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Abstract

Motivation: Over the past decade, there has been a remarkable improvement in our understanding

of the role of genetic variation in complex human diseases, especially via genome-wide association

studies. However, the underlying molecular mechanisms are still poorly characterized, impending

the development of therapeutic interventions. Identifying genetic variants that influence the ex-

pression level of a gene, i.e. expression quantitative trait loci (eQTLs), can help us understand how

genetic variants influence traits at the molecular level. While most eQTL studies focus on identify-

ing mean effects on gene expression using linear regression, evidence suggests that genetic vari-

ation can impact the entire distribution of the expression level. Motivated by the potential higher

order associations, several studies investigated variance eQTLs.

Results: In this paper, we develop a Quantile Rank-score based test (QRank), which provides an

easy way to identify eQTLs that are associated with the conditional quantile functions of gene ex-

pression. We have applied the proposed QRank to the Genotype-Tissue Expression project, an

international tissue bank for studying the relationship between genetic variation and gene expres-

sion in human tissues, and found that the proposed QRank complements the existing methods,

and identifies new eQTLs with heterogeneous effects across different quantile levels. Notably, we

show that the eQTLs identified by QRank but missed by linear regression are associated with

greater enrichment in genome-wide significant SNPs from the GWAS catalog, and are also more

likely to be tissue specific than eQTLs identified by linear regression.

Availability and Implementation: An R package is available on R CRAN at https://cran.r-project.org/

web/packages/QRank.

Contact: xs2148@cumc.columbia.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) have led to remarkable

progress in our understanding of the role of genetic variation in

complex human diseases, resulting in the identification of thousands

of common genetic variants affecting human diseases and other

complex traits. Most genetic variants discovered through GWAS

are non-coding, and therefore may play a role in regulating gene

expression levels. Identifying genetic variants that influence the ex-

pression level of a gene, i.e. expression quantitative trait loci

(eQTLs), is essential to interpreting the GWAS loci and understand-

ing how genetic variants influence traits at the molecular level. In

addition, eQTL discovery by itself is an important area, since it

helps understand how genetic variants influence gene regulation and

discover complex gene regulatory networks. An important resource
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for eQTL discovery is the Genotype-Tissue Expression (GTEx) pro-

ject, a major international project designed to establish a compre-

hensive data resource on genetic variation, gene expression and

other molecular phenotypes across multiple human tissues (Aguet

et al., 2016).

Most of the existing eQTL studies focus on identifying mean ef-

fects, or associations between genotype and the mean value of the

expression level of a gene. However, the entire distribution of gene

expression may be regulated by genetic variants. For instance, Wei

et al. (2014) identified a set of single nucleotide polymorphisms

(SNPs) that are associated with the variance of gene expression, and

also found that these SNPs are more likely to exhibit interactions

with environment and other SNPs than SNPs that are identified by

mean-based methods. Their findings suggest that higher order gen-

etic associations are meaningful, and hence have great potential for

new eQTL discoveries.

Along this direction, several methods have been proposed to

identify variance eQTLs by testing heteroscedasticity, including

(i) Levene’s test (Schultz, 1985), (ii) Brown-Forsythe test (Brown and

Forsythe, 1974) and (iii) correlation least squared (CLS) test (Brown

et al., 2014). Both Levene and Brown-Forsythe tests test the marginal

variance differences between two and more groups. While beneficial

for experimental studies, their inability to account for continuous

covariates such as imputed SNPs and principal components of popu-

lation stratification largely limits their application to genetic studies in

human populations. The CLS method is more flexible in accommo-

dating covariates with an assumption of a linear location-scale model.

It is a two-step regression-based test. The first step is to regress gene

expression levels on genotypes and covariates, and the second step ex-

ploits Spearman rank correlation tests to assess whether the residual

squares are correlated with genotypes. The covariate effect is only

considered in the regression step, but not in the correlation test step.

More recently, a Bayesian test (Dumitrascu et al., 2015) has been pro-

posed to relax the linear assumption at the expense of increased com-

putational cost, which could be undesirable for genome-wide

identification of eQTLs that involves hundreds of millions of tests.

Mean and variance only partially reveal the distributional het-

erogeneity. In this paper, we exploit quantile regressions (Koenker

and Bassett Jr, 1978) to systematically investigate how genotypes

and covariates affect the entire distribution of a gene expression. In

particular, we consider a series of quantile levels and use a rank-

score approach (Gutenbrunner et al., 1993) to identify eQTLs with

impact on the distribution of each gene expression. The resulting

quantile test, which we call Quantile Rank-score based test (QRank)

throughout the paper, enjoys the following advantages: (i) it is com-

putationally efficient, requiring only about 1.75 times the comput-

ing time of linear regressions in simulations; (ii) it can easily

accommodate various types of covariates, continuous or discrete;

(iii) it accommodates a wide range of distributions without assuming

an a priori parametric likelihood for the gene expressions; (iv) it is

robust against outliers in the data; (v) it simplifies the preprocessing

normalization procedure; and (vi) it controls the type I error under

various simulation settings.

We applied the proposed QRank tool to the Genotype-Tissue

Expression (GTEx) project v6 data (dbGaP accession number

phs000424.v6.p; project website at www.gtexportal.org), and com-

pared the eQTL discoveries with those identified by linear regres-

sions (Aguet et al., 2016) and CLS. We found that the eQTLs

identified by QRank or CLS are more likely to be tissue specific, and

have higher enrichment in the GWAS SNP set (Welter et al., 2014),

than those identified by linear regressions. It may suggest that the

eQTLs with higher order effects on gene expressions are more likely

to be disease-related. In addition, QRank has higher power and

identifies many more new eQTLs than CLS.

2 Systems and methods

2.1 Notations and settings
Suppose the data consists of n subjects who have their gene expres-

sion measured on a total of K genes, and are genotyped for a total of

M SNPs. We then denote Y as a n�K gene expression matrix,

where Yi;k is the gene expression level of the ith subject on the kth

gene, Gk. We denote X as a n�M genotype matrix, where xi;j is the

ith subject’s genotype on the jth SNP. We finally denote zi as the vec-

tor of covariates of the ith subject, including the intercept.

Throughout the paper, we denote QYðsjXÞ as the sth conditional

quantile of Y given X.

Let Kk be the subset of SNPs that are within the pre-defined dis-

tance of the the transcriptional start site (TSS) of gene Gk, such as

61 MB, then for each SNP–gene pair (j, k) where j 2 Kk and

k 2 f1; . . . ;Kg, we build the following linear quantile model

Yi;k ¼ z>i ajk;s þ xi;jbjk;s þ �i;k; (1)

where �i;k is the random error whose sth conditional quantile

Q�i;k ðsjzi;xi;jÞ ¼ 0, and s 2 ð0; 1Þ is the quantile level of interest.

Under Model (1), the conditional quantile of Yi;k is a linear function

of zi and xi;j, i.e. QYi;k
ðsjzi;xi;jÞ ¼ z>i ajk;s þ xi;jbjk;s. In this model,

bjk;s is the primary parameter of interest, which characterizes the

association between the genotype xi;j and the gene expression level

of Gk. The goal of the analysis is to identify the (j, k) pairs whose

bjk;s 6¼ 0 for any given s 2 ð0;1Þ.

2.2 Quantile rank-score based test at a fixed quantile
At a fixed quantile level, the existing inference tools for quantile

regression can be generally classified into three categories: Wald-

type inference, rank-score method and resampling methods

(Kocherginsky et al., 2012). The Wald-type inference requires the

direct estimation of the asymptotic variance-covariance matrix.

That, however, is computationally difficult, since the limiting

variance-covariance matrix contains the density of the error �i;k at

the sth quantile. In the framework of quantile regression, the error

distribution is non-i.i.d. and completely unspecified. As a result, the

limiting variance-covariance matrix contains n nuisance parameters.

Without a parametric likelihood, it is hard to estimate those local

densities. Several kernel based approaches have been proposed in

this context, but their estimates are often unreliable at extreme

quantiles or with relatively small sample sizes. In our preliminary

analyses, we also found that direct Wald type inference with kernel

estimated densities has inflated type I errors at very small signifi-

cance level (e.g. a � 1� 10�6). Alternatively, resampling based in-

ference such as bootstrap does not require density estimation;

however it is computationally intensive, and hence undesirable in

gene expression applications where one needs to repeat the analysis

for hundreds of millions of SNP–gene pairs for each tissue.

We hence propose to extend the rank-score test (Gutenbrunner

et al., 1993) for eQTL discovery. For any fixed quantile s, the rank

score function in quantile regression can be written as

Sn;s ¼ n�1=2
Xn

i¼1

/sfyi;k � zT
i bajk;sgx�i;j; (2)

where /sðuÞ ¼ s� Iðu < 0Þ is an asymmetric sign function, and

bajk;s is the estimated coefficient under the null H0 : bjk;s ¼ 0. Define
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X�j ¼ Xj � ZðZTZÞ�1ZTXj as the residual vector of Xj projected on

the column space of Z (the design matrix under the null), then x�i;j in

(2) is the ith element of X�j ; the projection is done to achieve the

asymptotic independence between X and Z. Hence the test statistics

Sn;s measures the quantile association between Y and X that is ac-

counted for the co-linearity between X and Z. Since the function /sðuÞ
essentially measures the signs of the residuals, and is in the form of

H�ajek’s rank generating function (H�ajek, 1965), Sn;s is hence called

rank score statistic.

Note that Sn;sðuÞ ¼ n�1=2
Pn

i¼1 /sfugx�i;j is the quantile regres-

sion estimating function that is associated with bjk;s. When u is the

residual under the null hypothesis, Sn;sðuÞ is close to zero if and only

if the null hypothesis is true. Any deviation from the null model will

push Sn;sðuÞ away from zero. Consequently, one could construct a

test statistics to test whether bjk;s ¼ 0 by

Tn;s ¼
S2

n;s

Vn
(3)

where Vn is the variance of Sn;s such that Vn ¼ n�1sð1� sÞX�Tj X�j .

According to the rank-score inference (Gutenbrunner et al., 1993),

Tn;s ! v2
1 as n!1 (4)

under the null hypothesis bjk;s ¼ 0. Similar construction in max-

imum likelihood estimation (MLE) can be found in Fisher’s score

test (Nelder and Baker, 2004), or generalized likelihood ratio statis-

tics (Fan et al., 2001).

The asymptotic distribution of Equation (3) was established

under the assumption of i.i.d. errors. Although this assumption is

often unrealistic for quantile regressions, many studies (Wang,

2009; Wei et al., 2006) have consistently found that the rank score

test is very robust with non-i.i.d. errors. A generalized rank score

test with non-i.i.d. densities could be found in Wang (2009).

However, it requires the estimation of the nuisance parameters

f ð�i;kðsÞÞ’s. Even though it is theoretically appealing, such general-

ized rank score test is much harder to implement, and may bring

extra uncertainty to the estimates. For this reason, we will investi-

gate the performance of the simple rank score test (2) in the setting

of eQTL discovery. The quantile regression rank-score test enjoys

the following advantages. (1) It is a distribution-free statistic. The

asymptotic distribution of the test statistics is independent of distri-

bution of the gene expressions. Hence it can be applied to any gene

expression data without requiring a pre-transformation to achieve

normality. (2) The construction of the test statistics is simple and

avoids the estimation of local densities. (3) It is computationally

fast. To construct rank-score test statistics, we only need to estimate

the null model where bjk;s ¼ 0 once, which greatly reduces the com-

putation cost from M�K pair-wise regressions for each SNP–gene

pair to K regressions.

2.3 Composite rank-score test
Instead of individual quantile level P-values, it would be desirable to

have a single P-value for a SNP–gene pair from a composite test

across multiple quantile levels. Suppose we consider ‘ quantile levels

of s1; s2; . . . ; s‘, then define Sn ¼ ðSn;s1
; Sn;s2

; . . . ; Sn;s‘ Þ
> as the vector

of rank score test statistics at the corresponding quantile levels. We

can show that, under the null hypothesis, Sn asymptotically follows

a multivariate normal distribution,

Sn ! Nð0;RÞ; (5)

where R is the ‘� ‘ variance-covariance matrix. The diagonal elem-

ents of R are rl;l ¼ n�1slð1� slÞX�Tj;l X�j;l for l 2 f1; . . . ; ‘g, and the

off-diagonal elements of R are rl;m ¼ n�1ðminðsl; smÞ � sl � smÞX�Tj; l

X�j;m for l;m 2 f1; . . . ;Pg and l 6¼ m.

A natural composite rank score test statistic can be constructed

by the following quadratic form in Sn:

T‘ ¼ ST
n R�1Sn � v2

‘ : (6)

To select the quantile levels, one could either choose ‘ evenly spaced

quantile levels, or go with the commonly used quantile levels, such

as 0.1, 0.25, 0.5, 0.75 and 0.9. Depending on the nature of the ap-

plication, one may also select quantile levels in a specific interval of

interest. For example, if we were only interested in identifying

eQTLs that are associated with extreme values of gene expression,

we could select only quantiles at the upper tail.

The composite rank score T‘ combines the quantile associations

over multiple quantiles, regardless of the directions of the quantile

associations. To some extent, one can view the mean effect asÐ 1
0 SnðsÞds, an integrated quantile effect. When the quantile associ-

ation is homogeneous at all the quantiles in terms of both direction

and magnitude, then testing the composite quantile association at ‘

evenly spaced quantile levels is equivalent to testing the mean effect.

When the association is heterogeneous across quantile levels, espe-

cially when the association is ‘crossing’ over quantile levels, i.e. Sn is

positive for certain quantiles but negative for others, or the associ-

ation only manifests at extreme quantiles, the linear regression could

underestimate, or even completely miss the underlying SNP–gene

link. The composite quantile test hence has better chance to discover

such heterogeneous associations. As we report below in the Results

section, the eQTLs associated with heterogeneous associations are

more likely to be associated with complex traits, which underscores

the potential of quantile analysis in eQTL discovery.

3 Results and discussion

3.1 Overview of GTEx data
We applied the QRank tool to the GTEx data to illustrate the poten-

tial value of the quantile based gene expression test. We analyzed

the GTEx midpoint v6 data, which comprises RNA sequencing

(RNA-seq) data from 7051 samples of 449 individuals representing

44 tissues (dbGaP accession number phs000424.v6.p1). We used

data from 4 tissues with sufficient sample sizes (n>275) including:

muscle-skeletal (n¼361), whole blood (n¼338), lung (n¼278)

and thyroid (n¼278) for the identification of eQTLs. Because of the

relatively small sample sizes, we focused on identifying eQTLs

within 61 MB of TSS of each gene.

In this paper, we focus on the protein coding genes defined in the

GENCODE version 19 (Harrow et al., 2012). The genotype and

gene expression data underwent the same quality control procedures

as in the previous GTEx study (Aguet et al., 2016). In particular, the

gene expression values are transformed via the inverse quantile nor-

malization. We remark, however, that QRank makes no distribu-

tional assumption of gene expressions. The use of the normalized

gene expression data is merely out of consideration for fair compari-

son between different methods. In addition, we remove genes with

more than 10% zero read count, as in such a case the Gaussian as-

sumption in linear regression is violated and our preliminary ana-

lyses also found that the existing variance eQTL method CLS

(Brown et al., 2014) had largely inflated type I error. We also adjust

for 40 known and inferred technical covariates in order to control

for potential confounding factors including gender, genotyping

array platform (Illumina’s OMNI 5m or 2.5M array), 3 principal

components of SNPs and 35 PEER factors (Stegle et al., 2012) of the
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top 10 000 expressed genes in each tissue in the analysis. More in-

formation about the data processing and analyses can be found in

the supplementary materials.

3.2 Comparison methods
We compare the proposed QRank tool with two existing methods:

(i) linear regression (LR) following the GTEx analysis protocol, and

(ii) the CLS test for variance eQTLs. In particular, LR measures the

genetic effects of the mean levels of gene experiences; CLS measures

the genetic effects on variances of gene expressions; QRank meas-

ures the genetic effects on the entire distribution of gene expressions.

When implementing the proposed QRank test, we consider 5 quan-

tile levels at s ¼ ð0:15; 0:25; 0:5; 0:75;0:85Þ, and combine their rank

score functions to test whether genetic variants have effect on the en-

tire distribution of gene expression levels.

The LR assumes that the gene expression level yi;k after quantile-

normalization follows a linear model

gðyi;kÞ ¼ ziaj;k þ xi;jbj;k þ ei;k; (7)

where gðÞ is the quantile-normalization function, and ei;k is the ran-

dom error with mean zero. Here, bj;k measures the effect of the vari-

ant xi;j on the mean of the normalized yi;k.

The CLS test (Brown et al., 2014) takes the residuals from the

LR Equation (7), and then calculates the Spearman correlation be-

tween the genotype xi;j and the residuals squares be2
i;k. If the resulting

correlation is significant, it claims that SNP j is associated with the

variance of the normalized gene expression level yi;k.

3.3 Simulations
3.3.1 Type I error estimate and power

In this section, we evaluated the type I error and power of the

QRank test in various simulated settings, and compared the results

with those from LR and CLS. Specifically, we considered a simple

scenario where a gene expression is associated with a single SNP

with minor allele frequency (MAF) 0.3 and a single covariate, and

investigated various joint distributions of (Y, X, Z).

We first considered a ‘homogeneous’ model

Y ¼ �0:1þ bXþ 0:3Zþ e;

where e is the random error. In this setting, the association of X and

Y is constant across different quantile levels with the common slope

b. We then considered the ‘location-scale’ model

Y ¼ �0:1þ bXþ 0:3Zþ ð1þ bXþ 0:15ZÞe;

where e is i.i.d. with cumulative density distribution (CDF) Fe.

Under this model, the effect of X on Y is bð1þ F�1
e ðsÞÞ, and as s in-

creases, the true effect increases. Finally, we considered a ‘local’

model, where quantile effect only exists on a small interval of s. We

assume that the quantile function of Y follows

QYðsjX;ZÞ ¼ �0:1þ bðsÞXþ 0:3Zþ F�1
e ðsÞ, where

bðsÞ ¼
5bð0:3� sÞ

1� 0:3
s < 0:3

0 s >¼ 0:3:

8<
:

Y is not associated with X when quantile levels are greater than 0.3,

but negatively associated with X when quantile levels are less than

0.3. In each of the model settings, we considered 4 error distribu-

tions. (1) e � Nð0;1Þ, the standard normal distribution, (2) e � v2
2, a

skewed distribution, (3) e � t3, a symmetric and heavy-tailed distri-

bution, and (4) e � Cauchy distribution, an extremely heavy-tailed

distribution with unbounded variance. Since the gene expression lev-

els are matched to normal distribution in preprocessing procedure of

the GTEx data, the error distributions are most likely to be close to

be normally distributed. However, this simulation aims to provide a

comprehensive investigation of the validity of QRank (as well as LR

and CLS approach), as it is proposed to apply for studies with no

distributional assumption of gene expressions. For example, it can

be directly used to read counts or RPKM (Reads Per Kilobase of

transcript per Million mapped reads) gene expression data.

Finally, the regression coefficient b represents the genetic associ-

ation of interest. Here we consider three scenarios of b 2 f0;0:2;0:4g
corresponding to no effect, small effect and large effect, respectively.

In particular, when b¼0, Y is not associated with X. Any discovery

would be a false positive. To mimic the GTEx data, we simulated

300 samples in each setting. We used five pre-selected quantile levels

of s ¼ ð0:15; 0:25;0:5;0:75;0:85Þ in QRank for estimation.

Table 1 presents the type I errors and powers estimated from

5000 Monte-Carlo replicates. Both LR and QRank have well-

controlled type I errors in all scenarios. QRank is slightly more con-

servative than LR. Under the homogeneous setting, the combined

quantile effect is similar to the mean effect. As expected LR is more

powerful than QRank when the error distribution is normal.

However, when the error distribution is t3, their performances are

comparable, and when the error distribution is skewed (v2
2) or ex-

tremely heavy-tailed (Cauchy), QRank is more powerful than LR.

When the genetic associations are heterogeneous across quantile lev-

els (e.g. under the location-scale setting and the local setting),

QRank is more powerful than LR in detecting such higher order

heterogenous associations.

Interestingly, we observed that CLS has inflated type I errors in

many scenarios. As described in the introduction, the covariate ef-

fect is only considered in the regression step, but not in the correl-

ation test step in CLS. As the confounding effect of Z is not adjusted

in the second step of CLS, it leads to the inflation. In addition, when

the error distribution is skewed or extremely heavy-tailed, CLS may

also encounter inflated type I errors.

In addition to the simulated models above, we also investigated

the type I error based on the real GTEx data, whose gene expres-

sions are matched to normal distribution. We generate each Monte

Carlo sample by randomly selecting a gene Gk from all the genes in

each tissue who have non-zero expressions in at least 90% of the

subjects, and then randomly select a SNP j from all the genotyped

Table 1. The comparison of LR, CLS and QRank in terms of the

Type I error (when b¼ 0) and power (when b 6¼ 0) under different

simulation settings

b Homogeneous Location-scale Local

LR CLS QRank LR CLS QRank LR CLS QRank

0 0.050 0.053 0.042 0.055 0.083 0.047 0.047 0.049 0.045

N(0, 1) 0.2 0.596 0.049 0.315 0.484 0.730 0.527 0.111 0.155 0.322

0.4 0.994 0.052 0.914 0.899 0.986 0.977 0.315 0.498 0.934

0 0.048 0.159 0.046 0.051 0.260 0.050 0.048 0.252 0.045

v2
2 0.2 0.191 0.252 0.513 0.810 0.761 0.769 0.065 0.326 0.895

0.4 0.592 0.242 0.977 0.998 0.968 0.999 0.111 0.427 1.000

0 0.049 0.057 0.048 0.054 0.074 0.049 0.048 0.050 0.046

t3 0.2 0.272 0.055 0.213 0.233 0.590 0.381 0.069 0.091 0.133

0.4 0.740 0.051 0.738 0.534 0.942 0.892 0.132 0.234 0.556

0 0.050 0.579 0.046 0.057 0.587 0.052 0.057 0.585 0.045

Cauchy 0.2 0.055 0.580 0.153 0.066 0.647 0.223 0.050 0.587 0.064

0.4 0.065 0.585 0.536 0.075 0.727 0.666 0.046 0.606 0.111
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and imputed SNPs. We consider all 40 covariates as in real data ana-

lysis. Since the expected association between a random SNP and a

random gene from genome-wide data is close to zero, we assume

that such a generated random sample follows the null model, and

hence we expect the false discovery rate to be close to its nominal

level. We repeat this random sampling a million times per tissue,

and for each random sample, we apply all the three approaches to

test the conditional association between yi;k and (xi;j; ziÞ.
The estimated type I errors from all the Monte-Carlo replicates

(4 million in total) are presented in Table 2 at multiple significance

levels ranging from 0.05 to 10�4. Same as in the simulated models,

both LR and QRank have well-controlled type I errors. We do ob-

serve a slightly inflated type I error in CLS. Due to the observed in-

flation pattern in the simulated data, we evaluated canonical

correlations between the 40 covariates and the variance of gene ex-

pressions, which we denote as R2. We then repeat the procedure to

re-estimate the type I errors restricting to the genes whose R2 > 0:3.

The resulting type I errors are presented in the second half of

Table 2. As expected, we observed even larger type I errors in the

CLS method. Luckily, in GTEx, only less than 1% of the genes have

R2 > 0:3.

3.4 GTEx data analysis
3.4.1 eQTLs identified in four tissues

Supplemental Table S1 provides information for each of the four tis-

sues we analyzed (muscle-skeletal, whole blood, lung and thyroid),

including the sample size, the number of genes with < 10% zeros,

the number of SNPs genotyped or imputed within the 61 MB neigh-

borhood of the genes and the number of SNP–gene pairs.

Stratified by the type of tissues, the Venn diagrams in Figure 1

displays the numbers of identified genes from different methods at

the false discovery rate (FDR) level of 5%, and how they overlap

with each other. (The Venn diagrams at the SNP–gene pair level are

available in Supplementary Fig. S1). Each gene may correspond to

multiple eQTLs due to linkage disequilibrium (LD) among SNPs.

We observed similar patterns across the four tissues. In particular,

LR identified the most significant genes/eQTLs, CLS identified the

least, and QRank in between. This suggests that linear regression re-

mains a powerful tool to identify eQTLs, while the CLS test may

have limited power in eQTL discoveries. Most of the genes/eQTLs

identified by QRank are also identified by LR, however, there are a

fairly substantive number of new genes/eQTLs that were uniquely

identified by QRank.

We carefully examined the quantile specific effects of those

eQTLs that were identified by QRank. It reveals that most of the

overlapping eQTLs with LR have homogenous effects across the

quantile levels. In contrast, the eQTLs that are uniquely identified

by QRank often exhibit substantial heterogeneity across the quantiles, and consequently are missed by LR (similar to what was

shown in our simulation study). To illustrate the differences between

the two sets of eQTLs, we quantify the degree of heterogeneity for

each SNP–gene pair by the log transformed ratio between the stand-

ard deviation and the absolute mean of their 5 estimated quantile

coefficients bjk;ss. The higher the number, the more heterogeneity in

the quantile effects. In Figure 2, we overlaid densities from the re-

sulting heterogeneity indexes between the two sets of eQTLs at 5%

FDR in four tissues. In Figure 2, the density in dark gray is estimated

from the heterogeneity indexes from the SNP–gene pairs uniquely

identified by QRank (QRank-LR), and the light gray one is that

from the SNP–gene pairs identified by both approaches (QRank &

LR). Clearly, as shown, the QRank-LR eQTLs presented more het-

erogeneous effects compared to those identified by QRank & LR.

Table 2. The Type I errors for LR, CLS and QRank at different nom-

inal levels, based on the GTEx data

Nominal P-value LR CLS Qrank

5E-02 5.01E-02 5.40E-02 3.08E-02

All genes 1E-02 1.02E-02 1.13E-02 5.14E-03

1E-03 1.06E-03 1.21E-03 4.47E-04

1E-04 1.15E-04 1.38E-04 4.51E-05

5E-02 5.04E-02 6.66E-02 3.38E-02

Genes with 1E-02 1.04E-02 1.74E-02 5.79E-03

R2 > 0:3 1E-03 1.17E-03 3.19E-03 5.24E-04

1E-04 1.66E-04 8.22E-04 6.07E-05

Fig. 2. Densities of the log transformed value of the ratio between the stand-

ard deviation and the absolute mean of their 5 estimated quantile coefficients

bjk ;ss for eQTLs identified at 5% FDR in four tissues. In legend, QRank-LR

stands for the SNP–gene pairs that were identified by QRank but missed by

LR, and QRank & LR stands for the SNP–gene pairs identified by both

approaches. The QRank-LR eQTLs are more heterogeneous than the QRank

& LR eQTLs

(a) Muscle Skeletal(b) Whole Blood(c) Lung(d) Thyroid

Muscle Skeletal Whole Blood

Lung Thyroid

(a) (b)

(c) (d)

Fig. 1. Venn diagrams depicting the overlap among genes identified by LR,

CLS and QRank controlling FDR at a ¼ 0:05
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Such results are not surprising, since when the quantile effects are

homogenous, they are equivalent to the mean effect. Consequently,

LR is expected to be more powerful than QRank, as the LR is the

most powerful test for mean effects with normalized outcomes. For

the same reason, a large number of homogenous eQTLs were identi-

fied by LR but missed by QRank.

3.4.2 Explore the eQTL association patterns using quantile

specific QRank

One advantage of quantile based approach is to investigate how the

eQTLs impact the entire distribution of the gene expression. To do

that, we estimate the quantile coefficients on a fine grid of quantile

levels (we used 49 evenly spaced quantile levels ranging from 0.02

to 0.98). The estimated conditional quantile of Y given X and Z is thenbQYðsjX;ZÞ ¼ XbbðsÞ þ ZbaðsÞ. One can then exam how bQYðsjX;ZÞ
changes with a genotype X. It provides a comprehensive picture on

gene-SNP association.

To get a better understanding on why different methods identify

different eQTLs, we applied this approach to a set of eQTLs identified

(or not identified) by different methods to evaluate their quantile asso-

ciation patterns. The resulting conditional distribution functions of 4

representative gene-SNP pairs in thyroid tissue are plotted in Figure 3.

Specifically, the black solid curve is the estimated quantile function

with reference SNP values, while the dark grey and light grey dot

curves are the estimated quantile functions with one or two alterna-

tive alleles assuming additive genetic models. Each sub-figure repre-

sents a distinctive association pattern. Figure 3(a) presents a SNP–

gene pair that is not identified by any of the approaches. As shown,

the three curves are nearly identical at all the quantile levels, which

suggest that the SNP genotype has little impact on the gene expression

level. Figure 3(b) presents a SNP–gene pair that is identified by both

LR and QRank, but missed by CLS. In this case, the effect of the SNP

on gene expression is homogeneous in both the direction and magni-

tude across all quantile levels. In this case, LR is more efficient than

QRank with smaller P-value. Figure 3(c) presents a SNP–gene pair

with a ‘crossing’ heterogeneous effect such that the SNP is positively

associated with the gene expression at lower quantiles, and negatively

associated with the gene expression at upper quantiles. Such eQTLs

would be missed by LR as their effect at lower and upper quantiles

cancels out at the mean level; in contrast, the proposed QRank is not

affected by such crossing effect because the test statistics accumulates

the squared estimating functions. As shown in their P-values, the CLS

test detects such an association pattern with limited power. Finally,

Figure 3(d) presents another heterogeneous effect pattern, in which

case the SNP has an effect that is mostly evident at upper quantile lev-

els. In this case, LR is less powerful than QRank as it misses the local

effect while QRank captures it.

These examples illustrate the advantage of QRank in identifying

SNP–gene pairs with heterogeneous effects, and in providing a more

comprehensive association picture for eQTL discoveries.

3.4.3 Tissue-specific effects in the four tissues

We also investigated the sharing patterns of eQTLs across tissues, for

each method separately. As complex traits may be influenced by regula-

tory elements that act in a tissue-specific manner, tissue-specific eQTLs

are more likely to be linked with disease risk than cross-tissue eQTLs

(Torres et al., 2014). To understand the eQTLs sharing patterns for

each method, we compute a pairwise eQTL sharing coefficient pij ¼ Pr

(eQTL a gene with eQTL(s) in tissue i j a gene with eQTL(s) in tissue j).

In Figure 4, we show the pairwise sharing coefficients at the gene-level

for different approaches. The pairwise sharing at the SNP level is pro-

vided in Supplementary Figure S2. As QRank-LR corresponds to genes/

eQTLs identified by QRank but missed by LR in the same tissue, the

pairwise sharing of QRank-LR corresponds to those genes/eQTLs also

identified by QRank in other tissues. As shown, genes/eQTLs that are

identified by CLS or QRank-LR tend to be less shared than those iden-

tified by LR and QRank. At gene level, the CLS identified eQTLs are

the least shared among all approaches, and at SNP–gene pair level, the

QRank-LR identified eQTLs are the least shared.

In Table 3 we show the relative risk (RR) of being tissue-specific

genes for genes identified by each approach at 5% FDR in(a) (b)

(c) (d)

Fig. 3. The estimated conditional distribution functions of gene expression

levels for a few SNP–gene pairs in thyroid tissue. The x-axis is the grid of

quantile levels s 2 ð0; 1Þ, and the y-axis is the estimated conditional distribu-

tion functions for each quantile level given three SNP values and averaged

covariates. This figure presents how the entire distribution of gene expres-

sion differs by SNP values for 4 SNP–gene pairs

Fig. 4. Cross-tissue sharing of genes. The entry in row i and column j is an

estimate of pij ¼ Pr (gene with eQTL(s) in tissue i j a gene with eQTL(s) in

tissue j)
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comparison with LR. About 20.7% LR-identified genes are tissue

specific. Statistical tests on RR show that CLS, QRank, QRank-LR

are all significantly more likely to detect tissue-specific eQTLs than

LR. Out of the 3631 unique genes identified by QRank-LR, 42%

are tissue specific. In the next section, we validate these QRank-LR

tissue-specific associations using the enrichment in GWAS catalog.

3.4.4 Enrichment of GWAS SNPs among the eQTLs identified in

the four tissues

We studied the enrichment of GWAS SNPs ((Welter et al., 2014); ver-

sion June 2016) by matching exactly the eQTLs identified by different

methods to the SNPs in the GWAS catalog. The catalog is a quality

controlled collection of all published GWAS assaying at least 100 000

SNPs and all SNP–trait associations with P-values < 1:0� 10�5.

Figure 5(a) presents the enrichment results at FDR range from 0.05 to

10�5. The RR of GWAS enrichment is calculated with reference to LR.

Figure 5(a) shows that both CLS and QRank-LR are significantly en-

riched in GWAS catalog SNPs in comparison with LR. As the signifi-

cance criteria become more stringent, the enrichment of QRank-LR in

the GWAS catalog becomes larger. The eQTLs identified by CLS show

the largest enrichment in the GWAS catalog across different levels.

Figure 5(b) serves to validate the QRank-LR tissue-specific

eQTLs, by comparing the enrichment of LR and QRank-LR tissue-

specific eQTLs relative to LR identified eQTLs (tissue-specific and

non-tissue-specific) at FDR ranging from 0.05 to 10�5. Figure 5(b)

shows that the LR tissue-specific eQTLs are not enriched in GWAS

catalog, while the QRank-LR tissue-specific eQTLs are significantly

enriched, supporting the validity of QRank-LR tissue-specific eQTLs.

A replication study to an independent data could be considered in the

future to further validate the identified tissue-specific eQTLs.

4 Conclusion

In this paper, we develop a new quantile regression based association

test. The method is widely applicable to a range of problems, includ-

ing the genome-wide identification of eQTLs and allele specific ex-

pression analysis. Unlike linear models which focus on the effect of

SNPs on mean expression levels, quantile regressions characterize a

comprehensive picture of how genetic variants affect gene expressions

at different quantiles. Test statistics are derived from the rank score

function in quantile regressions. In particular, for the fixed quantile

test, the test statistic is a quadratic form of the rank score at a fixed

quantile. For the composite quantile test, we combine rank scores

across a set of quantiles. The test statistics have explicit asymptotic

distributions under the null, and thus the hypothesis testings are com-

putationally efficient. The computation time of QRank is about 1.75

times the time of LR for a SNP–gene pair. When multiple SNPs are

considered per gene, its computation time is further reduced as it only

needs to estimate the sign function once. The proposed method can

easily accommodate continuous or discrete covariates, and is robust

against non-i.i.d. error terms. In the simulation study, we show that

the method controls the type I error and is more powerful than LR in

the detection of heterogenous effects. In the GTEx v6 data analysis,

the proposed method not only identifies eQTLs with significant mean

effect differences, but also makes many unique discoveries not obtain-

able from linear models. We further investigate the additional discov-

eries and obtain interesting patterns of how genetic variants regulate

gene expressions with heterogeneity in effect across different quan-

tiles. The GWAS enrichment analysis shows that the additional

eQTLs are highly enriched in the SNPs in the GWAS catalog. The

tissue-specific analysis shows that the additional eQTLs are more

likely to be tissue-specific than linear regression identified eQTLs.

Therefore those eQTLs detected by QRank but missed by LR might

be interesting in understanding the existing GWAS findings. Overall,

the proposed method provides an alternative approach for eQTL de-

tection, and the results complement the existing knowledge by under-

standing the differential expression across the entire distribution.

The proposed QRank approach provides a flexible framework for se-

lecting single or multiple quantile levels to understand eQTLs. When the

regression model is corrected specified, the type I error is well-controlled

(not too liberal or conservative), no matter how many quantile levels we

combine, while the power of the approach may be affected. When the

number of quantiles is large, adding one more quantile for estimation

won’t contribute much information, but increases one degree of freedom

in hypothesis tests. When the regression model is mis-specified such as a

number of covariates included in the models are unrelated, it also induces

the conservativeness into the type I errors for large number of quantile

levels. This is because it creates additional noises into the estimation. For

this reason, we only observe the conservativeness in the real data based

simulation, where the principal component scores of the genes and SNPs

are included into the model to adjust for potential confounding factors.

Additional simulations and explanation are provided in Supplementary

Table S3 for readers interested in this topic. A recommended number of

quantile levels for eQTL discovery is 3–5.

There are several interesting directions for future work. One is to

better accommodate zero inflation in gene expression data. So far,

we have focused on genes with fewer than 10% zero read count. In

practice, many genes have excessive zero read counts due to various

experimental and biological reasons. The abundance of zeros may

be problematic with the lower quantiles and leads to numerical in-

stability of the proposed method. New methods are needed to deal

with the zero inflation problem. For example, one may add small

perturbations to the zero values to break the ties. Conceptually this

Table 3. The tissue-specificity of genes identified by different

approaches

LR QRank CLS QRank-LR

No. of identified genes 28066 21726 4788 3631

% of tissue-specific genes 20.7% 43.6% 87.5% 42.0%

RR Ref 2.111 4.235 2.034

95% CI Ref (2.05, 2.17) (4.13,4.34) (1.95, 2.13)

P-value Ref < 2.2e-16 < 2.2e-16 < 2.2e-16

Note: The relative risk (RR) is calculated as the probability of being tissue-

specific genes for genes identified by each approach in comparison with LR.

(a) (b)

Fig. 5. The comparison of GWAS enrichment for eQTLs identified by different

approaches with FDR ranging from 0.05 to 10�5. (a) The relative risk (RR) of

GWAS enrichment for CLS, QRank and QRank-LR identified eQTLs in com-

parison with LR identified eQTLs. (b) The RR of GWAS enrichment for LR and

QRank-LR identified tissue-specific eQTLs in comparison with LR identified

eQTLs (tissue-specific and non-tissue-specific)
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will not affect the estimation very much but will greatly improve the

computational performance of the method. Another idea is to intro-

duce an additional latent variable to indicate the presence of zeros

(Muthén, 2004), and model zeros separately. A second direction is

to build joint models for eQTL analysis in multiple tissues simultan-

eously. It is well known that most eQTLs are shared across tissues,

while some are highly tissue specific (The GTEx Consortium, 2015).

Analyzing gene expression data from multiple tissues simultaneously

will increase the power of eQTL detection by borrowing strength

across tissues, and will also facilitate the assessment of tissue specifi-

city (Flutre et al., 2013; Li et al., 2013). However, how to extend

the quantile regression method to multiple tissues is not trivial. A

SNP may regulate the expression level of a gene at different quan-

tiles in different tissues. Furthermore, the computational burden will

be more severe in multi-tissue analysis. This calls for further investi-

gation. A third direction is to use functional effect predictions for

genetic variants, non-tissue specific such as GERP (Davydov et al.,

2010) and Eigen (Ionita-Laza et al., 2016), or tissue-specific

(Backenroth et al., 2016) as priors to improve power to identify

eQTLs, especially in trans-eQTL mapping studies.

Software implementing the proposed QRank is available on R

CRAN at https://cran.r-project.org/web/packages/QRank, the data

containing eQTLs with P-value < 10�6 in at least one of the three

approaches (LR, CLS and QRank) is available on Github at https://

github.com/songxiaoyu/QRank and the interactive website of search

engine and summary statistics is available at https://XiaoyuSong.shi

nyapps.io/QRank.
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