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Abstract

Summary: We present CloudNeo, a cloud-based computational workflow for identifying patient-

specific tumor neoantigens from next generation sequencing data. Tumor-specific mutant peptides

can be detected by the immune system through their interactions with the human leukocyte anti-

gen complex, and neoantigen presence has recently been shown to correlate with anti T-cell im-

munity and efficacy of checkpoint inhibitor therapy. However computing capabilities to identify

neoantigens from genomic sequencing data are a limiting factor for understanding their role. This

challenge has grown as cancer datasets become increasingly abundant, making them cumber-

some to store and analyze on local servers. Our cloud-based pipeline provides scalable computa-

tion capabilities for neoantigen identification while eliminating the need to invest in local infrastruc-

ture for data transfer, storage or compute. The pipeline is a Common Workflow Language (CWL)

implementation of human leukocyte antigen (HLA) typing using Polysolver or HLAminer combined

with custom scripts for mutant peptide identification and NetMHCpan for neoantigen prediction.

We have demonstrated the efficacy of these pipelines on Amazon cloud instances through the

Seven Bridges Genomics implementation of the NCI Cancer Genomics Cloud, which provides

graphical interfaces for running and editing, infrastructure for workflow sharing and version track-

ing, and access to TCGA data.

Availability and implementation: The CWL implementation is at: https://github.com/

TheJacksonLaboratory/CloudNeo. For users who have obtained licenses for all internal software,

integrated versions in CWL and on the Seven Bridges Cancer Genomics Cloud platform (https://

cgc.sbgenomics.com/, recommended version) can be obtained by contacting the authors.

Contact: jeff.chuang@jax.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Mutations in tumor genomes create specific peptide changes that

can be recognized by the immune system and influence sensitivity to

immunotherapy (van der Most et al., 1996; van Rooij et al., 2013).

The mechanism of action involves binding of native major

histocompatibility complex (MHC) class I and II molecules, a.k.a.

human leukocyte antigen (HLA) complex I and II molecules, to the

novel peptide sequences that result from protein-changing somatic

mutations in cancer cells. Cells presenting these neoantigens are rec-

ognized as foreign by T-cells, which then selectively destroy them.
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With the arrival of new next generation sequencing platforms, it has

become possible to interrogate the genomes of patient tumors and

computationally predict T-cell reactivity against putative mutation-

derived neoantigens (Schumacher et al., 2015) by estimating the

binding of MHC class I molecules to each new peptide sequence.

Several bioinformatics tools are routinely used to predict tumor

neoantigen—MHC class I binding from sequencing data. For ex-

ample, HLAMiner (Warren et al., 2012) and Polysolver (Shukla

et al., 2015) are software tools that can predict patient-specific HLA

classes I and II typing from RNA sequencing data, and netMHCpan

(Nielsen et al., 2016) predicts HLA-peptide binding. Prior studies in

cancer immunotherapy have successfully used these tools to predict

the efficacy of immuno-oncological therapies in a patient-specific

manner (Rizvi et al., 2015; Van Allen et al., 2015), demonstrating

the importance of making such methods easily available to the gen-

eral research community. However, the cost of developing and

maintaining the bioinformatics infrastructure to perform this type of

analysis is substantial. In particular, research groups are generating

increasing amounts of custom sequencing data or investigating mas-

sive consortium datasets such as The Cancer Genome Atlas

(Weinstein et al., 2013), for which data transfer and scalability of

computing can be significant obstacles to analysis on local compute

clusters. To resolve these problems, we have developed a cloud-

based analysis pipeline for tumor neoantigen detection.

2 Description

We developed the CloudNeo pipeline on the Seven Bridges cloud

platform as part of the National Cancer Institute’s Cancer Genomics

Cloud [http://www.cancergenomicscloud.org/] (CGC), which uses

Docker containers to execute the tasks in the workflow. Briefly,

CloudNeo takes a vcf file (for mutations) and bam file (for HLA typ-

ing) as inputs and then outputs HLA binding affinity predictions for

all mutated peptides (see Supplementary Fig. S1). A first input to

CloudNeo is a list of non-synonymous mutations in vcf file format.

There are multiple somatic mutation calling pipelines that can be

used to generate and filter this vcf file (Alioto et al., 2015), including

several which are available through the CGC. The genomic variants

are translated into amino acid changes using the VEP tool (McLaren

et al., 2010) and a custom R script that we have created called

Protein_Translator. The output of the custom tool is a list of N-

amino-acid-long peptide sequences in a fasta format, such that the

single peptide change is in the middle of the N-mer. In parallel,

Protein_Translator generates another fasta file for the homologous

N-mers with no peptide mutation. Users have options to calculate

the HLA types using either HLAminer or Polysolver. Six HLA types

are predicted, namely the top two predictions for each of HLA-A,

HLA-B and HLA-C. The final step in the pipeline is the

NetMHCpan tool, which uses the HLA types and the N-mer mutant

peptide sequences to calculate the binding affinities for potential

neoantigens. Affinities between the two HLA-A, two HLA-B, and

two HLA-C molecules and each of the ([N/2]þ1)mer peptide subse-

quences within the N-mers are computed. The output of the pipeline

is a list of peptide subsequences along with the MHC binding affin-

ity scores for each of the six HLA types. Similar results are generated

for the homologous unmutated peptide sequences as a comparison.

To test this pipeline, we analyzed 23 melanoma tumor samples

(Hugo et al., 2016) as described earlier using both the HLAminer

and Polysolver versions of the pipeline. We then predicted neo-

antigens based on criteria of strong mutant-MHC binding affinity

(NetMHCpan score < 500), non-zeroexpression of the transcript

containing the mutation, and lack of strong affinity between the

non-mutated sequence and the MHC (NetMHCpan score for the

non-mutant sequence � 500). For each sample we merged the set of

neoepitopes predicted across the six HLA types. The neoepitope

load ranged from 0 to 1244 with an average of 107.89 using the

HLAminer version of the pipeline. For the Polysolver version of the

pipeline, the same filtering criteria were used and the neoepitope

load was from 0 to 1417 with an average load of 133.53. The differ-

ences in the two pipeline results were due to differing HLA type pre-

dictions by Polysolver and HLAminer. 16 HLAtype predictions by

the tools overlapped with each other, and there were 102 unique

HLA predictions from Polysolver and 122 unique predictions from

HLAminer. While our HLA type predictions were based on RNA-

seq data, CloudNeo can also use DNA data as inputs for HLA call-

ing. The average wall time required to run the pipeline for a given

tumor on CGC was 8 h and 2 min for the HLAminer version and 7 h

and 25 min for the Polysolver version (see Supplementary Material

‘Pipeline Performance’).

3 Discussion

Other recent methods, such as (Hundal et al., 2016), are similar to

CloudNeo in providing a computational pipeline for neoantigen pre-

diction. However, to our knowledge CloudNeo is the only such

pipeline that has been developed for cloud computing. This allows

users to realize advantages of cloud analysis, including massive com-

puting scalability and access to large datasets on the CGC such as

TCGA, as these can be reached without downloading to a local ser-

ver. This cloud approach also makes CloudNeo easy to match to

time and budget restrictions on demand, providing a flexible compu-

tational approach for the research community. A version of the

CloudNeo pipeline is openly available at the Github site as a

Common Workflow Language (CWL) implementation that can be

run using Rabix (Kaushik et al., 2016), allowing for running on sys-

tems including AWS, Google Compute Engine and Azure. Licenses

for academically licensed software (HLAminer and NetMHCpan)

must be obtained by users, but simple instructions to do so are pro-

vided at the Github site. Users with licenses can also contact the au-

thors to request a version with all software integrated. Full versions

are available either in CWL or as a workflow on the Seven Bridges

implementation of the CGC. The CGC version is recommended, as

this provides additional functionality including graphical interfaces

for running and editing, simple workflow sharing and version track-

ing, improved calling of multiple cloud instances, and access to

TCGA data. Full details and docs are at https://github.com/

TheJacksonLaboratory/CloudNeo.
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