
Genome analysis

cyvcf2: fast, flexible variant analysis with

Python

Brent S. Pedersen* and Aaron R. Quinlan*

Department of Human Genetics, Department of Biomedical Informatics, and USTAR Center for Genetic Discovery,

University of Utah, Salt Lake City, UT, USA

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on December 9, 2016; revised on January 13, 2017; editorial decision on January 24, 2017; accepted on January 28, 2017

Abstract

Motivation: Variant call format (VCF) files document the genetic variation observed after DNA

sequencing, alignment and variant calling of a sample cohort. Given the complexity of the VCF for-

mat as well as the diverse variant annotations and genotype metadata, there is a need for fast, flex-

ible methods enabling intuitive analysis of the variant data within VCF and BCF files.

Results: We introduce cyvcf2, a Python library and software package for fast parsing and querying

of VCF and BCF files and illustrate its speed, simplicity and utility.

Contact: bpederse@gmail.com or aaronquinlan@gmail.com

Availability and Implementation: cyvcf2 is available from https://github.com/brentp/cyvcf2 under

the MIT license and from common python package managers. Detailed documentation is available

at http://brentp.github.io/cyvcf2/

1 Introduction

The VCF format (Danecek et al., 2011) is the standard for represent-

ing genetic variation observed in DNA sequencing studies. The

strength of the VCF format is its ability to represent the location of a

variant, the genotypes of the sequenced individuals at each locus, as

well as extensive variant metadata. Furthermore, the VCF format

provided a substantial advance for the research community, as it fol-

lows a rigorous format specification that enables direct comparison

of results from multiple studies and facilitates reproducible research.

However, the consequence of this flexibility and the rather compli-

cated specification of the VCF format, is that researchers require

powerful software libraries to access, query and manipulate variants

from VCF files.

While bcftools (Li, 2011) provides a high performance pro-

gramming interface in the C programming language, as well as a

powerful command line interface, developing custom analyses

requires either expertise in C, or combinations of multiple options

and sub-commands from the bcftools package. Furthermore,

some analyses (e.g. the first example below) are not yet possible

with the bcftools framework. In contrast, pysam (unpublished)

and pyvcf provide researchers with direct access to VCF files

through Python programming libraries. However, while they are

relatively simple to use, these libraries lack the speed required to

rapidly manipulate and prioritize variants in VCF files from large-

scale studies (e.g. whole-genome sequencing) that often yield tens

of millions of genetic variants and many individual genotypes per

variant.

2 Approach

In developing cyvcf2, we sought to create a high performance library

that also provides researchers with an intuitive Python interface for

manipulating VCF files. Cyvcf2 provides the ability to filter variants

based upon variant annotation, interrogate the details of each sample’s

genotype information, and rapidly compute both variant and sample-

level statistics. Computational performance is enabled by leveraging

htslib, an efficient software library for accessing VCF files using the C

programming language. Cyvcf2 wraps htslib for use within Python pro-

gramming interface with Cython (Behnel et al., 2011). Cython provides

the ability to write performance critical aspects of cyvcf2 in C, while

exposing an interface that is familiar to python programmers.

VC The Author 2017. Published by Oxford University Press. 1867

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 33(12), 2017, 1867–1869

doi: 10.1093/bioinformatics/btx057

Advance Access Publication Date: 6 February 2017

Applications Note

https://github.com/brentp/cyvcf2
http://brentp.github.io/cyvcf2/
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
http://www.oxfordjournals.org/


Cyvcf2 strives to provide the user with the ability to access every

aspect of the VCF specification. The most commonly accessed vari-

ant properties are provided as Python attributes. For example, each

variant in a VCF file can be accessed through a Python iterator and

each variant object has a start attribute that returns the 0-based start

coordinate. Similarly, the end attribute returns the end of the variant

and is properly computed for structural variants, even when that re-

quires consulting the END defined in the INFO field of the VCF

record.

When accessing the sample genotype data (e.g. the predicted

genotype, observed sequencing depth and genotype quality) for each

variant, cyvcf2 automatically returns a high performance numpy

(Van Der Walt et al., 2011) array, which enables efficient manipula-

tion and access of all samples, a single sample, or specific subsets of

samples, even when the VCF or BCF file includes thousands of

individuals.

3 Usage

In an effort to demonstrate the power and performance of cyvcf2,

the following sections highlight typical VCF analyses and illustrate

commonly used features in cyvcf2. Other examples and further de-

tails of the cyvcf2 library can be found at http://brentp.github.io/

cyvcf2/.

3.1 Counting heterozygous genotypes per sample
Imagine one is interested in counting the number of high quality

heterozygous genotypes for each sample in a given locus of interest.

The following example first opens a VCF file (line 3), then creates

an iterator of each variant that overlaps our locus of interest

(line 5). We ignore any INDEL (line 6) or low quality (i.e. Phred-

scaled quality less than 10; line 7) variant. We then extract a numpy

array of the observed sequencing depths for each sample (line 9)

and increment the counts if each sample is a heterozygote and has

an alternate depth greater than 10. Alternate depths are stored in

the second column of the depths array, while the observed depth for

the reference allele is stored in the first column. For convenience,

cyvcf2 also provides keywords for each of the three diploid geno-

types: homozygous for the reference allele (HOM_REF), heterozy-

gous (HET) and homozygous for the alternate allele (HOM_ALT),

as well as an unknown genotype (UNKNOWN). Finally, in line 10,

we report, for each sample, the number of heterozygous SNP

genotypes having an alternate depth greater than 10 observed in the

locus of interest.

3.2 Finding de novo mutations in a trio
Searching for de novo mutations (DNM) is common in studies of

Mendelian disease. The following example demonstrates how cyvcf2

can be used to screen for de novo mutations in a family trio. This ex-

ample assumes that the proband, mother and father are the first, se-

cond and third samples in the VCF file (line 8). A common source of

false positive DNM predictions is a lack of sequencing depth in one or

both parents to allow the detection of an allele being transmitted from

parent to child. Therefore, we require at least 10 aligned sequences for

each family member at each candidate DNM (line 511). Next, we re-

quire the mother and father to have homozygous genotypes, whereas

the child should have a heterozygous genotype, thereby indicating a

potential DNM (line 13). Lastly, to further reduce false positive

DNMs, we wish to ignore any DNM candidate in which the alternate

allele was observed on one or more aligned sequences from the

mother or father at the given locus (line 14).

3.3 Performance
While simplicity and flexibility were important design goals, we also

sought to achieve higher performance than existing Python-based VCF

processing libraries. To demonstrate cyvcf2’s speed, we measured the

running time required by cyvcf2, bcftools (Li, 2011), pysam (unpub-

lished; pysam.readthedocs.io) and pyvcf (unpublished; pyvcf.readthe-

docs.io) to analyze all variants in the VCF file for chromosome 22

from the 1000 Genomes Project (Consortium et al., 2015), which in-

cludes genotypes for 2,504 samples. We developed a script for each

method (see https://github.com/brentp/cyvcf2/tree/master/scripts for

details) to count the number of bi-allelic variants with a quality of at

least 20 and an alternate allele frequency less than or equal to 0.05.

Since both bcftools and cyvcf2 leverage htslib, cyvcf2 achieves process-

ing speeds that are equivalent bcftools (Table 1). Furthermore, cyvcf is

6.9 and 168.1 times faster than pysam and pyvcf, respectively. We em-

phasize cyvcf2’s performance since it is not restricted to a limited set

Listing 1. Counting heterozygous genotypes per sample in an

indexed VCF file

1 import cyvcf2

2 import numpy as np

3 vcf ¼ cyvcf2.VCF(path)

4 sample_counts ¼ np.zeros(len(vcf.samples), dtype¼float)
5 for variant in vcf(“chr1:229993-329993”):

6 if variant.is_indel: continue

7 if variant.QUAL < 10: continue

8 depths ¼ variant.format(“AD”)

9 sample_counts[(depths[:, 1] > 10) & (variant.gt_types

¼= vcf.HET)]þ¼ 1

10 print(zip(vcf.samples, sample_counts))

Listing 2. Calling De novo mutations

1 import numpy as np

2 import sys

3 from scipy.stats import binom_test

4 path ¼ sys.argv[1]

5

6 import cyvcf2

7 vcf ¼ cyvcf2.VCF(path)

8 PRO, MOM, DAD ¼ range(3)

9 for v in vcf:

10 if v.QUAL < 10: continue

11 if np.any(v.gt_depths < 10): continue

12 refs, alts ¼ v.gt_ref_depths, v.gt_alt_depths

13 if not all(v.gt_types ¼= [vcf.HET, vcf.HOM_REF,

vcf.HOM_REF]): continue

14 if alts[MOM] > 1 or alts[DAD] > 1: continue

15 print(“%s\t%d\t%s\t%s\t%s” % (v.CHROM, v.start,

v.REF, “,”.join(v.ALT), “,”.join(v.gt_bases)))

1868 B.S.Pedersen and A.R.Quinlan

Deleted Text: ,
Deleted Text: ,
http://brentp.github.io/cyvcf2/
http://brentp.github.io/cyvcf2/
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
https://github.com/brentp/cyvcf2/tree/master/scripts


of pre-defined filters and operations. Cyvcf2 offers full programmatic

flexibility that can come with minimal performance penalties owing to

the careful design. In particular, the underlying sample genotype data

are exposed to the user as a numpy (Van Der Walt et al., 2011) array

that uses the original memory allocated by htslib. This speed and

memory efficiency, along with the extreme flexibility offered by

Python, are central to the inherent utility of cyvcf2.

4 Discussion

We have developed cyvcf2, a fast, flexible and efficient software

package that enables simple yet powerful manipulations of VCF files.

Its speed and analytical power offer research functionality to investi-

gators studying genetic variation in diverse contexts and species.

Funding

This research was supported by a US National Human Genome Research

Institute award to ARQ (NIH R01HG006693).

Conflict of Interest: none declared.

References

Behnel,S. et al. (2011) Cython: the best of both worlds. Comput. Sci. Eng., 13,

31–39.

Consortium,G.P. et al. (2015) A global reference for human genetic variation.

Nature, 526, 68–74.

Danecek,P. et al. (2011) The variant call format and vcftools. Bioinformatics,

27, 2156–2158.

Li,H. (2011) A statistical framework for SNP calling, mutation discovery, as-

sociation mapping and population genetical parameter estimation from

sequencing data. Bioinformatics, 27, 2987–2993.

Van Der Walt,S. et al. (2011) The numpy array: a structure for efficient numer-

ical computation. Comput. Sci. Eng., 13, 22–30.

Table 1. Time required to filter the 1000 genomes VCF for chromo-

some 22 using a single Intel Xeon CPU E5-26900@2.90GHz

Name Time (s) Ratio

bcftools 224 0.9

cyvcf2 248.6 1

pysam 1711.5 6.89

pyvcf 41786.6 168.1

cyvcf2 1869

Deleted Text: ,

