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Abstract

Summary: GLINT is a user-friendly command-line toolset for fast analysis of genome-wide DNA

methylation data generated using the Illumina human methylation arrays. GLINT, which does not

require any programming proficiency, allows an easy execution of Epigenome-Wide Association

Study analysis pipeline under different models while accounting for known confounders in methy-

lation data.

Availability and Implementation: GLINT is a command-line software, freely available at https://

github.com/cozygene/glint/releases. It requires Python 2.7 and several freely available Python pack-

ages. Further information and documentation as well as a quick start tutorial are available at http://

glint-epigenetics.readthedocs.io.

Contact: elior.rahmani@gmail.com or ehalperin@cs.ucla.edu

1 Introduction

Genome-wide epigenetic studies have gained much attention re-

cently, and numerous studies reported associations between epigen-

etic modifications and biological conditions. Particularly, recently

introduced high-throughput technologies for probing DNA methyla-

tion states have resulted in a mounting evidence for the suggested

role of methylation in disease and complex cellular processes.

Epigenome-wide association studies (EWAS) have especially become

a compelling and successful study design. In EWAS, methylation

states are first read in many loci across the genome from a group of

individuals, typically using the Illumina methylation arrays (27K,

450K and EPIC/850K). Then, probed methylation levels are tested

for associations with a phenotype of interest. While simple in prin-

ciple, revealing meaningful associations is often complicated due to

various reasons, such as artificial disruptions in probe specificity

(Chen et al., 2013) or the presence of confounders in the data, such

as cell type composition (Jaffe and Irizarry, 2014) and population

structure (Michels et al., 2013).

Naturally, methods and tools often need to be tailor-made for

the analysis of methylation, in order to address the unique properties

of the data. As a result, a growing repertoire of available compre-

hensive toolsets for methylation analysis has been suggested (e.g.

Aryee et al., 2014; Assenov et al., 2014). Here, we present GLINT,

a command-line toolset for performing EWAS, similar in spirit to

PLINK (Purcell et al., 2007), a widely used command-line tool for

performing genome-wide association studies (GWAS). While most

of the existing tools for running EWAS require some programming

proficiency, GLINT allows to run an EWAS pipeline easily

and quickly using merely several simple commands which do not re-

quire any programming skills. GLINT provides automatic data

management procedures and the implementation of several algo-

rithms designed for methylation data. GLINT mainly provides
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implementation of recently suggested algorithms that are currently

not available in existing toolsets, including improved reference-free

estimation of cell type composition, inference of population struc-

ture from methylation and imputation of methylation levels from

genotypes. Developed under a modular design, GLINT will allow an

easy implementation of future algorithms and functionalities.

2 Materials and Methods

GLINT was developed in Python 2.7 and was designed to work on

array methylation data (specifically, the Illumina 27K, 450K and

EPIC/850K arrays). GLINT does not provide normalization and

quality control procedures for raw IDAT files of methylation sig-

nals, but rather it focuses on analysis of preprocessed data. Given

beta-normalized methylation levels (i.e. after raw data normaliza-

tion), GLINT provides the following functionalities:

2.1 Data management
Quality control procedures for filtering out undesired methylation

probes, including automatic exclusion of probes potentially intro-

ducing artificial variation (Chen et al., 2013), and procedures for fil-

tering out undesired samples, including outliers detection and

removal.

2.2 Adjusting for tissue heterogeneity
Estimation of cell type composition of samples coming from hetero-

geneous source (e.g., whole blood) using a supervised algorithm,

which leverages reference methylation data of sorted cells

(Houseman et al., 2012), and using ReFACTor (Rahmani et al.,

2016), an unsupervised algorithm which does not require any refer-

ence. The estimated cell type composition can be then incorporated

as covariates in a subsequent association testing or be used

independently.

2.3 Inferring population structure
Inferring population structure directly from methylation data with-

out the need for genotypes using the EPISTRUCTURE algorithm

(Rahmani et al., 2017), which leverages the correlation structure of

methylation with genetics in order to capture ancestry information.

The latter can be then incorporated as covariates in a subsequent as-

sociation testing or be used independently.

2.4 Methylation imputation
Imputation of methylation levels from genotypes, based on summary

statistics fitted in linear models of methylation sites using genotype

data as predictors (Rahmani et al., 2017), similarly to a recently sug-

gested method for gene expression prediction from genotypes

(Gamazon et al., 2015). Since some methylation sites can be well

approximated by a weighted combination of several SNPs (Rahmani

et al., 2017), performing association testing on such predicted

methylation levels can be regarded as GWAS of pre-selected

weighted sets of SNPs, which may potentially lead to novel findings.

For demonstrating the utility of this approach, we used the WTCCC

genotype data collected from rheumatoid arthritis cases and controls

(Burton et al., 2007). Conducting EWAS on the imputed methyla-

tion levels revealed a new association that could not be discovered

by a standard GWAS (Fig. 1), thus showing the potential of this ap-

proach in discovering novel associations.

2.5 Association testing
Testing for phenotype-methylation associations using several differ-

ent models and statistical tests: linear and logistic regression models,

Wilcoxon rank-sum test and linear mixed models (LMMs), which

were previously suggested for methylation data (Zou et al., 2014).

2.6 Visualization
Generation of publication-quality figures, including qq-plots and

Manhattan plots for visualization of EWAS results.

3 Results

3.1 Usage
The online documentation of GLINT includes references and details

about each of the methods implemented. Additionally, we provide

an example data set with a quick start tutorial demonstrating how

to work with GLINT.

3.2 Performance
We evaluated the performance of GLINT by running an EWAS pipe-

line on approximately 480 K sites: data loading, exclusion of problem-

atic probes and performing association test (linear regression) while

accounting for tissue heterogeneity (Fig. 2). On a 64-bit Mac OS X

computer with 3.1GHz and 16GB of RAM the analysis required 9 min

for 500 samples, 13min for 1000 samples and 24 min for 2000

samples.

4 Discussion

We note that some of the currently implemented functionalities were

directly designed for data generated using the common 450 K array. As

a result, while data generated using the new EPIC array can be analyzed

with GLINT, some of the functionalities are expected to further benefit

from specific adaptations according to the settings of the EPIC array.

These will be made possible as more EPIC data become available.
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Fig. 1. Manhattan plots resulted from testing genome-wide markers for asso-

ciation with rheumatoid arthritis. Left: GWAS results of 344 943 markers re-

veal significant loci in chromosomes 1 and 6. Right: EWAS results of 1793

imputed markers that were found to be the most predictive by genetics reveal

a novel association in chromosome 10 that was not detected in the GWAS

(cg24591913; P � value ¼ 5:6� 10�8)

Fig. 2. An example of a set of simple GLINT commands for performing an

EWAS pipeline: excluding problematic probes (Chen et al., 2013), accounting

for tissue heterogeneity (Rahmani et al., 2016), performing association test,

and plotting the results.
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