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Abstract

Motivation: Read assignment is an important first step in many metagenomic analysis workflows,

providing the basis for identification and quantification of species. However ambiguity among the se-

quences of many strains makes it difficult to assign reads at the lowest level of taxonomy, and reads

are typically assigned to taxonomic levels where they are unambiguous. We explore connections be-

tween metagenomic read assignment and the quantification of transcripts from RNA-Seq data in

order to develop novel methods for rapid and accurate quantification of metagenomic strains.

Results: We find that the recent idea of pseudoalignment introduced in the RNA-Seq context is

highly applicable in the metagenomics setting. When coupled with the Expectation-Maximization

(EM) algorithm, reads can be assigned far more accurately and quickly than is currently possible

with state of the art software, making it possible and practical for the first time to analyze abun-

dances of individual genomes in metagenomics projects.

Availability and Implementation: Pipeline and analysis code can be downloaded from http://

github.com/pachterlab/metakallisto

Contact: lpachter@math.berkeley.edu

1 Introduction

The analysis of microbial communities via whole-genome shotgun

sequencing has led to exceptional bioinformatics challenges (Chen and

Pachter, 2005) that remain largely unsolved (Scholz et al., 2012). Most

of these challenges can be characterized as ‘de novo’ bioinformatics

problems: they involve assembly of sequences, binning of reads and an-

notation of genes directly from sequenced reads. The emphasis on de

novo methods a decade ago was the result of a paucity of sequenced

reference microbial and archaeal genomes at the time. However this

has begun to change in recent years (Land et al., 2015). As sequencing

costs have plummeted, the number of nearly complete genomes has

increased dramatically, and while a large swath of the microbial world

remains uncharacterized, there are now thousands of unique sequenced

genomes suitable for the application of reference-based methods.

One of the fundamental metagenomics problems that is amen-

able to reference-based analysis is that of ‘sequence classification’ or

‘read assignment’. This is the problem of assigning sequenced reads

to taxa. The MEGAN program (Huson et al., 2007) was one of the

first reference-based read assignment programs and was published

shortly after sequencing-by-synthesis methods started to become

mainstream. It provided a phylogenetic context to mapped reads by

assigning reads to the lowest taxonomic level at which they could

be uniquely aligned, and became popular in part because of a

powerful accompanying visualization toolkit. One of the draw-

backs of MEGAN was that its approach to assigning ambiguously

mapping reads limited its application to quantification of individ-

ual strains, an issue which was addressed in a number of sub-

sequent papers, for example GRAMMy (Xia et al., 2011) and

GASiC (Lindner and Renard, 2013), which were the first to
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statistically assign ambiguously mapped reads to individual strains.

Unfortunately, these approaches all relied on read alignment, a com-

putational problem that is particularly difficult in the metagenomic

setting where reference genome databases can consist of more than a

hundred million bases.

In a breakthrough publication in 2014 (Wood and Salzberg,

2014) it was shown that it is possible to greatly accelerate read as-

signment utilizing fast k-mer hashing to circumvent the need for

read alignment. An implementation called Kraken was used to show

that analyses that previously took hours were tractable in minutes,

and the removal of the read alignment step greatly simplified work-

flows and storage requirements. However, the Kraken speed came

at a cost. First, the growing size of reference genome databases

means the indexing memory footprint rapidly increases beyond

what end users can reasonably supply. Second, an examination of

the Kraken algorithm and output reveals that the method takes a

step back from GRAMMy and GASiC by discarding statistical as-

signment of reads at the strain level in favor of direct taxonomic as-

signment as in MEGAN. The net effect is that while Kraken is more

accurate than MEGAN (Lindgreen et al., 2015), it is unsuitable for

quantification. This is because unlike GASiC, Kraken is strictly de-

signed to be a read assigner: its primary output is a file listing the

taxonomic assignment for each read. A natural question to ask is

whether the strengths of Kraken and GASiC can be combined, i.e.

whether it is possible to leverage fast k-mer based hashing to map

reads not at the taxonomic but at the strain level, while assigning

the resulting ambiguously mapped reads using a statistical frame-

work that allows for probabilistic assignment of reads.

To answer this question we turned to RNA-Seq (Cloonan et al.,

2008; Lister et al., 2008; Mortazavi et al., 2008; Nagalakshmi

et al., 2008), an experiment for which there has been extensive

methods development that we hypothesized could be adapted and

applied to metagenomics. Many of the challenges of metagenomic

quantification translate to problems in RNA-Seq via a dictionary

that replaces genome targets with transcript targets. For example,

ambiguously mapped genomic reads that are difficult to resolve at

the strain level in the metagenomics setting are analogous to reads

that are difficult to assign to specific isoforms in RNA-Seq.

Statistical questions at the heart of ‘comparative metagenomics’

(Huson et al., 2009; Rodriguez-Brito et al., 2006; Tringe et al.,

2005) are analogous to the statistical problems in differential ex-

pression analysis. In fact, the only significant differences between

metagenomics and RNA-Seq are that genome sequences are much

larger than transcripts and reference databases are less complete.

These differences have engineering implications, but statistically

and computationally, metagenomics and transcriptomics are very

much the same.

In this paper we show that technology transfer from RNA-Seq to

metagenomics makes it possible to perform read assignment both

rapidly and accurately. Specifically, we show that it is possible to ac-

curately assign reads at the strain level using a fast k-mer based ap-

proach that goes beyond the hashing of Kraken and takes advantage

of the principle of pseudoalignment (Bray et al., 2015). The idea of

pseudoalignment originates with RNA-Seq, where it was developed

to take advantage of the fact that the sufficient statistics for RNA-

Seq quantification are assignments of reads to transcripts rather

than their alignments. The same applies in the metagenomics setting,

and we show that just as in RNA-Seq, application of the EM algo-

rithm to ‘equivalence classes’ (Nicolae et al., 2011) allows for ac-

curate statistical resolution of mapping ambiguities. We are able

to maintain the speed of metagenomic-specific k-mer hashing

programs, while also using a memory-efficient pre-screening step to

greatly increase the effective number of metagenomes in our refer-

ence database without increasing computational requirements, from

the few thousand used by CLARK and Kraken, to nearly 30 000.

Using a published simulated dataset (Mende et al., 2012), a biolo-

gical dataset from the human microbiome project and an imple-

mentation of pseudoalignment coupled to the EM algorithm

in kallisto (Bray et al., 2015), we demonstrate significant accuracy

and performance improvements in comparison to state of the art

programs.

2 Approach

To test the hypothesis that RNA-Seq quantification methods can be

applied in the metagenomics setting we began by examining the per-

formance of eXpress, a program that implements a streaming EM al-

gorithm for RNA-Seq read assignment from alignments, on

simulated data (Roberts and Pachter, 2013). We chose eXpress be-

cause it utilizes traditional read alignments directly to a transcrip-

tome but is more memory efficient than other approaches (e.g.

RSEM (Li and Dewey, 2011)) and therefore more suitable in the

metagenomics setting. Other RNA-Seq quantification tools such as

Cufflinks (Trapnell et al., 2010) were not suitable for our needs be-

cause of their dependence on read alignments to genomes and not

transcriptomes, a requirement that does not translate easily to the

metagenomics setting.

To test eXpress we aligned a simulated dataset of Illumina-like

reads from 100 microbial genomes to a reference database contain-

ing only those genomes, allowing us to compare results to a ground

truth (the Illumina100 data) (Mende et al., 2012). We began by

comparing eXpress to GASiC, which also utilizes read alignments

for read assignment. The results are shown in Table 1. We found

that eXpress outperforms GASiC at the exact genome, species, genus

and phylum levels, which we believe is because the statistical model

of eXpress takes into account data-dependent read error profiles in

assigning reads.

A major problem with GASiC and eXpress is that the alignments

they require are slow to generate. The alignments, made with

Bowtie2 (Langmead and Salzberg, 2012), took days. As reported in

(Wood and Salzberg, 2014) and the follow-up Bracken which has

been specialized for quantification (Lu et al., 2016), significant

speed-ups are possible using hashing methods. Braken and kallisto

took similar amounts of time to index, but kallisto was significantly

faster to quantify read abundances, with a run time of 5 min 55 s

compared to 35 min for Bracken (Table 2). CLARK was faster in

total time, but as seen in Table 1, kallisto performed noticably better

than both Bracken and CLARK.

We next turned to a comparison of kallisto with Bracken and

CLARK using the Illumina100 simulated data (i100) but using a

full, more realistic reference database of 29 698 bacterial genomes

from Ensembl (Kersey et al., 2016). In order to handle such a large

database, which is significantly over the indexing threshold for all

three programs, we first performed a pre-filtering step using

recently-published metagenome distance estimator Mash (Ondov

et al., 2016) (see methods for details). Mash filtered the 29 698 gen-

omes down to 1027 genomes which were judged closest to the i100

reads being quantified; those 1027 genomes contained 83 out of the

100 ‘true’ strains present in the i100 dataset.

The results of estimating reads from all 100 genomes against the

Ensembl-based index, listed in Table 1 (where the database is called

‘Ensembl’) and Figures 1 and 2, show that kallisto is significantly

more accurate than CLARK at all taxonomic levels, and is only out-

matched by Bracken at the genus level. The dramatic decrease in
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error from the exact genome to species level (from 17% to 1.26%)

indicates that kallisto is correctly assigning the reads from the miss-

ing strains to closely related strains from the same species.

Even at the exact genome level (where neither Bracken nor

CLARK offer estimates), kallisto performs well, given the restriction

of missing 17% of the actual genomes present in the reads. To check

the effect of the missing genomes on accuracy, we ran kallisto on the

i100 reads only from the present 83 genomes and achieved an im-

pressive AVGRE of 2.59% at the exact genome level. Even more

promisingly, the species-level error of this 83-genome dataset is

0.77%, which is quite close to the 1.26% species-level error of the

full 100-genome dataset. This further supports kallisto’s accuracy in

assigning reads from missing genomes to closely related genomes.

All programs took significantly more time with the larger refer-

ence database. Mash took 362 minutes on a single core to index the

full 30k Ensembl genomes, and another 130 minutes to compare the

i100 reads against those genomes; these steps are easily parallelized

to multiple cores. Once the pre-filtering was complete, kallisto was

once again slower than CLARK but faster than Bracken.

To test the performance of kallisto on biological data, we ana-

lyzed a set of saliva samples from the Human Microbiome Project.

These three samples – SRS014468, SRS015055 and SRS019120 –

consist of a total of 9.3 million 60–100 bp paired-end reads, col-

lected from three separate individuals. We pooled them together to

analyze the microbes present in the general saliva microbiome.

Running the same Mash-based pipeline on 30k Ensembl genomes

identified 744 likely genomes, and using kallisto to quantify the

saliva reads against those genomes found primarily bacteria of the

genera Streptococcus (17.5%), Prevotella (17.1%), Veillonella

(11.2%) and Haemophilus (9.9%) as well as a number of less abun-

dant genera (shown in Fig. 3). The most abundant species are those

known to be abundant in the oral microbiome: Streptococcus mitis,

Haemophilus parainfluenzae, Veillonella sp. oral taxon 158 and

Prevotella histicola.

3 Materials and methods

3.1 Illumina100 dataset
We tested kallisto and alternate programs on a set of simulated reads

published in (Mende et al., 2012). The Illumina100 dataset consists

of 53.33 million 75 bp reads, simulated by the iMESSi metagenomic

simulator using an Illumina error model. The reads were simulated

from a set of 100 unique bacterial genomes. The set is of genomes

from 85 different species and 63 different genera, over a range of

abundances from 0.86% to 2.2%.

Reads were trimmed with the program Trimmomatic (version

0.32) (Bolger et al., 2014) to a minimum length of 40 bp, using its

adaptive trimming algorithm MAXINFO with a target length of 40

and default strictness. 40 reads were dropped due to quality issues.

3.2 Taxonomic identification
We analyzed each program’s output at four taxonomic ranks: phy-

lum, genus, species and ‘exact genome’ level. The latter tests the

abundance estimation of the actual Illumina100 genomes, which are

a combination of strains and substrains and thus aren’t taxonomic-

ally well defined. The other three ranks are as assigned by NCBI’s

Taxonomy Database, as of August, 2016.

3.3 Count estimation accuracy calculation
Using a simulated dataset with known abundances allowed us to

benchmark programs by comparing program outputs with true val-

ues for each genome. While kallisto is able to output length-

corrected individual genome abundances, most of the programs we

compared with only output counts, so for consistency we analyzed

the accuracy of assigned or estimated counts for each program. We

normalized the estimated counts by the percent of assigned reads in

order to be able to compare relative count estimates between

programs.

We primarily used the error measures AVGRE (Average Relative

Error), which computes the mean of the difference between truth

Table 1. Normalized count based classification accuracy at four taxonomic ranks

Exact Genome Species Genus Phylum

AVGRE RRMSE AVGRE RRMSE AVGRE RRMSE AVGRE RRMSE

i100

kallisto 0.97 5.42 0.14 0.36 0.13 0.38 0.09 0.10

Bracken – – 1.94 9.51 2.21 10.78 0.91 0.92

CLARK – – 12.28 22.73 10.32 18.22 7.52 7.88

GASiC 7.21 19.31 3.80 10.46 3.72 11.43 2.52 3.10

eXpress 2.57 11.92 0.40 0.61 0.34 0.57 0.13 0.18

Ensembl

kallisto 17.15 39.32 1.26 3.01 0.98 2.17 0.72 0.76

Bracken – – 4.94 16.22 1.10 3.97 0.35 0.38

CLARK – – 59.15 72.40 52.68 67.04 45.44 56.76

CLARK and Bracken results are missing at the strain level because they do not output strain level counts. Calculated errors are Average Relative Error and

Relative Root Mean Square Error.

Table 2. Indexing and quantification times for each program, when

quantifying the Illumina 100 simulated dataset against the listed

reference database

Indexing Quantification

i100

kallisto 31 m 25 s 5 m 55 s

Bracken 22 m 27 s 35 m 39 s

CLARK – 20 m 30 s

Ensembl

kallisto 111 m 60 m 40 s

Bracken 235 m 35 s 169 m 29 s

CLARK – 131 m 35 s

Note that CLARK indexes and quantifies in a single step, so timing for

each cannot be separated. All programs were run on a single core, on a cluster

with 430 Gb of memory.
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and estimate, and RRMSE (Relative Root Mean Square Error),

which computes the root mean square average of the difference be-

tween truth and estimate, to judge the accuracy of our estimates.

Formally, with n true genomes/species/genera/phyla, true counts si

(1� i�n) and estimated counts ti at the rank, and A aligned reads

out of T total reads we computed

AVGRE ¼ 1

n
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The scripts used to compile the results are available at https://github.

com/pachterlab/metakallisto.

3.4 Reference genome database
Two reference genome databases were used, for all programs: one,

referred to as ‘i100’ in the text, consists solely of the 100 genomes

from which the Illumina 100 dataset was simulated from. These

genomes were indexed (by kallisto, GASiC and eXpress) or loaded

as a custom database (for CLARK and Kraken) without any pre-

processing.

In addition, we tested the more realistic case of aligning against a

large bacterial database – Ensembl’s bacterial genomes as of version

30, referred to as ‘Ensembl’ in the text. All 29 698 bacterial genomes

were downloaded, combined with the i100 genomes, and used as-is

with Mash (see below). For abundance estimation with Bracken,

CLARK and kallisto, constituent contigs, chromosomes and plas-

mids were concatenated together with a series of 10 ambiguous

bases represented as N, and NCBI’s taxonomic ID was manually

added to the headers for Kraken’s use.

3.5 Mash genome pre-filtering
To lower the number of genomes to abundance estimate against to a

reasonable level, we ran the Illumina100 dataset against all 30 000

ensembl genomes using Mash, a genome distance calculator. We

used only the top 10 genomes from each species that were judged

closest to the reads in subsequent abundance estimation, to get a rea-

sonable number of genomes for indexing.

The scripts used to filter the genomes based on Mash results are

available at http://github.com/pachterlab/metakallisto.

4 Conclusion

The idea of translating RNA-Seq methodology to and from metage-

nomics was, to our knowledge, first proposed in (Paulson et al.,

2013) where statistical methods for identifying differential abun-

dances in microbial marker genes were developed. In that paper,

there were comparisons between the proposed metagenomics

method and RNA-Seq differential analysis methods implemented in

DESeq (Anders and Huber, 2010) and edgeR (Robinson et al.,

2010). Notably, the central idea of the paper, the specific con-

sideration of zero inflated distributions to account for undersam-

pling, is also used in single cell expression analysis (McDavid et al.,

2013).

Our results show that RNA-Seq methods for quantification are

also applicable in the metagenomics setting, and our results with

kallisto demonstrate that it is possible to accurately and rapidly

quantify the abundance of individual strains. With a few exceptions,

e.g. (Bradley et al., 2015), most metagenomic analyses have focused

on higher taxonomy, a point highlighted in the recent benchmarking

paper (Lindgreen et al., 2015) which compares predictions at the

phylum level because ‘[comparisons at that level are] less prone to

differences’. The phylum level is four levels removed from genus, let

alone species or strain. Our results suggest that the door is now

open to metagenome analyses at the highest possible resolution.

Fig. 1. Results of kallisto on simulated reads pseudoaligned to the ensembl dataset at the exact genome level. The solid line indicates the actual counts simulated

from each strain, while circle and triangle markers indicate the counts estimated by kallisto. Triangles are read counts assigned to strains that aren’t actually pre-

sent in the dataset
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While our benchmarks are primarily based on simulated data,

our experiments are much more realistic than previous analyses. For

example, the Kraken and CLARK papers report results on simula-

tions with ten genomes, whereas we have simulated from 100

genomes and mapped against nearly 30 000. One of the difficulties

we faced in our analyses was the technical issue of taxonomic nam-

ing and annotation in collating results. This seemingly trivial matter

is complicated by the lack of attention paid to low taxonomic level

A

B

C

Fig. 2. Results of kallisto (top), Bracken (middle) and CLARK (bottom) on simulated reads pseudoaligned to the ensembl dataset at the species level
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analysis in previous studies. Hopefully our results will spur others to

standardize and organize analysis scripts so that low taxonomic

level analysis can become routine.

A significant difficulty, for all analyses at the species or strain

level, is distinguishing between those strains that share their core

genome. For instance, our results highlight the difficulty in dis-

tinguishing Escherichia coli strains from Shigella strains: both kal-

listo and Bracken underestimate E.coli abundance and overestimate

the abundance of several false-positive Shigella strains. This is un-

surprising, as these two species are so genetically similar that the lat-

ter is sometimes considered a strain of the former (Zuo et al., 2013).

As the number of highly-similar strains increases, the need for new

algorithms that can distinguish strains on the basis of a few differen-

tiating reads becomes more pressing.

In addition, the sheer size of growing reference databases will

lead to continued challenges in quantification and downstream ana-

lysis. While the two-step Mash-kallisto workflow we have described

here can scale for the time being, novel algorithmic ideas are needed

to that can leverage large databases for individual genome analysis,

yet efficiently discard irrelevant information.
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