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Abstract

Motivation: 5-Methylcytosine and 5-Hydroxymethylcytosine in DNA are major epigenetic modifica-

tions known to significantly alter mammalian gene expression. High-throughput assays to detect

these modifications are expensive, labor-intensive, unfeasible in some contexts and leave a portion

of the genome unqueried. Hence, we devised a novel, supervised, integrative learning framework

to perform whole-genome methylation and hydroxymethylation predictions in CpG dinucleotides.

Our framework can also perform imputation of missing or low quality data in existing sequencing

datasets. Additionally, we developed infrastructure to perform in silico, high-throughput hypothe-

ses testing on such predicted methylation or hydroxymethylation maps.

Results: We test our approach on H1 human embryonic stem cells and H1-derived neural progeni-

tor cells. Our predictive model is comparable in accuracy to other state-of-the-art DNA methylation

prediction algorithms. We are the first to predict hydroxymethylation in silico with high whole-

genome accuracy, paving the way for large-scale reconstruction of hydroxymethylation maps in

mammalian model systems. We designed a novel, beam-search driven feature selection algorithm

to identify the most discriminative predictor variables, and developed a platform for performing in-

tegrative analysis and reconstruction of the epigenome. Our toolkit DIRECTION provides predic-

tions at single nucleotide resolution and identifies relevant features based on resource availability.

This offers enhanced biological interpretability of results potentially leading to a better understand-

ing of epigenetic gene regulation.

Availability and implementation: http://www.pradiptaray.com/direction, under CC-by-SA license.

Contacts: pradiptaray@gmail.com or mchen@utdallas.edu or michael.zhang@utdallas.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Transcriptional regulation is a complex, dynamic process established by

regulatory pathways encompassing a variety of genetic and epigenetic

mechanisms. 5-Methylcytosine (5-mC) and 5-Hydroxymethylcytosine

(5-hmC) are major modifications to the cytosine base in the DNA,

known to be correlated with gene expression (Hackett et al., 2013,

Jones, 2012). The addition of a methyl group to cytosine creates the epi-

genetic modification 5-mC:- the most prevalent form of DNA methyla-

tion in mammals. 5-hmC is an oxidative derivative of 5-mC generated

in a Ten-Eleven Translocation (TET) oxidase family mediated reaction

(Yu et al., 2012). The role of 5-mC in transcriptional regulation is well

understood, while the function of 5-hmC remains under investigation.

5-hmC is the intermediate step leading to demethylation of the cytosine

(Hackett et al., 2013), known to closely associate with enhancers

(Yu et al., 2012), exon-intron boundaries (Khare et al., 2012), elevated

C-to-G transversion rates (Supek et al., 2014), labile nucleosomes and

CTCF binding (Teif et al., 2014). Previous studies in mammalian sys-

tems have shown 5-hmC abundance across tissues to vary significantly,

with neural tissue being 5-hmC enriched (Kim et al., 2014), and certain

cancer tissues being 5-hmC depleted (Yang et al., 2013), suggesting a

functional role of 5-hmC. The most accurate and comprehensive tech-

nique (Qu et al., 2013) for genome-wide methylation quantification is

whole-genome sodium bisulfite treatment of DNA (Frommer et al.,

1992) causing methylated cytosines to remain intact whilst unmethy-

lated cytosines are deaminated to uracils (C-to-U conversion), followed

by Polymerase Chain Reaction (PCR) amplification and shotgun

sequencing. Whole-genome shotgun Bisulfite-sequencing (BS-seq) in-

volves all PCR fragments genome-wide, while the Reduced

Representation Bisulfite-sequencing (RRBS-seq) protocol leads to a

small fraction of the fragments being selected (Gu et al., 2011). BS-seq

experiments allow us to estimate a C-to-U conversion rate (CCR) or

methylation level for each cytosine in the genome- an estimator of the

degree of methylation. However, BS-seq does not differentiate between

5-mC and 5-hmC, hence the estimated methylation level is due to both

5-mC and 5-hmC. In order to quantify the degree of hydroxymethyla-

tion, alternate protocols like TET-Assisted BS-seq (TAB-seq) (Yu et al.,

2012) and Oxidative BS-seq (oxBS-seq) (Booth et al., 2012) were de-

veloped. In this paper, we refer to detectable modifications from BS-seq

experiments (yielding a summation of 5-mC and 5-hmC driven CCRs)

as methylation, and genome-wide characterization of methylation

as the methylome. We refer to detectable modifications from TAB-

seq (yielding solely 5-hmC driven CCRs or 5-hmC levels) as hydroxy-

methylation, and corresponding genome-wide maps as the

hydroxymethylome.

Importance of predicting methylation and hydroxymethylation:

Our prediction framework, which can perform whole genome meth-

ylome or hydroxymethylome reconstruction as well as imputation

of missing data in existing datasets, is important for several reasons.

Despite the availability of high-throughput assays for querying

DNA hydroxymethylation, there only exists a handful of publicly

available TAB-seq or oxBS-seq datasets, and performing whole-

genome BS-seq, oxBS-seq or TAB-seq requires significant expend-

iture and skilled labor. Sequencing (or hybridization) based assays

are also invasive and destructive procedures that may be unfeasible

in certain experimental setups. It is also impossible to set up high-

throughput assays for all cell or tissue types and every developmen-

tal stage, physiological condition or perturbation, necessitating in

silico prediction. In such situations, reconstruction of the whole epi-

genome predicated upon available data for correlated traits and a

predictive model trained on a similar cell type is a practical, econom-

ical and efficient way to query methylation or hydroxymethylation.

Additionally, DNA sequencing based protocols have amplification

and fragment selection steps, effectively creating a biased sampling

procedure that may cause a fraction of cytosines in the genome to be

unrepresented or underrepresented in the survey. This is especially

evident for protocols like RRBS-seq where only a small fraction of

cytosines have reliable coverage for querying methylation (Gu et al.,

2011). Our method can be used to predict such missing or low-

quality data in imputation mode. Finally, inherent stochasticity of

the sampling process makes it inevitable that some estimations of

methylation levels using high coverage sequencing data can be po-

tentially erroneous. However, in silico predictive models, trained

using high-quality data with multiple input predictor variables,

would be able to robustly predict DNA methylation.

We have devised a machine learning based integrative frame-

work for high-accuracy, single-nucleotide resolution predictions of

DNA methylation (either 5-mC or 5-hmC) and solely 5-hmC modi-

fications in mammalian model system genomes. Our publicly avail-

able tool DIRECTION (Discriminative IntegRative whole

Epigenome Classification at single nucleotide resoluTION) can be

trained on shotgun sequencing-based mammalian methylation and

hydroxymethylation datasets, by identifying and using available,

correlated, high-throughput assays and genomic sequence-based

traits as predictor variables. DIRECTION can be downloaded from

http://www.pradiptaray.com/direction

Context in literature: Over the past decade, high-throughput

assays and corresponding computational models have been actively

pursued to annotate and predict the epigenome (Ernst and Kellis,

2012, 2015), including several approaches for predicting methyla-

tion as either a binary or continuous variable in CpG dinucleotides.

Early models for DNA methylation prediction were based on

Support Vector Machines (SVMs) and decision trees, which em-

ployed sequence and structure derived information (Bhasin et al.,

2005, Bock et al., 2006, Das et al., 2006) to classify genes, CpG is-

lands (CGI) or DNA fragments into hypermethylated versus hypo-

methylated classes. However, sequence-based prediction of

methylation is limited in its ability to identify cell type, tissue, or

condition-specific methylation patterns across datasets as underlying

sequence features remain unchanged. Since such methylation pat-

terns are of specific interest to biologists, several studies analyzed

correlation between methylation and various assays profiling tran-

scription factor (TF) binding or chromatin landscape (Wrzodek

et al., 2012). Such knowledge has been leveraged to build explicit

predictive models of DNA methylation based on histone modifica-

tion, nucleosome positioning, chromatin accessibility and TF bind-

ing data, including several at single nucleotide or dinucleotide

resolution. (Whitaker et al., 2015) uses discriminative sequence

motifs for individual datasets to predict CpG methylation. (Ma

et al., 2014) uses support vector regression to predict methylation as

a continuous-valued response variable in CpG sites across tissues,

and (Zhang et al., 2015) use Random Forests (RFs) on genome, epi-

genome and ChIP-seq derived traits and neighboring CpG methyla-

tion levels for imputing methylation arrays. (Yan et al., 2015) used

RFs on sequence and epigenome-derived features training on BS-seq

data, while (Wang et al., 2016) use SVMs and deep neural nets on

topological domains and other features by training on RRBS-seq

data. (Fan et al., 2016) predict stem cell CpG methylation for

methylation arrays and BS-seq data (Supplementary Table T1 for a

comprehensive survey updated from (Zhang et al., 2015)).

Uniqueness of approach: Firstly, DIRECTION is able to decon-

found effects of 5-mC and 5-hmC modifications, as it can be separ-

ately trained on BS-seq and TAB-seq datasets for a given cell-type.

This is the first time 5-hmC modifications have been predicted in
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silico (with a whole-genome accuracy of 0.82), allowing us to sys-

tematically reconstruct 5-hmC modification maps in different cell-

types and tissues. Secondly, DIRECTION provides different usage

modes (Supplementary Table T2) including imputation and whole

methylome reconstruction (based on training a model in a related

cell or tissue type). This is possible because we do not use predictor

variables likely to be relevant only in specific cell-types (like DNA-

binding motifs of cell-type restricted TFs), enabling transfer learn-

ing. Thirdly, DIRECTION is able to heuristically identify an opti-

mal feature set (OFS) for predictions based on the set of available

predictor variables (optionally using regional methylation patterns

and methylation information from other cell types), allowing use in

resource-poor scenarios and providing biologically interpretable re-

sults. Also, DIRECTION predicts 5-hmC modification at single nu-

cleotide resolution (as opposed to CpG dinucleotide), since CpG

dinucleotides may be asymmetrically modified for 5-hmC (Yu et al.,

2012). Single nucleotide resolution allows us to collate predictions

to any biologically relevant resolution (CpG dinucleotide, CGI,

gene) for purposes of downstream functional analysis. We provide a

novel framework for predicting the whole methylome, based on a

decision tree topology (Fig. 1) with different classifiers correspond-

ing to each leaf. This tree partitions the methylome by selecting the

most appropriate classifier given the availability of predictor vari-

ables and their efficacy on the basis of biologically relevant methyla-

tion paradigms. Additionally, we identified CpG sites with invariant

methylation by contrasting available reference methylomes, as an

optional feature for methylation prediction.

2 Materials and methods

Bisulfite treatment protocols followed by short-read sequencing (BS-

seq or TAB-seq) provide CCRs at single nucleotide resolution for

cytosines ranging from 0 (unmethylated) to 1 (fully methylated). We

formulate prediction of DNA methylation as a binary classification

problem due to the bimodal nature of the distribution of CCRs in

BS-seq experiments. Genome-wide empirical distributions of CCRs

in mammalian reference methylomes (Kundaje et al., 2015) from

inbred cell lines and sourced whole tissue (with low and high cellular

heterogeneity respectively) show clear evidence of a bimodal distri-

bution of CCRs (Supplementary Fig. 1A). This suggests that with re-

spect to DNA methylation, cell-to-cell variation or within-cell

heterogeneity across alleles at individual CpG sites are not promin-

ent in mammalian cells and tissues.

5-hmC is an intermediate molecular state in the demethylation

pathway, and TAB-seq CCRs tend to be significantly lower than BS-

seq CCRs. Previous studies have shown that the vast majority of CpG

sites are lowly hydroxymethylated and have a CCR of zero (Yu et al.,

2012) and identified that significantly hydroxymethylated sites exhibit

a unimodal distribution of CCRs peaking at 0.18 (Supplementary Fig.

1C). We thus also model 5-hmC prediction as a binary classification

problem. 5-hmC has been shown to be a temporally stable (rather

than transient) modification (Bachman et al., 2014), which is vali-

dated by concordance of TAB-seq levels across biological replicates of

NPC (Supplementary Fig. 1D), and our BS-seq and TAB-seq datasets

show good consistency between experiments. These evidences lend

weight to the tractability of predicting 5-hmC modifications. Thus,

we aim to learn a function that will map a set of input features {x1,

x2, . . . xn} to binary class labels {low, high} for the purpose of recon-

structing a discretized approximation of the BS-seq and TAB-seq

CCRs at individual cytosines. The binary approximations of the BS-

seq and TAB-seq CCRs are referred to as methylation and 5-hmC sta-

tus respectively (Supplementary Text S1 for labeling classes,

Supplementary Text S2 for feasibility of 5-hmC prediction).

Overall architecture: DIRECTION offers three primary modes

of usage: for existing datasets, we can identify an OFS for predicting

methylation and 5-hmC status based on available input feature sets,

or impute low quality or missing data. Additionally, the toolkit

allows us to perform whole methylome and hydroxymethylome re-

construction based on a user-provided feature set and SVM or RF

model trained on a similar cell type or tissue. For other modes see

Supplementary Table T2.

Machine learning based approaches, most prominently SVM and

RF models have been successfully used to predict methylation in the

A

C

B

Fig. 1. DNA methylation reconstruction framework. (A) Decision Tree for partitioning methylome based on different prediction paradigms. (B) Schema of predic-

tion framework outlining beam search (feature selection), training, testing and cross-validation modes. (C) Beam search algorithm feature set exploration shown

for beam width¼2, for two levels of the search tree
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past (Das et al., 2006, Zhang et al., 2015). Since we aim to perform

genome-wide prediction, we chose not to use a single predictive

model, but instead designed a scalable ensemble-learning framework

that would be able to deconvolve multiple methylation paradigms

that are at work in different regions of the genome. For this purpose,

a decision tree with a biologically motivated topology is used (Fig.

1A), which partitions the methylome for methylation status predic-

tion, based on available predictor variables and methylation para-

digms. At each partition, we train separate predictive models

predicated upon an SVM and RF, which exhibit comparable predict-

ive accuracy. We also identified CpG sites with invariant methyla-

tion status across a set of high-quality reference methylomes, which

can optionally be used as an additional feature to predict methyla-

tion status. With research on 5-hmC functionality currently under-

way, and due to a lack of reference hydroxymethylomes, we used a

single predictive model (SVM or RF) to perform 5-hmC status

prediction.

Model-based classification: SVMs typically seek to maximize the

distance of training instances from the decision boundary in input

space, using a kernel transformation to separate features in high di-

mensional space. We chose to use the popular Radial Basis Function

(RBF) (Bishop, 2007), previously used to predict DNA methylation

status (Das et al., 2006). RF is an ensemble-learning algorithm com-

prised of numerous decision trees, well known for high classification

performance and resistance to overfitting. It averages predictions

and feature weights across multiple decision trees and randomly

samples subsets of features, subsequently separating class labels by

splitting input features to optimize Gini Impurity or entropy

(Breiman, 2001). SVMs and RFs were trained on balanced sets of

both classes, and tested on both balanced sets (5-fold cross-

validation) and on the whole genome (Supplementary Text S3). We

include both models in our framework since they have differing

strengths (eg. SVMs work well even with small training sets, RFs are

naturally resistant to outliers), letting the user choose the model de-

pending on the dataset, and they work with comparable efficiency

for our data.

Evaluation of classification quality: For evaluating predictions

on balanced sets, we used Precision and Recall, F-score and Area

Under Curve (AUC). True Positive and True Negative Rates were

used to evaluate whole genome predictions (Supplementary Text

S4). Training and test set sizes were decided based on evaluation of

metric stability (Supplementary Fig. 2A, B).

Beam search algorithm: All input features (listed in

Supplementary Table T3) were first preprocessed for use in our pre-

dictive framework (Supplementary Text S5). Identifying OFSs for

classification is computationally intractable for a large number of in-

put features (Koller and Sahami, 1996), due to the curse of dimen-

sionality. The problem is additionally complicated by the presence

of noise in input features, label infidelity in the response variable,

missing or low quality data for certain features, and high inter-

feature correlation. While OFS selection and model training can be

jointly performed (Nguyen and De la Torre, 2010), we heuristically

identified an OFS using a recursive feature elimination strategy not

limited to a specific learning algorithm, providing flexibility to

choose a predictive model. Recursive feature elimination allows us

to pick feature sets with fewer features that fit the data better in an

iterative fashion, implicitly enforcing sparsity. We performed an ini-

tial feature elimination step based on inter-feature correlational

redundancies (Supplementary Text S6, and S7 for recursive and ini-

tial feature elimination, respectively).

We then conducted recursive feature elimination on the remain-

ing features by implementing the beam search algorithm (schema:

Fig. 1B): a classical artificial intelligence search procedure, utilizing

heuristic pruning rules to explore a graph with nodes corresponding

to all possible feature sets (Zhang, 1998). Nodes (feature sets) are

sorted in a queue according to classification evaluation metrics eval-

uated by 5-fold cross-validation, and the queued node having the

highest metric is explored further by the algorithm until all nodes

are evaluated or a maximum number of iterations are reached while

simultaneously recoding the feature set with the optimum metric

(e.g. Fig. 2E). The beam width parameter controls the number of

nodes subject to further exploration and subsequent evaluation

(Fig. 1C). Across different beam width values, we find that beam

search exhibits stability since it generates similar results

(Supplementary Table T4). The algorithm for identifying optimal

feature sets is shown as pseudocode and a flowchart (Supplementary

Text S6 and Supplementary Fig. 3D). While OFSs can be optimized

for multiple classification evaluation metrics in our framework, in

this paper ‘OFS’ typically refers to the feature set corresponding to

highest F-score metric, unless otherwise mentioned explicitly.

Finally, we examined contributions of individual features to the pre-

dictive ability of the OFS (Supplementary Text S8).

Exploiting correlation within datasets: Binding of DNMT1 to

DNA results in a 6000 bp long random walk of an enzyme and sub-

sequent methylation of 50 CpG sites on average, resulting in spa-

tially contiguous stretches of 5-mC modified CpG sites seldom

interrupted by lowly methylated CpGs. We engineered several pre-

dictor variables based on methylation status of neighboring CpG

sites, previously used to impute methylation data (Zhang et al.,

2015). Cytosines in CpG sites were divided into ‘high-coverage’ and

‘low-coverage’ sets (sequencing depth at CpG site in the dataset

was�or<5) in NPC. To predict methylation status at each low-

coverage cytosine, we compared predictive abilities of the methyla-

tion status of the three nearest high-coverage CpG sites to the CpG

in question. We additionally contrasted another predictor con-

structed by using the most common methylation status (preforming

a majority vote) across the three nearest high-coverage sites. We find

that the precision of prediction drops from the nearest to furthest

neighbor, and methylation status of the nearest neighbor’s predictive

performance is comparable to the majority methylation status of the

three nearest neighbors (Supplementary Fig. 3A). We analyzed the

predictive quality of the nearest neighbor based on distance between

the predicted CpG site and the nearest neighbor. As distance in-

creases from contiguous up to 2500 bp, both precision and recall de-

crease (Fig. 3C), with a significant drop after 500 bp. Thus,

methylation status of the nearest neighboring high-coverage CpG

site within 500 bp was used as a discriminative predictor variable.

Since a large fraction of CpG sites have a high coverage neighbor

within 500 bp even for moderately sized BS-seq datasets (Fig. 3D),

this feature was added to the beam search-identified OFS and the

model was retrained for imputation (Supplementary Text S9).

Identifying invariance in methylation across datasets: The under-

lying sequence composition of a genomic region has been docu-

mented to shape DNA methylation patterns locally (Yu et al.,

2012). Accurate methylome predictions using sequence

composition-derived features (Whitaker et al., 2015) suggest that a

proportion of CpG sites have invariant methylation status across

cell or tissue types and conditions. We identify such CpG sites and

optionally use their methylation as an additional feature for per-

forming whole methylome reconstruction or imputation in other

datasets (Fig. 1A). Based on 25 high-quality reference human meth-

ylomes from the NIH Roadmap Epigenome consortium (Kundaje

et al., 2015), we identified the majority methylation status for each

CpG site with reliable sequencing depth across the 25 datasets. We
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refer to the set of cytosines and their corresponding majority methy-

lation status as the consensus reference methylome. We systematic-

ally decrease the set of cytosines by additionally constraining that no

more than 8, 4 or none out of the 25 reference methylomes could be

different from the methylation status of the majority of the methyl-

omes, referring to these variations as consensus reference methylome

with disagreement threshold n. While determining methylation sta-

tus in NPC using such consensus-based predictors, we identified a

trade-off between accuracy and applicability. As we increase strin-

gency of the disagreement criterion from 12 to 0, the prediction ac-

curacy improves from 0.85 to 0.99 (on balanced test sets) (Fig. 3A),

while the fraction of CpG sites in the genome that can be used to

perform this prediction drops from 75% to 44% (Fig. 3B). Given

high predictive ability of the consensus reference methylome with

zero disagreement, we optionally use this dictionary driven ap-

proach as a predictor to reconstruct a portion of the methylome.

Depending on the reconstructed methylome, the consensus reference

methylome can be created using a different set of relevant reference

methylomes, and can potentially provide insight into aberrant CpG

methylation in perturbation or disease studies known to affect

methylation (Supplementary Text S10).

3 Results

BS-seq and TAB-seq datasets from the NIH Roadmap Epigenome

consortium (Kundaje et al., 2015) were used for training and testing

A B

C D

Fig. 3. DNA methylation predictions harnessing intra- and inter-methylome similarities. (A) Balanced sets predictions on methylation-invariant CpG sites using

consensus reference methylome and SVM (Supplementary Table T5). (B) Consensus Reference Methylome size as fraction of total methylome for disagreement

thresholds 0, 4, 8, 12 (Supplementary Table T9A). (C) Precision/Recall for methylation status imputation using methylation status of nearest neighboring CpG site

as function of distance to nearest neighbor (Supplementary Table T5). (D) Cumulative Distribution Function of the fraction of low coverage CpG sites w.r.t. dis-

tance to the nearest high coverage site in a typical high-coverage and low-coverage BS-seq dataset (NPC and fetal small intestine respectively)

A

D

E

B

C

Fig. 2. DNA methylation status prediction. (A) CGI and non-CGI SVM model predictions for GF (Genomic Features), CH (Chromatin Features), HR (Highest Recall

Features), HP (Highest Precision Features), OFS (Highest F-Score Features), OFSþN (OFSþnearest neighbor), OFSþNþC (OFSþNþ consensus reference

methylome). (B) Feature sets for predicting NPC methylation status. (C) Whole-genome methylation status prediction performance in NPC. (D) Comparison of

DIRECTION and classification tree for NPC methylation. (E) An example path traversed by beam search through Precision-Recall space, while optimizing F-score

(in brackets) for H1 non-CGI SVM model [A and D: Supplementary Table T5, E: Supplementary Table T8]
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our predictive model. Read counts for estimating CCRs in H1

human embryonic stem cell (ESC) line and H1-derived NPC neural

progenitor BS-seq datasets (GEO GSE16256) were obtained from

the uniformly processed data published by the Roadmap Epigenome

consortium (Kundaje et al., 2015), while the BISMARK tool

(Krueger and Andrews, 2011) was used for mapping and obtaining

the CCRs for H1 (GEO GSE36173) and NPC (GEO GSM882245,

GSM1463129) TAB-seq datasets (Supplementary Text S11). These

cell types were chosen due to availability of BS-seq and TAB-seq

data, and since previous studies performing functional enrichment

and analysis of 5-hmC in human and mouse ESCs (Stroud et al.,

2011, Wu et al., 2011, Yu et al., 2012, Zhang et al., 2016) and neu-

ral progenitors (Song et al., 2011, Tan et al., 2013, Wang et al.,

2012), especially in neural development.

DNA methylation prediction: Since there is no precedent for in

silico prediction of the 5-hmC modification, we first built a frame-

work for conventional two-state classification of DNA methylation

in CpG sites, supervised using BS-seq data. Since distributions and

spatial contiguity patterns of highly and lowly methylated CpG sites

vary between CGI and non-CGI regions, we trained two classifiers

with separately inferred OFSs (Fig. 1A, Model 1, Model 2).

Significant differences in prediction quality were observed among

different feature sets (agreeing with previous studies (Das et al.,

2006, Zhang et al., 2015)) suggesting the importance of feature set

selection. We performed optimal feature selection using our beam

search algorithm, and identified feature sets with the best precision,

recall, and harmonic mean of the two (F-score) for training and

testing balanced sets of both classes in H1 and NPC with minor

performance differences (H1: Supplementary Fig. 2E, F, NPC:

Fig. 2A). Whole genome predictions (Fig. 2C) were carried out sub-

sequently (Supplementary Tables T5, T6 for results). The whole gen-

ome predictions were also used to assess the performance of

DIRECTION across varying values of BS-seq CCRs (Supplementary

Text S11).

Comparison with other DNA methylation prediction tools:

Different methylation prediction algorithms work at differing gen-

omic resolutions, on different datasets, using different predictor

variables, to predict different response variables; making it challeng-

ing to set up unbiased comparisons between models. However,

based on reported performances, DIRECTION is comparable to

state-of-the-art high resolution methylation prediction algorithms

(Whole-genome accuracy: DIRECTION: 0.96 versus (Zhang et al.,

2015): 0.91, Supplementary Table T1). Also, under the constraint of

the same predictor variable set, DIRECTION outperformed the

well-established inbuilt MATLAB classification tree function (Fig.

2D).

OFS for DNA methylation prediction: The most discriminative

features, contributing to high recall and precision, in DNA methyla-

tion predictions in NPC CGI regions were chromatin ‘states’

inferred by the ChromHMM model (Ernst and Kellis, 2012), and

H2AK5ac histone modification (Fig. 2B and Supplementary Table

ST7). The underlying biological interpretation of our findings is sup-

ported by published literature as H2AK5ac histone modification

was shown to be enriched in regions of euchromatin and low methy-

lation (Cuddapah et al., 2009). Also, the OFS for predicting DNA

methylation in NPC CGI regions has only 5 features (Fig. 2B),

including transcription activation (H3K4me3, H2AK5ac) and re-

pression (H3K9me3) associated histone marks, and DNase hyper-

sensitivity (discriminative with respect to underlying DNA

methylation (Lazarovici et al., 2013). Contrasting CGI to non-CGI

OFSs, we find several histone modification features (H3K27ac,

H3K27me3, H3K36me3 and H3K4me1) in the non-CGI OFS, as

opposed to H3K9me3 in the CGI OFS. The non-CGI OFS also con-

tains the Repeat feature (repetitive elements), which is meaningful

since repeat-containing retrotransposons in the human genome are

silenced by methylation (Ooi et al., 2009). The most prominent

changes in predictive ability are depicted by significantly different

recall (Fig. 2A) and AUC (Supplementary Fig. 2G, H;

Supplementary Text S12).

Transfer learning across cell types: Given that one of our goals is

to perform whole-methylome reconstructions, we trained our classi-

fier on H1 cells and tested its performance on NPC and vice versa.

The results of the testing are only a few percentage points worse

than the corresponding results in the same cell type (Supplementary

Table T6), due to the fact that our approach relies on a minimal set

of discriminative features (OFS) which are similar in H1 and NPC,

and therefore has great promise for ‘transfer learning’ scenarios like

de novo reconstruction of the methylome. In order to test the limits

of such transfer learning, we used the NPC-trained SVM to perform

whole methylome predictions in the totipotent Mesenchymal Stem

Cells (MSC) and in the terminally differentiated fetal fibroblast cell

line IMR90. Since loss of pluripotency is associated with epigenome

reprogramming involving DNA methylation, we find that the NPC-

trained SVM performs well on the MSC dataset, but performs only

modestly in IMR90 (Supplementary Table ST6 and Supplementary

Text S12).

Using neighboring CpG sites as predictor variables: For improv-

ing imputation, the methylation status of the nearest neighboring

CpG site within 500bp was used to create an input feature. Our fea-

ture engineering analyses (see Methods, Fig. 3C) suggests that the

predictive quality of the feature significantly decreases after 500 bp

(a distance corresponding to the average size of CGIs (Kang et al.,

2006), in agreement with findings that CGIs are typically consist-

ently methylated or demethylated. We tested the ability of this fea-

ture to contribute to predictions in CGI and non-CGI SVM models

by adding it to the beam search-identified OFS, followed by retrain-

ing the SVMs on balanced sets. It makes insignificant impact on the

CGI SVM (where precision and recall are>0.95) but strikingly im-

proves recall of the non-CGI SVM from 0.72 to 0.77 (Fig. 2A), sug-

gesting that even in non CpG-rich regions, spatial contiguity of

methylation status is common.

Consensus reference methylome based predictions: Based on the

44% of CpG sites that are methylation-invariant in our reference,

we compared our SVM prediction model to the prediction based on

the consensus reference methylome. Both predictors were highly ac-

curate and comparable on the set of cytosines underlying the consen-

sus reference methylome with zero mismatches, and on balanced

subsets, the precision of the SVM was 0.87, compared to 0.99 of the

most stringent consensus-based predictor (Fig. 3A). We then incor-

porated the consensus reference methylome-based predictor into our

ensemble-learning framework (Fig. 2A), testing the framework with

and without the consensus reference methylome on balanced sets.

The prediction metrics had incremental improvement in CGI re-

gions, and significant improvement in non-CGI regions, suggesting

that an ensemble prediction scheme is optimal. On whole genome

datasets, we see incremental improvement in NPC methylation sta-

tus prediction accuracy (0.97) as opposed to solely SVM or RF

(0.96) (Supplementary Table T6).

5-hmC status prediction: We performed 5-hmC status prediction

using features from the initial feature set for methylation status pre-

diction model, using methylation level as an additional feature

(Supplementary Table T10). In order to identify the most discrim-

inative features for 5-hmC status prediction, we ran our beam search

algorithm and obtained discriminative feature sets. Based on the
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experimental design previously outlined, the performance of the

OFS was compared against other biologically and statistically mean-

ingful feature sets (NPC: Fig. 4A, F-score 0.78; H1: Supplementary

Fig. 4B, F-score 0.7). The most distinguishing characteristic of as-

sorted 5-hmC feature sets in both cell types was the profound pres-

ence of active enhancer histone modifications H3K4me1 and

H3K27ac (Shlyueva et al., 2014), DNase and other genomic derived

features including CpG content, and Alu repeats (Supplementary

Table T11). Insightfully, a single addition to the OFS when our pre-

dictor was constrained to the enhancer regions was H3K27ac, sug-

gesting biological interpretability of our results. The absence of

H3K27ac from the 5-hmC OFS (when the predictor is not con-

strained to enhancer regions) can be explained by the presence of an-

other enhancer chromatin mark (H3K4me1) in the OFS, and the

relatively small size of enhancer regions compared to the non-

enhancer portion of the genome. Unsurprisingly, we find the

H3K4me1 enhancer mark being one of the most promising predict-

ive features due to its presence in both the high recall and optimal

feature sets. Significant depletion of 5-hmC in H3K9me3 rich het-

erochromatin regions, and its positive correlation with H3K4me3

active histone modification (Yamaguchi et al., 2013), clearly desig-

nates these chromatin marks as suitable candidates for the OFS.

In order to show that the obtained OFS is discriminative towards

5-hmC signal, we predicted 5-hmC status across various TAB-seq

level thresholds and noticed that the prediction metric grows slowly

with the increase in threshold value (Supplementary Fig. 4G), and

shows consistent AUC for a range of thresholds (Supplementary

Fig. 4D, E). We performed whole-genome 5-hmC predictions in

NPC and H1 and obtained 0.82 and 0.75 accuracy respectively

(NPC: Fig. 4B; H1: Supplementary Fig. 4C). These results together

suggest that 5-hmC status can be fairly accurately reconstructed in

our datasets. Lower prediction accuracy in H1 can putatively be

attributed to a lower coverage depth in the training data. Finally, we

performed 5-hmC predictions restricted to cytosines with high BS-

seq CCRs, yielding comparable results to our previous analyses,

implying that the numerous public BS-seq datasets together with

additional input features can be used to predict 5-hmC maps

(Supplementary Text S13).

5-hmC transfer learning across H1 and NPC: In analogous fash-

ion to our methylation data, we trained our classifier on H1 cells

and tested its performance on NPC and vice versa. The results of the

testing suggest that transfer learning across H1 and NPC is feasible

(Supplementary Table T10).

OFS feature contributions: We constructed a dendrogram (Fig.

4C) for the 5-hmC status prediction OFS, and eliminated subsets of

features as described in Supplementary Text S8. The most notable

changes to recall were observed upon elimination of the BS-seq CCR

feature, while precision was affected by H3K4me1 and GC satur-

ation removal, signifying the importance of these features to the pre-

diction rate. Only four features (BS-seq CCR, GC saturation, DNase

and Alu) are sufficient to capture the majority of TAB-seq signal by

garnering 0.75 F-score in NPC (Fig. 4C). Several of these were iden-

tified in the literature to be enriched in regions of high hydroxyme-

thylation (Yu et al., 2012). We show our 5-hmC prediction at work

A

D

B

C

E

Fig. 4. 5-hmC status prediction in NPC. (A) 5-hmC balanced set prediction evaluation for SVM (Supplementary Table T10). (B) 5-hmC whole-genome prediction

metrics. (C) OFS feature clustering. At each node, leaves (features) under it were removed from OFS to create new feature sets. For these, feature inclusion

(starred) and resultant change in precision/recall w.r.t. OFS (by reclassifying dataset) characterize features’ contribution to classification quality. (D,E)

Visualization of 5-hmC status prediction and discriminative input features in PCDH17 and MEIS2
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in two genomic regions proximal to PCDH17 and MEIS2 genes

(Fig. 4D, E), previously implicated in synapse formation and inter-

neuron development (Batista-Brito et al., 2009, Hoshina et al.,

2013).

Overall prediction in enhancer regions: 5-hmC is differentially

enriched in functionally important enhancers (Stroud et al., 2011).

Thus, we trained and tested our model by restricting it only to NPC

enhancers (identification of enhancers in Supplementary Text S14),

obtaining 0.77 precision, 0.82 recall (Fig. 5D) and a high AUC

(Supplementary Fig. 4F). The active enhancer mark H3K27ac was

present in the OFS (Supplementary Table T11A) suggesting a correl-

ation of 5-hmC with enhancer activation. A significant improvement

in the maximum precision feature set (HP) was found in models con-

strained to enhancers (Supplementary Fig. 4A), due to 5-hmC over-

abundance in enhancers.

5-hmC prediction in small TAB-seq datasets: BS-seq and TAB-

seq datasets require high sequencing depth to reliably determine

CpG methylation and 5-hmC status across the genome, but as cover-

age decreases in smaller datasets, the ability to do so is diminished.

The feasibility of training a model (like SVM) does not decrease pro-

portionally to dataset size, as we can train SVMs with as few as

2000–2500 training examples (Supplementary Fig. 2A,

Supplementary Table T12). We downsampled one of our NPC data-

sets to 12% (commensurate with RRBS-seq dataset sizes (Gu et al.,

2011)) of the original number of reads, and predicted the corres-

ponding sequencing depth in enhancer CpG cytosines (Fig. 5A, B).

We find sufficient training examples (>2000) at resolutions of both

whole enhancers and individual cytosines with sequencing depths

suited for reliable CCR estimation in training SVMs, suggesting

feasibility of robustly training 5-hmC status prediction models in en-

hancers for reduced representation TAB-seq data (Supplementary

Text S15).

In silico framework for high throughput hypothesis-testing:

Hypothesis testing using TAB-seq data to identify 5-hmC rich re-

gions or differential 5-hmC enrichment across conditions, naturally

leads to a feasibility study of performing such tests on in silico pre-

dictions. 5-hmC is an intermediate in the demethylation pathway

and low DNA methylation levels are the hallmark of active enhan-

cers (Yu et al., 2012). Thus, we hypothesized that increase in an en-

hancer’s 5-hmC enrichment (quantified as 5-hmC enrichment ratio,

Supplementary Text S16) from H1 to NPC differentiation corres-

ponded to changes in proximal gene expression, putatively indica-

tive of functional differences between H1 and NPC. We identified

enhancers with the largest changes in 5-hmC enrichment ratio using

both experimental TAB-seq data and our 5-hmC predictions. Gene

set enrichment analysis (Supplementary Text S17) on proximal

genes to the identified enhancers reveal similar results for the two

gene sets, enriched in neurodevelopmental processes. We find differ-

ential expression between H1 and NPC in the prediction-based gene

set, suggesting our prediction-based functional study yields biologic-

ally relevant findings (Fig. 5C, Supplementary Data 1,

Supplementary Data 2, Supplementary Data 3).

4 Discussion

Our work opens up new directions in DNA methylation studies.

Discriminative feature sets for predicting 5-hmC status include fea-

tures engineered to leverage idiosyncrasies of hydroxymethylation,

like strand asymmetry, G-rich sequence bias, and enrichment in

open chromatin and gene bodies. Such correlative descriptions of 5-

hmC modification with respect to genomic and epigenomic features

can help create fine-grained ‘epigenome states’ by integrating 5-mC

and 5-hmC modifications with histone mark based chromatin states

(Ernst and Kellis, 2012) in the future. For purposes of predicting BS-

seq signal, we identified CpG sites that are methylation-invariant

across reference human methylomes we analyzed, helping improve

balanced set and whole-genome methylation status prediction

(Supplementary Text S18 for strengths and limits of our frame-

work). In the future, we aim to identify and characterize the correl-

ational structure of reference methylomes across developmental

linages and tissue types. Such studies can potentially yield insight

into regulatory mechanisms, and identify aberrant methylation pat-

terns in disease or perturbation models. DIRECTION is the first

in-silico, whole-epigenome predictor of DNA methylation and 5-

hmC status at single nucleotide resolution, with results comparable

to state-of-the-art DNA methylation prediction tools. Our tool

allows us to identify candidate genomic regions for differential

hydroxymethylation as a first step in functional studies. Unlike pre-

vious feature-intensive approaches for predicting DNA methylation,

our algorithm uses a sophisticated feature selection technique

adopted from artificial intelligence and identifies a small subset of

nonredundant, discriminative, predictive features. This allows for

greater biological interpretability of generated results, superior per-

formance in resource-scarce scenarios, making the model sparse

without explicit regularization. DIRECTION is an open-source,

agile, scalable ensemble predictor using biologically and practically

motivated genome partitioning and training a predictive model per

partition, allowing us to deconvolute inevitably mixed biological

signals in whole-epigenome studies. In the future, we aim to extend

DIRECTION by predicting DNA methylation and 5-hmC status in

additional genomic contexts (like non-CpG cytosines), other

A

D

B C

Fig. 5. 5-hmC status prediction in enhancers. (A) Sequencing depth across cytosines in enhancers after downsampling. (B) Log-log linear regression fit (mapped

read count versus sequencing depth across cytosines) in NPC enhancers. (C) Heatmap of predicted 5-hmC enrichment ratio and proximal gene expression for en-

hancers with highest predicted gain in 5-hmC enrichment ratio (NPC versus H1). GO term enrichment for genes with highest 5-hmC enrichment ratio (NPC versus

H1) using predictions and TAB-seq data. (D) 5-hmC status prediction in NPC enhancers
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methylation paradigms (like epigenetic reprogramming in gametes),

and in non-mammalian species where methylation plays distinct

functional roles.
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