Table 2.
Simulated scenarios | Methods | Partial log-likelihood | C-index |
---|---|---|---|
Scenario 1 | lasso: sλ = 0.045a | −1200.49(62.769) | 0.680(0.022) |
sslasso: s0 = sλ | −1201.039(63.520) | 0.679(0.022) | |
Scenario 2 | lasso: sλ = 0.052a | −1204.975(49.157) | 0.735(0.019) |
sslasso: s0 = sλ − 0.02 | −1198.005(49.900) | 0.740(0.020) | |
Scenario 3 | lasso: sλ = 0.057a | −1150.189(60.427) | 0.795(0.016) |
sslasso: s0 = sλ − 0.03 | −1141.872(61.211) | 0.800(0.016) | |
Scenario 4 | lasso: sλ = 0.029a | −1195.046(52.336) | 0.624(0.025) |
sslasso: s0 = sλ+0.01 | −1192.936(51.836) | 0.625(0.028) | |
Scenario 5 | lasso: sλ = 0.034a | −1153.503(53.632) | 0.785(0.015) |
sslasso: s0 = sλ − 0.02 | −1140.097(54.464) | 0.790(0.015) | |
Scenario 6 | lasso: sλ = 0.042a | −1159.421(55.534) | 0.792(0.018) |
sslasso: s0 = sλ − 0.02 | −1143.262(57.398) | 0.801(0.018) |
Note: Scenario 1, 2 and 3: n = 500, m = 200; Scenario 4, 5 and 6: n = 500, m = 1000. The slab scales, s1, are 0.5 in all scenarios. The optimal models for different scenarios are summarized here. More results can be found in Supplementary Table S1
sλ denotes the average value of penalty parameters sλ (sλ = 1/λ) of 50 repeated samples, where λ is the optimal value of the penalty parameter for the lasso. ‘sslasso’ represents the spike-and-slab lasso Cox model