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Abstract

Motivation: Large-scale molecular profiling data have offered extraordinary opportunities to im-

prove survival prediction of cancers and other diseases and to detect disease associated genes.

However, there are considerable challenges in analyzing large-scale molecular data.

Results: We propose new Bayesian hierarchical Cox proportional hazards models, called the spike-

and-slab lasso Cox, for predicting survival outcomes and detecting associated genes. We also de-

velop an efficient algorithm to fit the proposed models by incorporating Expectation-Maximization

steps into the extremely fast cyclic coordinate descent algorithm. The performance of the proposed

method is assessed via extensive simulations and compared with the lasso Cox regression. We

demonstrate the proposed procedure on two cancer datasets with censored survival outcomes and

thousands of molecular features. Our analyses suggest that the proposed procedure can generate

powerful prognostic models for predicting cancer survival and can detect associated genes.

Availability and implementation: The methods have been implemented in a freely available

R package BhGLM (http://www.ssg.uab.edu/bhglm/).

Contact: nyi@uab.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Precision medicine needs accurate prognostic prediction (predicting

the risk of future relapse after an initial treatment or responsiveness

to different treatments) (Barillot et al. 2012; Chin et al. 2011).

Many traditional clinical prognostic and predictive factors have

been known for diseases (e.g. cancers) for years, however, usually

provide poor prognosis and prediction (Barillot et al. 2012). There

is therefore a need for new prognostic and predictive factors with

better reproducibility and better discriminatory power between dif-

ferent prognosis and drug responsiveness groups. Precision medicine

is often based on the genetic background of the patients (Barillot

et al. 2012; Collins and Varmus 2015). Recent high-throughput

technologies can easily and robustly generate large-scale molecular

profiling data, offering extraordinary opportunities to search for

new biomarkers and to build accurate prognostic and predictive

models (Barillot et al. 2012; Collins and Varmus 2015). However,

significant challenges exist, including: (i) how to select predictive

molecular factors among numerous candidates, (ii) how to precisely

estimate the effects of predictors and (iii) how to combine many pre-

dictive factors into accurate predictive models.

Several methods have been applied to address the challenges,

mainly including traditional variable selection, principal compo-

nents method and penalized regressions. Extensive studies have

demonstrated that penalized regressions usually have good predict-

ive performance and can result in powerful and interpretable pre-

dictive models (Bovelstad et al. 2007, 2009). Various penalized
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survival models have recently been proposed to analyze large-scale

data, including lasso, ridge or elastic-net Cox proportional hazards

models (Hastie et al. 2015; Simon et al. 2011; Tibshirani 1997; van

Houwelingen et al. 2006) and parametric models (Li et al. 2016;

Mittal et al. 2013). The penalized survival models can be fit by fast

algorithms, and can achieve both predicting survival and identifying

important predictors (Hastie et al. 2015; Simon et al. 2011;

Tibshirani 1997). Thus these penalized methods have widely been

used for analyzing high-dimensional molecular data (Barillot et al.

2012; Gerstung et al. 2015; Sohn and Sung 2013; Yuan et al. 2014;

Zhang et al. 2013; Zhao et al. 2015). Recently, Bayesian survival

models and spike-and-slab variable selection methods have been

applied to molecular predictive modeling (Bonato et al. 2011; Lee

et al. 2011, 2015; Li and Zhang 2010; Monni and Li 2010; Peng

et al. 2013; Stingo et al. 2010; Tai et al. 2009). These methods use

Markov Chain Monte Carlo (MCMC) algorithms to fully explore

the joint posterior distribution. Although statistically sophisticated,

these MCMC-based methods are computationally intensive for ana-

lyzing large-scale molecular data.

In this article, we propose new hierarchical Cox survival models

with spike-and-slab double-exponential priors for jointly analyzing

large-scale molecular data for building powerful predictive models

and identifying important predictors. The spike-and-slab prior is the

fundamental basis for most Bayesian variable selection approaches,

and has proved remarkably successful (Chipman 1996; Chipman

et al. 2001; George and McCulloch 1993, 1997; Ro�ckov�a and

George, 2014; Ro�ckov�a and George, 2016, unpublished manu-

script). Most previous spike-and-slab variable selection approaches

use the spike-and-slab normal priors on coefficients and employ

computationally intensive MCMC algorithms to search for high

posterior models. Recently, Ro�ckov�a and George (2016, unpub-

lished manuscript) proposed a new framework, called the spike-and-

slab lasso, for high-dimensional normal linear models, and showed

that it has remarkable properties(Ro�ckov�a and George, 2016, un-

published manuscript).

We extend the spike-and-slab lasso framework to Cox survival

models. The proposed spike-and-slab lasso Cox models can adap-

tively shrink coefficients and thus can result in accurate estimates

and predictions. We propose an efficient algorithm to fit the spike-

and-slab lasso Cox models by incorporating EM steps (Expectation-

Maximization) into the extremely fast cyclic coordinate descent

algorithm. The proposed approach integrates two popular methods,

i.e. lasso and Bayesian spike-and-slab hierarchical modeling, into

one unifying framework, and thus combines the remarkable features

of the two popular methods while diminishing their shortcomings.

The performance of the proposed method is assessed via extensive

simulations and compared with the commonly used lasso Cox re-

gression. We apply the proposed procedure to two cancer datasets

with censored survival outcomes and thousands of molecular fea-

tures: breast cancer and myelodysplastic syndromes (MDS). Our re-

sults show that the proposed method can generate powerful

prognostic models for predicting cancer survival and can detect sur-

vival associated genes.

2 Materials and methods

2.1 Cox proportional hazards models
For censored survival outcomes, we observe a pair of response vari-

ables yi¼ (ti, di) for each individual, where the censoring indicator di

takes 1 if the observed survival time ti for individual i is uncensored

and 0 if it is censored. Denote the true survival time by Ti for

individual i. Thus, when di ¼1, Ti ¼ ti, whereas when di ¼0, Ti > ti.

Cox proportional hazards model is the most widely used method for

studying the relationship between the censored survival response

and some explanatory variables X, and assumes that the hazard

function of survival time T takes the form (Ibrahim et al. 2001;

Klein and Moeschberger 2003):

h tjXð Þ ¼ h0 tð Þ exp Xbð Þ: (1)

where the baseline hazard function h0 tð Þ is unspecified, X and b are

the vectors of explanatory variables and coefficients, respectively,

and Xb is the linear predictor or called the prognostic index.

Fitting classical Cox models is to estimate b by maximizing the

partial log-likelihood (Cox 1972):

pl bð Þ ¼
Xn

i¼1

di log
exp Xibð ÞP

i02R tið Þ exp Xi0bð Þ

 !
; (2)

where R tið Þ is the risk set at time ti. In the presence of ties, the par-

tial log-likelihood can be approximated by the Breslow or the Efron

methods (Breslow 1972; Efron 1977). The standard algorithm for

maximizing the partial log-likelihood is the Newton–Raphson algo-

rithm (Klein and Moeschberger 2003; van Houwelinggen and Putter

2012).

The lasso uses the L1 penalty to the partial log-likelihood func-

tion and estimates the parameters b by maximizing the penalized

log-likelihood (Friedman et al. 2010; Hastie et al. 2015; Simon et al.

2011; Tibshirani 1997; Zou and Hastie 2005):

ppl bð Þ ¼ pl bð Þ � k
XJ

j¼1
jbjj: (3)

The overall penalty parameter k controls the overall strength of pen-

alty and the size of the all coefficients. The lasso Cox model can be

fit by the extremely fast cyclic coordinate descent algorithm(Simon,

et al., 2011).

Ideally, one should use small penalty values for important pre-

dictors and large penalties for irrelevant predictors. We here propose

a new approach, i.e., the spike-and-slab lasso, which can induce dif-

ferent shrinkage scales for different coefficients and allows us to esti-

mate the shrinkage scales from the data.

2.2 Spike-and-slab lasso Cox models
The spike-and-slab lasso Cox models are more easily interpreted

and handled from Bayesian hierarchical modeling framework

(Ro�ckov�a and George, unpublished manuscript; Ro�ckov�a and

George, 2016). It is well known that the lasso can be expressed as a

hierarchical model with double-exponential prior on coefficients

(Kyung, et al., 2010; Park and Casella, 2008; Tibshirani, 1996; Yi

and Xu, 2008):

bjjs � DE bjj0; s
� �

¼ 1

2s
exp �

jbjj
s

� �
; (4)

where the scale parameter s equals k�1. The scale s controls the

amount of shrinkage; smaller scale induces stronger shrinkage and

forces the estimates of bj towards 0.

We develop the spike-and-slab lasso Cox models by extending

the double-exponential prior to the following spike-and-slab mix-

ture double-exponential prior:

bjjcj; s0; s1 � 1� cj

� �
DE bjj0; s0

� �
þ cjDE bjj0; s1

� �
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or equivalently

bjjcj; s0; s1 � DE bjj0; Sj

� �
¼ 1

2Sj
exp �

jbjj
Sj

� �
: (5)

where cj is the indicator variable, cj ¼1 or 0, and the scale Sj equals

one of two preset positive values s0 and s1 (s1> s0 >0), i.e.

Sj ¼ ð1� cjÞs0 þ cjs1. The scale value s0 is chosen to be small and serves

a “spike scale” for modeling irrelevant (0) coefficients and inducing

strong shrinkage on estimation, and s1 is set to be relatively large and

thus serves as a “slab scale” for modeling large coefficients and inducing

no or weak shrinkage on estimation. If we set s0 ¼ s1, the spike-and-

slab double-exponential prior becomes the double-exponential prior.

Therefore, the spike-and-slab lasso includes the lasso as a special case.

The indicator variables cj play an essential role on linking the

scale parameters with the coefficients. For our development, we con-

fine attention to exchangeable priors on the indicator variables, that

is, the indicator variables are assumed to follow the independent bi-

nomial distribution:

cjjh � Bin cjj1; h
� �

¼ hcj 1� hð Þ1�cj ; (6)

where h is the probability parameter. However, the scope of the

spike-and-slab mixture priors is greatly enhanced by the flexibility

of the model space prior for the indicator variables cj, which can be

used to concentrate on preferred and meaningful models.

For the probability parameter h, we assume the uniform prior:

h �U(0, 1). The probability parameter h can be viewed as the overall

shrinkage parameter that equals the prior probability pðcj ¼ 1jhÞ. The

prior expectation of the scale Sj equals EðSjÞ ¼ 1� hð Þs0 þ hs1, which

lies in the range [s0, s1]. As will be seen, the scale Sj for each coefficient

can be estimated, leading to different shrinkage for different predictors.

2.3 Algorithm for fitting the spike-and-slab lasso

Cox models
We here develop a fast algorithm to fit the spike-and-slab lasso Cox

models by finding the posterior modes of the parameters, i.e. estimating

the parameters by maximizing the posterior density. Our algorithm,

called the EM coordinate descent algorithm, incorporates EM steps

into the cyclic coordinate descent procedure for fitting the penalized

lasso Cox regression. We derive the EM coordinate descent algorithm

based on the log joint posterior density of the parameters (b; c; h):

log p b; c; hjt; dð Þ ¼ log p t; djb; h0ð Þ þ
XJ

i¼1

log p bjjSj

� �
þ
XJ

j¼1

log p cjjh
� �

þ log p hð Þ

The log-likelihood function, log p t; djb;h0ð Þ, is proportional to the

partial log-likelihood pl bð Þ defined in Equation (1) or the Breslow or

the Efron approximation in the presence of ties (Breslow 1972;

Efron 1977), if the baseline hazard function h0 is replaced by the

Breslow estimator (Breslow 1974; van Houwelinggen and Putter

2012). Therefore, the log joint posterior density can be expressed as

log p b; c; hjt;dð Þ / pl bð Þ �
XJ

j¼1

1

Sj
jbjj

þ
XJ

j¼1

cj log hþ 1� cj

� �
log 1� hð Þ

� �
; (7)

where pl bð Þ is the partial likelihood described in (2), and

Sj ¼ ð1� cjÞs0 þ cjs1.

The EM coordinate decent algorithm treats the indicator vari-

ables cj as ‘missing values’ and estimates the parameters (b; h) by

averaging the missing values over their posterior distributions. For

the E-step, we calculate the expectation of the log joint posterior

density with respect to the conditional posterior distributions of the

missing data cj. The conditional posterior expectation of the indica-

tor variable cj can be derived as

pj ¼ p cj ¼ 1jbj; h; t;d
� �

¼
p bjjcj ¼ 1; s1

� �
p cj ¼ 1jh
� �

p bjjcj ¼ 0; s0

� �
p cj ¼ 0jh
� �

þ p bjjcj ¼ 1; s1

� �
p cj ¼ 1jh
� � ;

(8)

where pðbjjcj ¼ 1; s1Þ ¼ DEðbjj0; s1Þ, pðbjjcj ¼ 0; s0Þ ¼ DEðbjj0; s0Þ
pðcj ¼ 1jhÞ ¼ h and pðcj ¼ 0jhÞ ¼ 1� h. Therefore, the conditional

posterior expectation of S�1
j can be obtained by

E S�1
j jbj

� �
¼ E

1

1� cj

� �
s0 þ cjs1

jbj

0@ 1A ¼ 1� pj

s0
þ pj

s1
: (9)

It can be seen that the estimates of pj and Sj are larger for larger coef-

ficients bj, leading to different shrinkage for different coefficients.

For the M-step, we update (b; h) by maximizing the posterior

expectation of the log joint posterior density with cj and S�1
j

replaced by their conditional posterior expectations. From the log

joint posterior density, we can see that b and h can be updated

separately, because the coefficients b are only involved in pl bð Þ
�
PJ

j¼1 S�1
j jbjj and the probability parameter h is only inPJ

j¼1ðcj log hþ ð1� cjÞ log 1� hð ÞÞ. Therefore, the coefficients b are

updated by maximizing the expression:

Q1 bð Þ ¼ pl bð Þ �
XJ

j¼1

S�1
j jbjj; (10)

where S�1
j is replaced by its conditional posterior expectation

derived above. Given the scale parameters Sj, the term
PJ

j¼1 S�1
j jbjj

serves as the L1 lasso penalty with S�1
j as the penalty factors, and

thus the coefficients can be updated by maximizing Q1 bð Þ using the

cyclic coordinate decent algorithm. Thus, the coefficients can be

estimated to be 0. The probability parameter h is updated by maxi-

mizing the expression:

Q2 hð Þ ¼
XJ

j¼1

cj log hþ 1� cj

� �
log 1� hð Þ

� �
(11)

We can easily obtain: h ¼ 1
J

PJ
j¼1 pj.

In summary, the EM coordinate decent algorithm for fitting the

spike-and-slab lasso Cox models proceeds as follows:

1. Choose a starting value, b0 and h0. For example, we can initial-

ize b0 ¼ 0 and h0 ¼ 0.5.

2. For t ¼ 1, 2, 3, . . .,

E-step: Update cj and S�1
j by their conditional posterior

expectations.

M-step:

a. Update b using the cyclic coordinate decent algorithm;

b. Update h.

We assess convergence by the criterion: jd tð Þ � d t�1ð Þj=
0:1� jd tð Þj
� �

< e, where d tð Þ ¼plðb tð ÞÞ is the estimate of deviance at

the tth iteration, and e is a small value (say 10�5).
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2.4 Selecting optimal scale values
The performance of the spike-and-slab lasso Cox model approach

can depend on the scale parameters (s0, s1). We can usually analyze

data with reasonably preset scale values, for example, setting the

slab scale s1 to a value (say s1¼0.5) that induces weak shrinkage

and the spike scale s0 to a small value (say s0¼0.04) that induces

strong shrinkage. Rather than restricting attention to a single model,

however, our fast algorithm allows us to quickly fit a sequence of

models, from which we can choose an optimal one based on some

criteria. Our strategy is to fix the slab scale s1¼0.5, and consider a

sequence of L decreasing values {sl
0}: s1 > s1

0 > s2
0 > � � � > sL

0 > 0,

for the spike scale s0. We then fit L models with scales

{ sl
0; s1

� �
; l ¼ 1; . . . ;L}. Increasing the spike scale s0 tends to include

more non-zero coefficients in the model. This procedure is similar to

the lasso implemented in the widely-used R package glmnet, which

quickly fits the lasso Cox models over a grid of values of k covering

its entire range, giving a sequence of models for users to choose

from (Hastie et al. 2015; Simon et al. 2011).

There are several ways to measure the performance of a fitted

Cox model, including the partial log-likelihood (PL), the concord-

ance index (C-index), the survival curves and the survival prediction

error (van Houwelinggen and Putter 2012). The partial log-

likelihood function measures the overall quality of a fitted Cox

model, and thus is usually used to choose an optimal model (Simon

et al. 2011; van Houwelinggen and Putter 2012; van Houwelingen

et al. 2006). To evaluate the predictive performance of a Cox model,

a general way is to fit the model using a dataset and then calculate

the above measures with independent data. We use the pre-

validation method, a variant of cross-validation (Hastie et al. 2015;

Tibshirani and Efron 2002). We randomly split the data to K subsets

of roughly the same size, and use (K�1) subsets to fit a model.

Denote the estimate of coefficients from the data excluding the kth

subset by bb �kð Þ
. We calculate the prognostic indices bg kð Þ ¼ X kð Þbb �kð Þ

for all individuals in the kth subset of the data, called the cross-

validated or pre-validated prognostic index. Cycling through K

parts, we obtain the cross-validated prognostic indices bg i for all indi-

viduals. We then use (ti; di;bg i) to compute the measures described

above. The cross-validated prognostic score for each patient is

derived independently of the observed response of the patient, and

hence the ‘pre-validated’ dataset {ti; di;bg i} can essentially be treated

as a ‘new dataset’. Therefore, this procedure provides valid assess-

ment of the predictive performance of the model (Hastie et al. 2015;

Tibshirani and Efron 2002).

We also use an alternative way to evaluate the partial log-

likelihood, i.e., the so-called cross-validated partial likelihood

(CVPL), defined as (Simon et al. 2011; van Houwelinggen and

Putter 2012; van Houwelingen et al. 2006)

CVPL ¼
XK

k¼1

pl bb �kð Þ

� �
� pl �kð Þ bb �kð Þ

� �h i
; (12)

where bb �kð Þ is the estimate of b from all the data except the kth

part, plðbb �kð ÞÞ is the partial likelihood of all the data points and

pl �kð Þðbb �kð ÞÞ is the partial likelihood excluding part k of the data. By

subtracting the log-partial likelihood evaluated on the non-left out

data from that evaluated on the full data, we can make efficient use

of the death times of the left out data in relation to the death times

of all the data.

2.5 Implementation
We have created an R function bmlasso() for setting up and fitting

the spike-and-slab lasso Cox, and several other R functions (e.g.

summary.bh, plot.bh, predict.bh, cv.bh) for summarizing the fitted

models and for evaluating the predictive performance. We have

incorporated these functions into the freely available R package

BhGLM (http://www.ssg.uab.edu/bhglm/).

3 Simulation study

3.1 Simulation design
We used simulations to validate the proposed spike-and-slab lasso

approach, and to compare with the lasso in the R package glmnet.

In each situation, we simulated two datasets, and used the first one

as the training data to fit the models and the second one as the test

data to evaluate the predictive values. For each simulation setting,

we replicated the simulation 50 times and summarized the results

over these replicates. We reported the results on the predictive val-

ues including partial log-likelihood and C-index in the test data, the

accuracy of parameter estimates and the proportions of coefficients

included in the model.

For each dataset, we generated n (¼500) observations, each with

a survival response, consisting of an observed censored survival

time ti and a censoring indicator di, and a vector of m (¼200, 1000)

continuous predictorsXi ¼ xi1; . . . ; ximð Þ. The vector Xi, was

generated with 50 elements at a time, i.e. the sub-vector

xi 50kþ1ð Þ; . . . ;xi 50kþ50ð Þ
� �

, k ¼ 0; 1; . . ., was randomly sampled from

multivariate normal distribution N50 0;Rð Þ, where
P
¼ ðrjj0 Þ with

rjj ¼ 1 and rjj0 ¼ 0:6 ðj 6¼ j0Þ. Thus, the predictors within a group

were correlated and between groups were independent. We gener-

ated “true” survival time Ti for each individual from the exponential

distribution: Ti � exp ð
Pm

j¼1 xijbjÞ, where the coefficients bj were

preset as described below. We then generated censoring time Ci for

each individual from the exponential distribution: Ci � exp rið Þ,
where ri were randomly sampled from a standard normal distribu-

tion. The observed censored survival time ti was set to be the min-

imum of the “true” survival and censoring times, ti ¼ minðTi;CiÞ,
and the censoring indicator di was set to be 1 if Ci>Ti and 0

otherwise.

We set five coefficients b5, b20, b40, bm–50 and bm–5 to be non-zero,

two of which were negative, and all others to be 0. Table 1 shows the

preset non-zero coefficient values for six simulation scenarios.

We analyzed each simulated dataset using the lasso Cox model

implemented in the R package glmnet and the proposed spike-and-

slab lasso Cox model. For the lasso Cox approach, we used 10-fold

cross-validation to select an optimal value of k, which determines an

optimal lasso Cox model, and reported the results based on the

optimal lasso Cox model. For the spike-and-slab lasso Cox ap-

proach, we mainly considered a slab scale s1 ¼0.5, and six spike

scales: s0 ¼ sk þ 0.02, sk þ 0.01, sk, sk � 0.01, sk � 0.02, sk � 0.03,

where sk is the scale of the double-exponential prior corresponding

to the optimal lasso Cox model, i.e. sk¼1/k as described

in Equation (4). To investigate the impact of the scales (s0, s1) on

Table 1. The simulated effect sizes of five coefficients under differ-

ent scenarios (n¼ 500)

b5 b20 b40 bm-50 bm-5

Scenario 1 m ¼ 200 0.214 0.261 0.262 �0.296 �0.422

Scenario 2 m ¼ 200 0.359 0.451 �0.445 �0.518 0.725

Scenario 3 m ¼ 200 �0.522 �0.635 0.630 0.744 1.017

Scenario 4 m ¼ 1000 �0.209 �0.257 0.258 0.298 0.422

Scenario 5 m ¼ 1000 0.366 0.450 0.446 �0.518 �0.725

Scenario 6 m ¼ 1000 0.514 �0.625 0.631 0.722 �1.037
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the results, we fit the simulated datasets under scenarios 3 and 6

with 81 combinations when s0 changed from 0.01 to 0.09 and s1

from 0.1 to 0.9.

3.2 Simulation results
3.2.1 Predictive performance

Supplementary Table S1 shows the partial log-likelihood and

C-index in the test data from the lasso and the spike-and-slab lasso

under different s0 values. Table 2 shows the selected optimal model

under different simulated scenarios. From these results, we can

see that the spike-and-slab lasso Cox with an appropriate value of

s0 performed better than the lasso. Table 2 also shows that the

spike-and-slab lasso had slightly higher C-index value than the

lasso. Thus, the spike-and-slab lasso approach can generate better

discrimination.

From Table 2 and Supplementary Table S1, we found that the

best models depended on the spike scale s0. Supplementary Figure

S1 shows the profiles of the partial log-likelihood function on a grid

of values of (s0, s1) for scenarios 3 and 6. It can be seen that the slab

scale s1 within the range [0.1, 0.9] had little influence on the partial

log-likelihood function, while the spike scale s0 strongly affected the

model performance. These results show that our approach with a

fixed slab scale s1 is reasonable.

3.2.2 Solution path and adaptive property for the

spike-and-slab lasso

The performance of the proposed method strongly depended on the

spike scale s0. To fully investigate the impact of the spike scale s0 on

the results, Figure 1A and B presents the solution paths under scen-

ario 3 by the proposed model with s1¼0.5 and the lasso model, re-

spectively. Figure 1C and D shows the profiles of CVPL by 10-fold

cross-validation for the proposed model and the lasso model, re-

spectively. Similar to the lasso, the spike-and-slab lasso Cox is a

path-following strategy for fast dynamic posterior exploration.

However, the solution path is essentially different from that of the

lasso model. For the lasso solution as shown in Figure 1B, the num-

ber of non-zero coefficient could be a few, even zero if a strong pen-

alty is adopted. However, in the spike-and-slab lasso, larger

coefficients will be always included in the model with none or weak

shrinkage, while irrelevant coefficients are removed. Supplementary

Figure S2 shows the solution paths of the proposed model with

s1¼0.5 and the lasso model under scenario 6.

To show the adaptive property of the proposed method, we per-

formed additional simulation study with (n, m) ¼ (500, 1000) and

(s0, s1) ¼ (0.05, 0.5). Supplementary Figure S3 shows the adaptive

shrinkage amount, along with the different effect size. It clearly

shows that the proposed spike-and-slab lasso Cox model approach

has self-adaptive and flexible characteristics.

3.2.3 Accuracy of parameter estimates

Figure 2 and Supplementary Figures S4 and S5 show the estimates of

coefficients from the spike-and-slab lasso Cox model and the lasso

Table 2. The partial log-likelihood and C-index values over 50 simulated replicates under different simulated scenarios

Simulated scenarios Methods Partial log-likelihood C-index

Scenario 1 lasso: sk ¼ 0.045a �1200.49(62.769) 0.680(0.022)

sslasso: s0 ¼ sk �1201.039(63.520) 0.679(0.022)

Scenario 2 lasso: sk ¼ 0.052a �1204.975(49.157) 0.735(0.019)

sslasso: s0 ¼ sk � 0.02 �1198.005(49.900) 0.740(0.020)

Scenario 3 lasso: sk ¼ 0.057a �1150.189(60.427) 0.795(0.016)

sslasso: s0 ¼ sk � 0.03 �1141.872(61.211) 0.800(0.016)

Scenario 4 lasso: sk ¼ 0.029a �1195.046(52.336) 0.624(0.025)

sslasso: s0 ¼ skþ0.01 �1192.936(51.836) 0.625(0.028)

Scenario 5 lasso: sk ¼ 0.034a �1153.503(53.632) 0.785(0.015)

sslasso: s0 ¼ sk � 0.02 �1140.097(54.464) 0.790(0.015)

Scenario 6 lasso: sk ¼ 0.042a �1159.421(55.534) 0.792(0.018)

sslasso: s0 ¼ sk � 0.02 �1143.262(57.398) 0.801(0.018)

Note: Scenario 1, 2 and 3: n¼500, m¼ 200; Scenario 4, 5 and 6: n¼ 500, m¼ 1000. The slab scales, s1, are 0.5 in all scenarios. The optimal models for differ-

ent scenarios are summarized here. More results can be found in Supplementary Table S1
ask denotes the average value of penalty parameters sk (sk¼ 1/k) of 50 repeated samples, where k is the optimal value of the penalty parameter for the lasso.

‘sslasso’ represents the spike-and-slab lasso Cox model

Fig. 1. The solution paths and partial log-likelihood profiles of the proposed

spike-and-slab lasso Cox model and the lasso Cox model under scenario 3

with n¼500 and m¼200. (A, C) Present the solution path and the CVPL pro-

file for proposed spike-and-slab lasso Cox model, respectively. (B, D) Present

the solution path and the CVPL profile for the lasso model, respectively. The

points and circles on the solution paths represent the estimated values of five

simulated non-zero coefficients over 50 replicates and the true non-zero coef-

ficients. The vertical lines correspond to the optimal models with the largest

CVPL
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Cox model over 50 replicates of training data. It can be seen that the

spike-and-slab lasso provided more accurate estimation in most situ-

ations, especially for larger coefficients. In contrast, the lasso can

over-shrink large coefficients, due to employing a single penalty on

all the coefficients.

We also summarized the mean absolute errors (MAE) of coeffi-

cient estimates, defined as
P
jbbj � bjj=m, in Table 3. A smaller

MAE suggests more accurate parameter estimation. It can be seen

that the proposed models gave smaller MAE in all scenarios.

3.2.4 Proportions of coefficients included in the model

We calculated the proportions for the simulated non-zero coefficients

included in the model over the simulation replicates. Like the lasso ap-

proach, the proposed spike-and-slab lasso can estimate coefficients to

be 0, and thus can easily return these proportions. Figure 3 and

Supplementary Figure S6 show the inclusion proportions of the non-

zero coefficients and the zero coefficients for the spike-and-slab lasso

and the lasso Cox models. It can be seen that in most situations the in-

clusion proportions of the non-zero coefficients were similar for the

two approaches. However, the lasso included zero coefficients in the

model more frequently than the spike-and-slab lasso. This indicates

that the spike-and-slab lasso approach can reduce noisy signals.

We summarized the average numbers of non-zero coefficients in

Table 3. In most simulated scenarios, except for scenario 4, the aver-

age numbers of non-zero coefficients in the spike-and-slab lasso Cox

models were much lower than those in the lasso Cox models. We

also found that the average numbers of non-zero coefficients de-

tected by the proposed models were close to the number of the simu-

lated non-zero coefficients in most scenarios. However, the lasso

always included many zero coefficients in the model.

4 Application to real data

4.1 Dutch breast cancer data
We applied our spike-and-slab lasso Cox model to analyze the well-

known Dutch breast cancer data set. This dataset contains the

microarray mRNA expression measurements of 4919 genes and the

time of metastasis after adjuvant systemic therapy (a censored sur-

vival outcome) from 295 women with breast cancer (van de Vijver,

et al. 2002; van’t Veer et al. 2002). The 4919 genes were selected

from 24,885 genes, for which reliable expression is available (van’t

Veer et al. 2002). Among 295 tumors, 88 had distant metastases.

Our analysis was to build a survival model for predicting the metas-

tasis time using the 4919 gene-expression predictors. Prior to fitting

the models, we standardized all the predictors.

We fixed the slab scale s1 to 0.5, and varied the spike scale s0 over

the grid of values: 0.005þk�0.005; k¼0, 1,. . ., 17, leading to 18

models. For each model, we performed 10-fold cross-validation with

10 replicates to select an optimal model based on the cross-validated

partial log-likelihood (CVPL). Supplementary Figure S7 shows the

profiles of CVPL. The largest value of CVPL appeared to be

Fig. 2. The parameter estimation averaged over 50 replicates for the spike-

and-slab lasso Cox model and the lasso Cox model. The numbers of simu-

lated predictors are m¼200 for scenario 3 and m¼ 1000 for scenario 6. The

cycles are the assumed true values. The black points and lines represent the

estimated values and the interval estimates of coefficients over 50 replicates

Table 3. Average number of non-zero coefficients and mean absolute error (MAE) of coefficient estimates over 50 simulations for the best

spike-and-slab lasso Cox model and the best lasso model

sslasso (s1 ¼ 0.5) lasso

Average number MAE Average number MAE

Scenario 1, s0 ¼ sk 18.68 1.285(0.402) 20.10 1.348(0.378)

Scenario 2, s0 ¼ sk � 0.02 7.82 0.605(0.319) 20.52 1.531(0.308)

Scenario 3, s0 ¼ sk � 0.03 6.92 0.458(0.253) 23.58 1.618(0.340)

Scenario 4, s0 ¼ sk þ 0.01 35.08 1.708(0.432) 16.34 1.374(0.257)

Scenario 5, s0 ¼ sk � 0.02 5.42 0.422(0.252) 24.68 1.480(0.284)

Scenario 6, s0 ¼ sk � 0.02 8.22 0.457(0.316) 37.36 2.183(0.404)

Fig. 3. The inclusion proportions of the non-zero and zero coefficients in the

model over the simulation replicates under scenarios 3 and 6. The points and

cycles nearby the right part of the figure represent the proportions of non-

zero coefficients for the spike-and-slab lasso Cox model and the lasso Cox

model, respectively. The points and grey cycles nearby left axis represent the

proportions of zero coefficients for the spike-and-slab lasso Cox model and

the lasso Cox model, respectively
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�541.237, when the spike scale s0 was 0.05. Therefore, the spike-

and-slab lasso Cox model with the scale (0.05, 0.5) was chosen for

the prediction. This proposed model detected 42 genes, and the effect

sizes for most genes were small (Supplementary Fig. S8).

We performed 10-fold cross-validation with 10 replicates to

evaluate the predictive values of the chosen model. The cross-

validated C-index was estimated to be 0.670, which was signifi-

cantly larger than 0.5, showing the discriminative ability of the final

prognostic model. We estimated the cross-validated prognostic

index, gi ¼ Xi
bb, for each patient, and then grouped the patients on

the basis of the prognostic index into two groups of equal size by

50th percentile. The Kaplan–Meier survival curve in each subgroup

was calculated to assess the predictive usefulness of the proposed

model. Figure 4 shows the Kaplan–Meier survival curves for the

chosen model fitted using the entire data (left panel) and the cross-

validation (right panel). The Log-rank tests were performed to com-

pare the survival estimates between two groups. As expected, the

separation of the curves from cross-validation was not as strong as

that of the model fitted using the entire data. However, it was still

significant, indicating that the proposed model was very informative

on prediction.

Measuring survival prediction error is an alternative important

way to evaluate the predictive performance of a survival model.

Supplementary Figure S9 presents the prediction error curves for the

fitted model, the cross-validated model and the null model (i.e. with

no predictors). As expected, the proposed model had much lower

prediction error than the cross-validated model and the null model.

It also can be seen that the cross-validated model had lower predic-

tion error than the null model. Thus, the detected genes provided

valuable predictive information.

4.2 MDS data
The second dataset that we analyzed was a recently published data

on MDS (Gerstung et al. 2015). Clinical data are available for 142

MDS patients, where 24 of them had 0 survival time and were

excluded from the analysis. The outcome of interest is acute myeloid

leukaemia (AML)-free survival. Among the 118 samples, the num-

ber of dead patients was 40. For gene expression (from CD34þ
bone marrow cells), 124 samples have 21,762 features profiled.

Even though we can analyze all the 21,762 features, considering

that the number of genes related to AML free survival is not ex-

pected to be too large, we filtered the expression data using variance

with cutoff 0.9 and selected 2177 gene expression for predictive

modeling.

Gerstung et al. (2015) built a prognostic model for predicting

AML-free survival using the first 20 principle components of all

21,762 gene expressions, and obtained an impressive prediction

with C-index¼0.76. However, their model failed to identify im-

portant genes. Our analysis had advantages of not only providing

prediction but also detecting associated genes.

Similar to the above analysis of the breast cancer dataset, we

fixed the slab scale s1 to 0.5 and considered the spike scale s0 over

the grid of values: 0.005þk�0.005; k¼0, 1,. . ., 17, and performed

10-fold cross-validation with 10 replicates to select an optimal

model based on the CVPL. From Supplementary Figure S10, we can

see that s0¼0.075 resulted in the largest CVPL. Therefore, the scale

(0.075, 0.5) was chosen for our spike-and-slab lasso Cox model.

This model detected 19 genes, and the effect sizes for most genes

were small (Supplementary Fig. S11).

The cross-validated C-index was estimated to be 0.695, which is

close that of Gerstung et al. (2015). However, our prognostic model

only included 19 genes, and thus was much more easily interpreted

and clinically useful. We further estimated the Kaplan–Meier sur-

vival curves for two groups of equal size by 50th percentile of the

cross-validated prognostic index values. Figure 5 shows that the

Kaplan–Meier survival curves for the two groups were signifi-

cantly different. We also estimated the prediction error curves for

the fitted model, the cross-validated model and the null model.

Supplementary Figure S12 shows that the fitted model and the

cross-validated model had lower prediction error than the null

model. Thus, the detected genes provided valuable predictive

information.

We also used the lasso Cox model to analyze these two datasets

and compared the results of the lasso Cox model with the above re-

sults. The measures of predictive performance by the two methods

were close, which may result from the small effect sizes of the de-

tected genes. However, the lasso models included 46 and 31 genes

for Dutch breast cancer and MDS datasets, respectively, while the

proposed models included 42 and 19 genes for the two data, respect-

ively, to achieve similar prediction accuracy. Most of the detected

genes by the two approaches were overlapped. Although having not

greatly improved the prediction, the proposed method generated

simpler and more clinically useful prognostic models.

5 Discussion

We have developed a new hierarchical model approach, i.e. the

spike-and-slab lasso Cox models, for detecting important variables

and predicting survival outcomes (e.g. the time until an event such

as tumor recurrence or death). Although focusing on molecular

profiling data, the proposed approach also can be used for analyzing

general large-scale survival data.

Fig. 4. The Kaplan–Meier survival curves of the fitted spike-and-slab lasso

Cox model (left panel) and the cross-validated model (right panel) for Dutch

breast cancer data set. The Log-rank tests are performed to compare the two

curves and obtain P values

Fig. 5. The Kaplan–Meier survival curves of the fitted spike-and-slab lasso

Cox model (left panel) and the cross-validated models (right panel) for MDS

dataset. The Log-rank tests are performed to compare the two survival curves

and obtain P values
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The key to our spike-and-slab lasso Cox models is proposing the

new prior distribution, i.e. the spike-and-slab double-exponential

prior, on the coefficients. The spike-and-slab double-exponential

priors can induce different amounts of shrinkage for different pre-

dictors depending on their effect sizes, thus reducing the noises of ir-

relevant predictors and improving the accuracy of coefficient

estimates and prognostic predictions. The spike-and-slab lasso Cox

models can be effectively fitted by the proposed EM coordinate des-

cent algorithm, which incorporates EM steps into the cyclic coordin-

ate descent algorithm. The E-steps involve calculating the posterior

expectations of the indicator variable cj and the scale Sj for each co-

efficient, and the M-steps employ the existing fast algorithm, i.e. the

cyclic coordinate descent algorithm (Friedman et al. 2010; Hastie

et al. 2015; Simon et al. 2011), to update the coefficients. As

observed in our extensive data analyses, the EM coordinate descent

algorithm converges rapidly, and is capable of identifying important

predictors and building promising predictive models from numerous

candidates. In our real data analysis, it took 0.014 and 0.004 min

for Dutch breast cancer dataset and MDS dataset, respectively. The

10-fold cross-validation procedure took a little longer, but still less

than one minute for both the two datasets.

The spike-and-slab lasso bridges two popular methods for high-

dimensional data analysis, i.e. Bayesian variable selection (Chipman

1996; Chipman et al. 2001; George and McCulloch 1993, 1997;

Ro�ckov�a and George 2014) and the penalized lasso (Hastie et al.

2015; Tibshirani 1996, 1997), into one unifying framework, and

thus remains the nice features of these two methods while diminish-

ing their shortcomings (Ro�ckov�a and George, 2016 unpublished

manuscript). Similar to the penalized lasso, the spike-and-slab lasso

can shrink irrelevant coefficients exactly to 0, thus automatically

achieving variable selection and yielding easily interpretable results.

More importantly, due to using the spike-and-slab mixture prior,

the shrinkage scale for each predictor can be estimated from the

data, yielding weak shrinkage on important predictors but strong

shrinkage on irrelevant predictors and thus diminishing the well-

known estimation bias of the lasso.

The spike-and-slab lasso Cox models include two scale values

(s0, s1) which should be preset. A comprehensive approach is to per-

form a two-dimensional search on all plausible combinations of (s0,

s1), and then to select an optimal model based on cross-validation.

However, this approach can be time-consuming and inconvenient to

use. Usually, the slab scale s1 has little influence on the fitted model,

while the spike scale s0 can strongly affect the model performance.

Similar to the approach of Ro�ckov�a and George (2014, 2016),

therefore, our strategy is to fix the slab scale s1 to be relatively large,

and select an optimal spike scale s0 from a reasonable range, e.g. (0,

0.1), in real data analysis. One also can use the lasso model to guide

the selection of s0. We found that the optimal value of s0 is usually

close to sk (¼1/k) obtained from the lasso. These findings can largely

simplify our selection of the optimal spike scale.

The proposed spike-and-slab lasso approach may be easily ex-

tended to frameworks beyond normal linear regression and Cox sur-

vival models. We have already extended the spike-and-slab lasso to

generalized linear models (Tang et al. 2017). With the spike-and-

slab double-exponential prior, the conditional posterior expect-

ations of missing values (i.e. the indicator variable cj and the scale

Sj) depend only on the coefficients b, and thus the E-step developed

can be applied to other models. Another important avenue for future

research will be incorporating external information about the im-

portance of predictors and the relationship between predictors into

the proposed spike-and-slab lasso framework. The spike-and-slab

mixture priors provide flexible and easy ways to incorporate

structural information about the predictors into predictive model-

ing. These extensions would be essential for effectively integrating

important biological information, and multi-level molecular profil-

ing data.
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