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Abstract

Motivation: The rational design of biomolecules is becoming a reality. However, further computa-

tional tools are needed to facilitate and accelerate this, and to make it accessible to more users.

Results: Here we introduce ISAMBARD, a tool for structural analysis, model building and rational

design of biomolecules. ISAMBARD is open-source, modular, computationally scalable and intui-

tive to use. These features allow non-experts to explore biomolecular design in silico. ISAMBARD

addresses a standing issue in protein design, namely, how to introduce backbone variability in a

controlled manner. This is achieved through the generalization of tools for parametric modelling,

describing the overall shape of proteins geometrically, and without input from experimentally

determined structures. This will allow backbone conformations for entire folds and assemblies not

observed in nature to be generated de novo, that is, to access the ‘dark matter of protein-fold

space’. We anticipate that ISAMBARD will find broad applications in biomolecular design, biotech-

nology and synthetic biology.

Availability and implementation: A current stable build can be downloaded from the python pack-

age index (https://pypi.python.org/pypi/isambard/) with development builds available on GitHub

(https://github.com/woolfson-group/) along with documentation, tutorial material and all the scripts

used to generate the data described in this paper.

Contact: d.n.woolfson@bristol.ac.uk or chris.wood@bristol.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Generally, the three-dimensional structures of biomolecules deter-

mine their functions. The computational design of such structures—

and proteins in particular—tests and advances our understanding of

biomolecular folding and assembly, and paves the way to construct-

ing entirely new biomolecules with applications in biotechnology

and synthetic biology. Here we present a new suite of computational

tools, which we call ISAMBARD (Intelligent System for Analysis,

Model Building And Rational Design), to aid the rational de novo

design of biomolecular structures and assemblies, and for the in sil-

ico assessment of the resulting design models. The overall aims of

ISAMBARD are to provide easy-to-use tools for the parametric
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design of such structures, and, thus, to enable a wider group of both

expert and non-expert computational and experimental users to en-

gage in the design process.

Several approaches are taken in protein design (Huang et al.,

2016; Porebski and Buckle, 2016; Regan et al., 2015; Woolfson

et al., 2015): In protein redesign, natural proteins are used as start-

ing points and engineered to introduce desired structural, stability,

or functional properties. This is guided intuitively, or, increasingly,

computationally. In rational de novo protein design, chemical

and physical principles, and biochemical rules of thumb for protein

folding are combined to make initial designs, which are improved

by iteration. In computational design, de novo sequences are built

in silico onto protein backbones, which can be static or have

some flexibility, to deliver multiple sequences for experimental

testing.

A number of approaches to computational protein design have

yielded success (Huang et al.,2016; MacDonald and Freemont,

2016; Woolfson et al., 2015). Initial efforts involved sequence-based

redesign, where designs are generated by packing new sequences

onto a backbone scaffold from a known protein structure (Dahiyat

and Mayo, 1997). Building on this, a degree of backbone flexibility

can be introduced using fragment-based design, where regions of

known protein structure are combined together to form new back-

bone models. The most successful implementation of this method is

in Rosetta (Das and Baker, 2008), a macromolecular modelling

package, which has been central to many de novo designs including

the novel fold Top7 and, more recently, de novo repeat proteins

(Doyle et al., 2015; Kuhlman et al., 2003). Extensions of the

fragment-based methodology are being actively developed (Jacobs

et al., 2016; Lapidoth et al., 2015).

By definition, fragment-based methods are restricted, sampling

only structural space observed in experimentally determined, and

usually of just natural protein structures. If we are to exploit the full

universe of possible protein structures, other backbone sampling

methods must be pursued (Taylor et al., 2009; Woolfson et al.,

2015). However, there are several obstacles in the way of achieving

this. Most notably, the sequence and conformational spaces avail-

able to even modestly sized biomolecules are vast, and, indeed, im-

possible to search exhaustively. One way to reduce this complexity

is to simplify the way in which biomolecular structures are

described; namely, to parameterize the design target mathematically.

In turn, these parametric descriptors can be used to focus the search

of structural space for the backbone. Amino-acid sequences can then

be tested on the resulting scaffolds, and the whole system optimized

to deliver candidate solutions to a specified design problem.

Certain folds are conducive to parameterization, such as a-hel-

ical coiled coils, due to their regular structures and well-understood

sequence-to-structure relationships (Fletcher et al., 2012; Harbury

et al., 1993, 1994; Woolfson et al., 2012; Woolfson, 2005).

a-Helical coiled coils are bundles of two or more a helices that in-

variably wrap (or supercoil) around a common axis. The helices can

be arranged in parallel, antiparallel or mixed topologies, and the

assemblies can be homo- or hetero-oligomers (Lupas and Gruber,

2005). Despite this diversity, a-helical coiled coils are the simplest

and best-understood examples of geometrically regular protein

structures, making them clear targets for parametric modelling and

design. The original mathematical parameterization of these is from

Crick (Crick, 1953), and has been developed since (Offer et al.,

2002), including in CCCP (Grigoryan and Degrado, 2011) and

CCBuilder (Wood et al., 2014), which are web-based applications

for parametric modelling of coiled coils. These modelling methods

have been applied by us and by others to design a range of a-helical

coiled coils and bundles (Grigoryan et al., 2011; Harbury et al.,

1995; Huang et al., 2014; Thomson et al., 2014).

The structural modelling methodology that we have applied to

design a-helical barrels required an extension of CCBuilder, called

CCScanner, which automatically fitted structural parameters for a

given sequence (Thomson et al., 2014). However, this was a bespoke

solution for the parametric modelling of coiled coils. Here, we pre-

sent the ISAMBARD (Intelligent System for Analysis, Model

Building and Rational Design) software package, which generalizes

this modelling methodology, allowing it to be applied to the design

of any parameterizable protein fold, whether all-a helix, all-b
strand, mixed a/b structures, or those employing less-common sec-

ondary structures. ISAMBARD is an open-source Python package

with a suite of tools for biomolecular structure analysis, protein de-

sign, model building and evaluation. ISAMBARD is modular, ex-

tendable, open source and freely available.

ISAMBARD provides a framework for atomistic model building

and validation of truly de novo biomolecular structures (Woolfson

et al., 2015). Scoring methods are built-in for assessing model qual-

ity, and optimization techniques allow rapid exploration of struc-

tural and sequence space in tractable time. Here, we demonstrate

that ISAMBARD is capable of accurately modelling a range of di-

verse protein folds using generalized and reusable mathematical

parameterizations.

2 Materials and methods

All biomolecules in ISAMBARD are represented using the AMPAL

(Atom, Monomer, Polymer, Assembly, Ligand) framework. This is a

formal representation of biomolecules in a hierarchical structure of

lightweight Python objects. Its object-oriented implementation is in-

tuitive to use and enables facile navigation through the protein struc-

ture in both directions, i.e. from the assembly to the atomic level

and vice versa.

AMPAL objects are used in ISAMBARD to represent proteins,

nucleic acids, and a more-general ligand class that is currently used

for every other molecule. There are a range of tools built into these

objects, which allows for straightforward structural analysis, valid-

ation and manipulation.

Figure 1 shows the structure of the AMPAL framework and its

built-in inheritance pattern. This enables core functionality to be

reused, making it simpler for users to create custom classes for other

biomolecules.

2.1 Parametric model building
ISAMBARD has been created to aid parametric protein design by

providing a general approach for modelling any parameterizable

protein fold. In order to design protein folds de novo, one must

choose from a set of amino acids and connect them in space accord-

ing to a set of rules, in an approach analogous to that followed by a

building constructor using an architect’s design or specification.

Therefore, we have introduced the specification object, as an exten-

sion of the AMPAL framework (Fig. 1). A specification contains in-

structions for building a model according to a set of input parameter

values. These instructions form the parameterization of the model.

Specifications can be defined at both the Polymer and Assembly

level of the AMPAL framework (monospaced text indicates an

ISAMBARD class). The parameters in Polymer specifications dic-

tate how to arrange Monomers into a single chain; at the

Assembly level, they detail the arrangement of Polymers with re-

spect to each other.
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2.1.1 Specifications at the polymer level

Each Residue in a Polypeptide contains an a-carbon atom, and

the running average of the positions of these atoms traces a path in

3D space. Polypeptide specifications use parameters that define a

path for this running average to follow. When the model is built,

Residues are joined together accordingly. The paths, and therefore

the Polypeptides, are described mathematically by a small num-

ber of simple parameters. For example, the Helix specification

allows any type of polypeptide helix to be built, e.g. a helix, poly-

proline type-II helix, etc.; whereas, the HelicalHelix specifica-

tion takes a Helix specification and adds a supercoil to it with

input parameter values for radius and pitch of the superhelix. In this

way, a path is defined along which a polypeptide segment is built.

Moreover, multiple segments with different Helix and

HelicalHelix specifications can readily be combined in the same

design (see the Assembly specification below). As indicated, these

specifications are implemented generally, such that secondary struc-

ture types including a-, collagen- (viz., polyproline type-II-) and p-

helices can be built along any well-defined path. It is worth

reemphasizing at this point that these parameters are not reliant on

structural data from natural proteins, they are built using idealized

geometric models.

An alternative building-mode specification is embodied in

TAPolypeptide, which generates a Polypeptide from a set of

backbone torsion angles. Backbone bond lengths and bond angles

can be specified if desired, otherwise default values are used (Schulz

and Schirmer, 1979). Again, this lends itself to the design of struc-

tures that are not found in nature, but, nonetheless, are physically

feasible, as they can be informed by the allowed regions of

Ramachandran plots.

2.1.2 Specifications at the assembly level

Specifications at the Assembly level are relatively abstract, and are

not constrained to describing a particular protein topology, architec-

ture or even class. Three examples of specifications at the

Assembly level are given in Supplementary Figures S1–S4. They de-

scribe the paths that secondary structure follows, and the same spe-

cification can be used to describe a range of folds. For example, the

CoiledCoil specification can produce models of coiled coils in

any oligomer state with any orientation of helices. Furthermore, the

same specification can be used to describe the structure of the colla-

gen triple helix.

Up to this point, the building process uses glycine as default resi-

dues, essentially generating a backbone-only model. Once this back-

bone for the target structure has been specified, side-chain atoms are

modelled using SCWRL4 (Krivov et al, 2009), which uses a

backbone-dependent rotamer library and a fast anisotropic hydro-

gen bonding function to optimize side-chain packing.

2.1.3 Model evaluation

The main method for assessing the quality of the model uses BUFF

(Bristol University Docking Engine Force Field). BUFF is a stand-

alone implementation of the all-atom force field from BUDE (Bristol

University Docking Engine) (McIntosh-Smith et al., 2012, 2014),

Fig. 1. Inheritance in the AMPAL framework. Top: Arrows indicate inheritance, with objects at the head of the arrow inheriting all of the methods and attributes of

the more generic object at the base of the arrow. Bottom: Examples of specifications in the AMPAL framework. The specification classes are shown in light grey

boxes
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which is an empirical free-energy force field originally designed to

predict the free energies of binding between proteins and ligands.

BUFF is implemented with code written in Cþþ and Python,

with communication between these achieved by a layer of Cython

(Behnel et al., 2011). The Cython layer allows for direct interaction

with various elements of the force field using a Python interface,

which is useful when prototyping design protocols, but it retains

most of the speed of the original BUDE implementation. This also

allows the force-field parameters to be directly accessible to the

user, and modifiable for a particular application.

Other metrics are also available for assessing design quality,

such as evaluating the overall geometry of the protein; for example,

we have included a measure of helical strain, which assesses how far

from ideal geometry a helix undergoing design is. Moreover, the

modular and open nature of ISAMBARD enables and encourages

users to import and apply other force fields and methods of evalu-

ation. This is facilitated by the Python ecosystem in general, which

contains a range of existing packages for protein design and model-

ling, such as OpenMM, PyRosetta and Modeller (Chaudhury et al.,

2010; Eastman et al., 2013; Eswar et al., 2006).

2.1.4 Parameter optimization

The size of structural space grows exponentially with the number of

parameters used to describe it. This prohibits the exhaustive explor-

ation of space in most cases. So-called metaheuristics help address

this, providing means of efficiently searching the defined parameter

space to find near-optimal solutions (Bianchi et al., 2008). A range

of metaheuristics have been implemented in ISAMBARD using

modified elements of the DEAP evolutionary computation frame-

work (Fortin et al., 2012), including a genetic algorithm, particle-

swarm optimization, differential evolution and covariance matrix

adaptation evolutionary strategy. These different methods enable ef-

ficient exploration of structural space for a given specification and

provide an estimate of energetic minima.

The choice of optimizer is up to the user: different optimizers

will be better suited to different problems. For the examples

described herein, we found that the differential evolution method

performed very well. Further work to benchmark each of the opti-

mization strategies is underway in our laboratory, and is beyond the

scope of this report.

Once a fold has been parameterized, minimal human interven-

tion is required: the optimizer fits a broad range of parameter values

from the specification and delivers the best models according to the

user-defined fitness function. For protein design, this is usually an

all-atom scoring function, but any metric can be applied by the user.

2.2 Specification accuracy testing
To test the robustness of models produced using ISAMBARD, several

protein folds were parameterized. The geometric parameterizations

were tested by rebuilding natural structures that exhibited a wide range

of parameters. During the rebuild, we used the root-mean-square devi-

ation (RMSD) between the experimentally determined structure and

models produced to drive the parameter optimization. This process val-

idates whether the simple geometric parameterization has the capacity

to recreate accurately observed examples of the protein fold, and thus

lends confidence to modelling de novo structures. Three classes of pro-

tein were modelled: a-helical coiled coils, collagen/collagen-like pep-

tides, and Ankyrin-like repeat proteins.

We used the differential evolution optimizer in ISAMBARD to

fit the parameters for a given sequence. The scoring metric used was

the RMSD between the target structure and the model as calculated

by the McLachlan algorithm (McLachlan, 1982) as implemented in

the program ProFit (Martin, A.C.R., http://www.bioinf.org.uk/soft

ware/profit/).

Coiled coils were modelled using the CoiledCoil class, with

the from_parameters class method, using the parameter ranges

described in Table 1. Optimization was performed over 50 gener-

ations, with 20 models in each, for a total of 1020 models including

the parent generation.

Collagen structures were also parameterized using the

CoiledCoil class, with the tropocollagen class method.

Hydroxyproline in the crystal structures was converted to proline to

allow side-chain packing and structural alignment. The gross structural

properties and therefore the parameterization of the fold are not af-

fected by this change. Collagen was modelled with radii range of 1.5–

5.5 Å; pitches in the range of 25–105 Å; unrestricted interface angles; a

z-shift range for each helix of 0.0–6.2 Å staggered relative to each

other; and a rotational offset -30� to 30� for each helix. Optimization

was performed over 50 generations, with 30 models in each, for a total

of 1530 models including the parent generation.

Models of Ankyrin-like peptides were built using the HelixPair

class to generate the repeating unit and the Solenoid class to apply

helical symmetry. The repeating unit was modelled with radii in the

range of 0.0–6.0 Å, z-shifts in the range of -6.0 to 6.0 Å, unrestricted

helical rotation, in-plane rotations in the range -45� to 5� and out-of-

plane rotation range 90�–270�. Optimization was performed over 50

generations, with 50 models in each, for a total of 2550 models includ-

ing the parent generation. The optimized repeating unit was used to

model the solenoid with a radius range of 25.0–45.0 Å, rise per repeats

in the range 2.0–18.0 Å, unrestricted twist range. The repeat unit was

allowed unrestricted rotation during optimization. Optimization was

performed over 100 generations, with 40 models in each, for a total of

4040 models including the parent generation.

The solenoid model of the TAL effector protein bound to DNA

was built using the same base method described above, however the

Solenoid class was given radii in the range 10.0–30.0 Å, rise per re-

peat values in the range 2.0–18.0 Å, unrestricted twist range. The re-

peat unit was allowed unrestricted rotation during optimization.

Optimization was performed over 50 generations, with 20 models in

each, for a total of 2040 models including the parent generation.

The model of DNA was built using the DNADuplex class, and

manually aligned, using tools included in ISAMBARD, with the so-

lenoid to match the phase of the DNA and protein model. The final

model was aligned with the experimentally determined structure,

using ProFit, based solely on the protein region.

2.2.1 RMSD100

In order to compare the quality of fit across a range of individual

protein structures of different sizes, we calculated the RSMD100

value (Carugo and Pongor, 2001) using the following equation:

RMSD100 ¼
RMSD

1þ ln
ffiffiffiffiffiffi
N

100

q� �

Table 1. Parameter ranges used to model coiled coils

Oligomer

state

Radius

range (Å)

Pitch

range (Å)

Interface angle

range (�)

Dimer 3.5–5.5 50–350 �20 to 20

Trimer 5.0–7.0 50–350 �20 to 20

Tetramer 5.5–8.5 50–350 �20 to 20

Pentamer 6.5–9.5 50–350 �20 to 20
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3 Results

3.1 Specifications in ISAMBARD accurately recreate

natural structures using parametric models
We tested our generalized parametric modelling in ISAMBARD by

rebuilding a range of natural structures. The protein folds selected

were a-helical coiled coils, collagen triple helices and Ankyrin-like

repeats, as these are readily parameterizable and are of interest to

the protein design and broader communities (Huang et al., 2014;

Jalan et al., 2014; Parmeggiani et al., 2015; Plückthun, 2015;

Thomson et al., 2014). Figure 3 shows that each of these folds have

been successfully captured in ISAMBARD through two specifica-

tions: CoiledCoil and Solenoid.

3.1.1 Coiled coils

The Crick equations (Crick, 1953) provide a parametric description

of a-helical coiled coils. Previously, these have been successfully im-

plemented for model building and protein design (Grigoryan and

Degrado, 2011; Harbury et al., 1995, 1998; Huang et al., 2014;

Offer and Sessions, 1995; R€amisch et al., 2015; Thomson et al.,

2014; Wood et al., 2014). Coiled-coil modelling has been imple-

mented differently in ISAMBARD, using a more-general approach

where the mathematics describing secondary structure is separated

from that that describes the overall quaternary structure. This is

vital for the modularity and re-usability of the parameterizations,

and allows a wide array of different protein folds to be described

using the same fundamental tools. Distinct secondary structure types

are defined using the same specifications at the Polymer level. The

Assembly level is independent of the Polymer-level specification,

and so can be applied to different secondary structures types to yield

different protein folds. For example, the CoiledCoil specification

is used to model both a-helical coiled coils and collagens (see

below). To test if the CoiledCoil specification accurately gener-

ated the degrees of freedom observed in experimentally determined

X-ray crystal structures of coiled coils, the following selection of

parallel coiled-coil assemblies was recreated in ISAMBARD.

We searched the CCþdatabase for non-redundant, homomeric,

parallel coiled coils in oligomer states ranging from 2 to 5 (Testa

et al., 2009), requiring that each structure contain at least 45 resi-

dues in order to apply the RMSD100 normalization function

(Carugo and Pongor, 2001). This yielded 113 structures for rebuild-

ing in ISAMBARD (Fig. 2).

The structural optimizer was initialized with the CoiledCoil

specification, the amino-acid sequence and the oligomeric state of

the structure being rebuilt as well as the three structural parameters

(radius, pitch and uCa, Supplementary Fig. S2), which were

optimized.

For each of the 113 structures, the values for each of the 3 par-

ameters converged within 1020 models. The overall modelling ac-

curacy was excellent, with a mean backbone RMSD of 0.64 Å

(r¼0.24 Å, n¼113). This shows that the parameterization con-

tained in the CoiledCoil specification is sufficient to accurately

model coiled coils, even though it describes the assembly using

only 3 structural parameters, none of which need to be derived in

the first instance from existing protein structures. This is an im-

provement over modelling with CCBuilder (Wood et al., 2014),

which gave an average backbone RMSD of 0.74 Å (r¼0.45 Å,

n¼113) for the same selection of coiled coils, and compares fa-

vourably with alternative coiled-coil modelling methodologies

(Grigoryan and Degrado, 2011; Wood et al., 2014). Thus, in our

experience, the CoiledCoil specification in ISAMBARD is now

the most accurate tool available for building parametric models of

coiled coils.

3.1.2 The collagen triple helix

The level of abstraction in the CoiledCoil specification means

that it can be used directly to build models of collagen. This is

because the gross geometry of collagen is similar to a coiled-coil

trimer, although each component helix is a polyproline type-II

helix rather than an a helix. An additional structural parameter,

z-shift, is required to describe relative offset of the component

helices along the long axis of the collagen molecule, which creates

a leading and a lagging strand (Shoulders and Raines, 2009).

A set of 9 representative, high-resolution crystal structures of

collagen and collagen-like peptides was selected from the PDB and

then their structures modelled using ISAMBARD. The parameter-

ization accurately captured the backbone of the structures, with a

Fig. 2. Crystal structures of coiled coils are recreated using parametric model

building in ISAMBARD. (A) Model-building methodology for coiled coils em-

ployed to test the accuracy of ISAMBARD. The differential evolution optimizer

was used with RMSD between the model and the experimental X-ray crystal

structure as the scoring metric. (B) Box and whiskers plot of RMSD100 scores

for non-redundant, dimers (cyan, n¼66), trimers (light blue, n¼41), tetra-

mers (light green, n¼4) and pentamers (tan, n¼2) in CCþ (Testa et al. 2009),

with more than a total of 44 residues. (C) Overlay of experimentally deter-

mined structure (green) with corresponding model (magenta), for a dimeric

(4ath, RMSD¼0.48 Å), trimeric (1wt6, RMSD¼ 0.67 Å) and tetrameric (2gus,

RMSD¼0.45 Å) coiled coil (Color version of this figure is available at

Bioinformatics online.)
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mean backbone RMSD100 score of 1.31 Å (r¼0.44 Å, n¼9) (Fig.

3, Supplementary Fig. S5, Supplementary Table S1). The difference

between the best model and the worst was narrow, for example,

RMSD100 score of 1.08 Å (3pob) and 1.57 Å (1cag).

The mean score was higher than for coiled-coil trimers, which

had a mean value of 0.50 Å, (r¼0.20 Å, n¼41). This is most likely

due the overall flexibility of the collagen fold due to the broader en-

ergy well of the polyproline type-II helix (Kuster et al., 2015).

Further on this, the poorest areas of alignment were found at the

N and C termini of the component polypeptides, where fraying of

the X-ray crystal structures of the collagen fibres occurred. This is

not observed to the same extent in coiled coils, and cannot easily be

captured by parametric models. However, these models are still very

accurate, and, to our knowledge, this is the only general method

available for easily and rapidly generating atomistic models of the

collagen triple helix backbone. The facile exploration of the collagen

structural space through ISAMBARD may prove to be useful and

complementary to existing methods of automated computational

design of collagen fibres, which use a combination of discrete

sequence-based models and geometric information from natural col-

lagen fibres (Xu et al., 2010, 2011).

3.1.3 Ankyrin-like repeat proteins

Ankyrin-repeat proteins were selected as representative examples of

a solenoids as there are several experimentally determined struc-

tures. Furthermore, recent designs of artificial Ankyrin-like repeat

proteins, with a range of structural and functional diversity pro-

vide benchmark comparisons for our modelling (Boersma and

Plückthun, 2011; Brunette et al., 2015; Parmeggiani et al., 2015;

Plückthun, 2015). Models generated by ISAMBARD could form the

basis of structural analysis of putative designs in attempts to create

new Ankyrin-like repeat proteins with specific functions.

The models of a solenoids were built in two stages. Initially, the

repeating unit of two short a helices was defined with the

HelixPair specification and optimized for a given sequence, and

then helical symmetry was applied with the Solenoid specification

(Fig. 1).

Generally, in the Solenoid function, the repeating unit is built

on a plane relative to a reference axis. The positions of the helices

are described independently using 5 parameters: axis distance,

z-shift, uCa, splay and off-plane rotation (Supplementary Fig. S3).

As these parameters are independent, it is possible to create the

same relative positions using different parameter values. Helical

symmetry is applied to the repeating unit by defining the radius,

twist per repeat, rise per repeat and the handedness of the solenoid.

The repeating unit also has rotational freedom, needed to ensure

that it remains oriented correctly relative to the helical axis

(Supplementary Fig. S4).

Regular, parameterizable regions of a set of 9 representative

high-resolution crystal structures of Ankyrin-like proteins were

modelled using ISAMBARD (Fig. 3, Supplementary Fig. S6,

Supplementary Table S2). The parameterization captured the con-

formation of the reference structures very effectively, with all

RMSD100 scores below 1.5 Å, comparing favourably with the

collagen-like peptides. Indeed, for 7 of the 9 structures, the

RMSD100 was lower than 0.64 Å, the mean score for coiled coils.

This specification is the most complex of all those discussed

herein, and required 7 parameters in total, compared to 3 for the par-

allel coiled coils and 4 for the collagen triple helix. Despite this, the

models minimized in a similar time frame (4040 models,�10 mi-

nutes on a single core of a desktop computer). This demonstration

of the quality of the differential evolution optimizer is certainly

encouraging for modellers of even more-complicated folds and/or

broader classes of protein folds.

Loops are crucial for the function of Ankyrin-like repeat

proteins, and while it is not possible to model these regions

parametrically, there are tools included in ISAMBARD, such as

TAPolypeptide, that allow these to be modelled explicitly, by spe-

cifying a list of backbone torsion angles. Furthermore, once the

backbone has been generated, the loop regions could be added to

the model using one of a range of existing methods (de Bakker et al.,

2003; Bender et al., 2016; Choi and Deane, 2009; Fiser et al., 2000).

3.2 Different elements can be combined to generate

complex models
Whilst ISAMBARD has been developed for parametric modelling of

protein structures, most of its tools have been made as general as

possible to enable their application to other biomolecules. To dem-

onstrate this, we developed a straightforward specification for build-

ing parametric models of DNA, and used this in combination with

the Solenoid specification to generate a model of a TAL effector

bound to a DNA duplex. We used the rebuilding protocol to con-

struct a model that recreates a known crystal structure (3v6t; Fig. 4).

The TAL-effector protein was constructed first, using the opti-

mal parameter values for the Solenoid specification. With the pro-

tein model in hand, a DNA duplex was constructed using the

DNADuplex specification (Fig. 1), which builds a DNA duplex

based on sequences of its strands. The final model was created by

rotating and translating the DNA object to bring it into phase with

the TAL-effector (TALE) model using tools for geometric manipula-

tion included in the ISAMBARD package (and built into

Fig. 3. Models of natural structures built using parametric specifications in

ISAMBARD. (A) RMSD100 scores for the backbone of rebuilt collagen and col-

lagen-like peptides. (B) Overlay of models (magenta) and experimentally

determined structure (green) for two representative collagen-like peptides,

3pob (left) and 1cag (right). (C) RMSD100 scores for the backbone of rebuilt

Ankyrin-like proteins. (D) Overlay of models (magenta) and experimentally

determined structure (green) for two representative Ankyrin-like proteins,

4qfv (left) and 5ced (right) (Color version of this figure is available at

Bioinformatics online.)
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BaseAmpal). The overall alignment of the parameterizable protein

region of the TALE in Figure 4 with its model has a backbone

RMSD of 1.03 Å (RMSD100¼0.79 Å).

4 Conclusion

We have described ISAMBARD, a framework that provides a

generalized approach to in silico parametric design and optimization

of de novo biomolecular structure. We have shown that parametric

modelling of proteins is an effective way to reduce the overall struc-

tural space that would otherwise prevent atomistic modelling, or at

least make it a lengthy process for users. Even for models that re-

quire a relatively large number of parameters, as in the case of the

solenoid proteins, it is possible to optimize the structure readily

using the metaheuristics methods build into ISAMBARD.

The generic design of tools in ISAMBARD allows users to define

their own parameterizations that are either completely novel, or

composites of existing parameterizations. This focus on modularity

makes it readily adaptable and extendable by the user. This ethos

has been applied at all levels of the software design, enabling any

user familiar with the project to extend and contribute to the code

base. Indeed, we have benefitted from the modular approach: due

to the model building generality, most of the tools required to

model the collagen triple helix and a solenoids already existed in

ISAMBARD before efforts began to parameterize these folds.

Currently, specifications are defined manually and then explored

using automated optimization strategies. However, it is possible that

these parametric models could be determined automatically, and we

anticipate that future versions will have features to do this using ma-

chine learning strategies trained on structural data gathered using

the analysis tools in ISAMBARD.

Our approach is complementary to other design and modelling

suites, such as Rosetta and Modeller (Chaudhury et al., 2010; Das

and Baker, 2008; Eswar et al., 2006). We envisage that powerful

protein-design pipelines could be generated by combining

ISAMBARD with these packages along with other tools for atomis-

tic simulation such as OpenMM (Eastman et al., 2013). Indeed, this

would be facilitated by the availability of Python-based front-ends

for these software suites.

More generally, the parameterized fold is not required to have

any basis in a naturally observed protein fold. Thus, while most

state-of-the-art protein design packages require some element of in-

formation from natural structures, ISAMBARD provides a starting

point for going into the ‘dark matter of protein fold space’ (Taylor

et al., 2009; Woolfson et al., 2015).
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