Skip to main content
. 2017 May 4;33(18):2799–2807. doi: 10.1093/bioinformatics/btx300

Table 2.

The partial log-likelihood and C-index values over 50 simulated replicates under different simulated scenarios

Simulated scenarios Methods Partial log-likelihood C-index
Scenario 1 lasso: sλ = 0.045a −1200.49(62.769) 0.680(0.022)
sslasso: s0 = sλ −1201.039(63.520) 0.679(0.022)
Scenario 2 lasso: sλ = 0.052a −1204.975(49.157) 0.735(0.019)
sslasso: s0 = sλ − 0.02 −1198.005(49.900) 0.740(0.020)
Scenario 3 lasso: sλ = 0.057a −1150.189(60.427) 0.795(0.016)
sslasso: s0 = sλ − 0.03 −1141.872(61.211) 0.800(0.016)
Scenario 4 lasso: sλ = 0.029a −1195.046(52.336) 0.624(0.025)
sslasso: s0 = sλ+0.01 −1192.936(51.836) 0.625(0.028)
Scenario 5 lasso: sλ = 0.034a −1153.503(53.632) 0.785(0.015)
sslasso: s0 = sλ − 0.02 −1140.097(54.464) 0.790(0.015)
Scenario 6 lasso: sλ = 0.042a −1159.421(55.534) 0.792(0.018)
sslasso: s0 = sλ − 0.02 −1143.262(57.398) 0.801(0.018)
*

Note: Scenario 1, 2 and 3: n = 500, m = 200; Scenario 4, 5 and 6: n = 500, m = 1000. The slab scales, s1, are 0.5 in all scenarios. The optimal models for different scenarios are summarized here. More results can be found in Supplementary Table S1

a

sλ denotes the average value of penalty parameters sλ (sλ = 1/λ) of 50 repeated samples, where λ is the optimal value of the penalty parameter for the lasso. ‘sslasso’ represents the spike-and-slab lasso Cox model