotheses 2.
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roughly the same. The lexicographic ordering for example generates

a much larger bin corresponding to the homo-polymer of A.

In particular, we would like the size of the largest bin to not be too

large compared to the average bin size.

We next look at different orderings used in bioinformatics appli-

cations and their impact on the number of bins generated and the

distribution of the data between the bins. In every test below, the

same algorithm is used to generate the bins, and only the selection of

the minimizers changes.

4.2 Summary of heuristic orderings used in practice
The following ordering was proposed by the authors of the minim-

izers technique in the implementation of the UMD Overlapper

(Roberts et al., 2004a). They ‘assign the values 0, 1, 2, 3 to C, A, T,

G, respectively, for the odd numbered bases of k-mers and assign 0,

1, 2, 3 to G, T, A, C, respectively, for the even numbered bases.’

In the k-mer counter KMC2 (Deorowicz et al., 2015), the au-

thors use the lexicographic order but ban a subset of k-mers from

being minimizers. They use as minimizers k-mers that ‘do not start

with AAA, neither start with ACA, neither contain AA anywhere ex-

cept at their beginning’. This effectively creates a (non-optimally

sized) universal hitting set (provided that the homopolymer AA . . . A

is preserved).

In Kraken (Wood and Salzberg, 2014), the authors XOR the

k-mer with a random value, before using lexicographic comparison.

It is a form of randomization.

Minimap (Li, 2016) uses randomization as well, by employing a

particular invertible hashing function.

The DOCKS ordering is based on the small universal k-mer hit-

ting sets created by the DOCKS heuristic. Creating the DOCKS set

Sk;w for parameter k and w takes OðjRjkðjSk;wj � jRjk=kÞÞ time and

OðjRjkÞ memory. We can build DOCKS sets for k � 13 and w � 8

within five days and requiring at most 12 GB of memory. In prac-

tice, these sets are precomputed once for each combination of k and

w and then can be used by any algorithm. Precomputed DOCKS sets

are available from the DOCKS website (Orenstein et al., 2016b).

4.3 Densities using various heuristics including a

universal k-mer-based scheme
Figure 2 shows the distribution of the distance between consecutive

minimizers, for k¼7 and w¼11, and Table 2 has statistics on these

distributions. The distribution is computed for a de Bruijn sequence

of order 18 ¼ kþw, as explained in Section 3.2, and on the full se-

quence of the human genome (with all ambiguous bases and Ns

removed). Ideally, we would like the selection of k-mers to be as

sparse as possible and, therefore, the distribution to be skewed to-

ward larger distances.

The overall behavior for the different orderings does not change

quantitatively between the de Bruijn sequence and the DNA se-

quence, showing that in the limit, the expected density computed on

a de Bruijn sequence is a good proxy for performance on a biological

sequence. The distribution of the randomized ordering is close to a

uniform distribution. All the orderings succeeded in their stated goal

of reducing the number of cases where minimizers have a low separ-

ation (e.g. k-mers that are consecutive or separated by one base)

compared to the lexicographic ordering. For larger separation be-

tween minimizers, the distribution for all orderings except DOCKS

are very similar to that of the randomized ordering.

The distribution for the DOCKS ordering is markedly different,

with a mode at 6 (which is wþ 1ð Þ=2) and is generally skewed to-

ward larger separation. The percentage of minimizers with low sep-

aration is the lowest among all orderings. This provides strong

evidence that using a universal k-mer-based ordering can reduce the

number of minimizers selected.

4.4 Distribution of bins created by heuristic and

universal k-mer based schemes
Table 3 reports statistics on the number and sizes of the bins created

using various orderings. The DOCKS-based ordering creates far

fewer bins than the other orderings, and the ratio between the larg-

est bin and the average size is smaller. The DOCKS distribution of
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Fig. 2. Distribution of the separation between minimizers for k¼7 and w¼ 11

on DNA sequences. (A) Results on a de Bruijn sequence of order wþ k.

(B) Results computed on the human reference genome (hg19). Each line rep-

resents a different minimizer scheme using a different ordering. Note that

previous heuristic orderings all behave like the randomized orderings (uni-

form distribution) except for separation of 1 and 2. The universal k-mer order-

ing computed by DOCKS has a noticeably different distribution, with a mode

and a higher mean

Table 2. Statistics on the distribution of the distances between min-

imizers in Figure 2

Ordering df distance low sep.

mean 6 stdev %

dbg lexico. 2.18 5.5(34) 27

random 2.00 6.0(32) 18

Minimap 2.05 5.9(32) 21

KMC2 1.97 6.1(32) 18

UMD Ovl 1.91 6.3(30) 14

Kraken 1.88 6.4(29) 11

DOCKS 1.75 6.9(25) 4.6

human lexico. 2.34 5.1(34) 33

random 2.02 6.0(32) 19

Minimap 2.09 5.8(33) 22

KMC2 2.02 5.9(33) 19

UMD Ovl 1.97 6.1(31) 17

Kraken 1.93 6.2(30) 13

DOCKS 1.77 6.7(26) 6.2

The table reports the density factor (df), the mean distance between minim-

izers (mean 6 stdev) and the percentage of selected k-mers that are consecu-

tive or separated by one base (low sep.). These were computed on a de Bruijn

sequence (dbg) and on the human genome sequence (human).
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bin sizes is closer to the stated goals of not having too many bins, or

any bins that are too large, and according to the Kullback-Leibler di-

vergence, the distribution for DOCKS is closer to uniform than any

of the other orderings. These results indicate that if these tools

adopted a universal k-mer ordering, their runtime and memory

usage performance would be significantly improved.

5 Discussion

We introduced a new analysis of the performance of the winnowing

scheme based on the sparsity of an ordering. In addition, we showed

how to construct orderings from small universal hitting sets that

outperform randomized and previously designed orderings. While

these new orderings perform well on uniformly distributed se-

quences and actual DNA sequences, many questions of theoretical

and practical interest remain.

First, several orderings based on universal hitting sets beat the

conjectured lower bound on the density factor of 2, but did not

achieve 1:5þ 1=2w. The question of the actual lower bound is

therefore open. Second, every winnowing local scheme considered

here is based on an ordering of the k-mers. But there exists local

schemes that are not based on an ordering. Can the minimum dens-

ity always be achieved with an ordering? Third, although the per-

formance was similar between the uniformly distributed input

sequence and DNA sequence, can we improve the winnowing

scheme by taking into account the actual distribution of the bases in

the input?

Fourth, the construction of small universal hitting sets with

DOCKS is based on a heuristic and is not guaranteed to be optimal.

As it stands, it is also intractable for large k. Can we design an effi-

cient algorithm to construct some (or all) of the optimal universal

hitting sets? Or, can we design optimal orderings, even though

the actual corresponding universal hitting set is never explicitly

constructed?

All of the work in this paper considers a de Bruijn graph. In

many situations, it makes sense to consider a k-mer and its reverse

complement to be equal. The above schemes can be used by replac-

ing every k-mer with its canonical representation (i.e. the smallest of

a k-mer and its reverse complement). But this is likely not optimal.

Define the RC de Bruijn graph from a de Bruijn graph where nodes

representing reverse complements are identified and parallel edges

are collapsed into a single edge. A fifth question arises in this setting:

can an equivalent to universal hitting sets, and orders, be defined so

as to create better winnowing schemes when reversed complemented

k-mers are identified? How much can we transfer of what we al-

ready know on de Bruijn graphs to RC de Bruijn graphs?

6 Conclusion

We provided a novel theoretical framework to estimate the density

of minimizer procedures. This framework explains why it is possible

for w-sparse local winnowing schemes to have lower density factor

than 2. In addition, we provided a practical method to create from

small universal hitting sets, such as those generated by DOCKS, w-

sparse winnowing schemes that achieve density factors below 2.

These two results combined answer negatively a standing conjecture

of Schleimer et al.

We showed that the lexicographic ordering has the worst behav-

ior while the different orderings used in current software tools per-

form similarly to randomized orderings, which is slightly better. We

showed that universal hitting set based schemes can perform sub-

stantially better than random orderings in practice. Therefore, for

the development of bioinformatics software using minimizers, we

suggest using an ordering based on small universal hitting sets such

as those created by the DOCKS algorithm, or, if not practical,

randomized orderings. We showed that for binning applications,

doing so would lead to a significant improvement in computational

efficiency.
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