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Abstract

Modern digital pathology departments have grown to produce whole-slide image data at petabyte 

scale, an unprecedented treasure chest for medical machine learning tasks. Unfortunately, most 

digital slides are not annotated at the image level, hindering large-scale application of supervised 

learning. Manual labeling is prohibitive, requiring pathologists with decades of training and 

outstanding clinical service responsibilities. This problem is further aggravated by the United 

States Food and Drug Administration’s ruling that primary diagnosis must come from a glass 

slide rather than a digital image. We present the first end-to-end framework to overcome this 

problem, gathering annotations in a nonintrusive manner during a pathologist’s routine clinical 

work: (i) microscope-specific 3D-printed commodity camera mounts are used to video record 

the glass-slide-based clinical diagnosis process; (ii) after routine scanning of the whole slide, the 

video frames are registered to the digital slide; (iii) motion and observation time are estimated 

to generate a spatial and temporal saliency map of the whole slide. Demonstrating the utility of 

these annotations, we train a convolutional neural network that detects diagnosis-relevant salient 

regions, then report accuracy of 85.15% in bladder and 91.40% in prostate, with 75.00% accuracy 

when training on prostate but predicting in bladder, despite different pathologists examining the 

different tissues. When training on one patient but testing on another, AUROC in bladder is 

0.79±0.11 and in prostate is 0.96±0.04. Our tool is available at https://bitbucket.org/aschaumberg/

deepscope
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1 Scientific Background

Computational pathology [12] relies on training data annotated by human experts on 

digital images. However, the bulk of a pathologist’s daily clinical work remains manual 

on analog light microscopes. A noninterfering system which translates this abundance of 

expert knowledge at the microscope into labeled digital image data is desired.

Tracking a pathologist’s viewing path along the analyzed tissue slide to detect local image 

saliency has been previously proposed. These approaches include whole slide images 

displayed on one or more monitors with an eye-tracker [5], mouse-tracker [21] or viewport-

tracker [19, 23] – but may suffer confounds including peripheral vision [18], head turning 

[1], distracting extraneous detail [2], monitor resolution [22], multimonitor curvature [25], 

and monitor bezel field of view fragmentation [27]. Because computer customizations may 

potentially effect viewing times, for studies of pathologists recorded at a computer, we 

suggest noting the sensitivity and choice of pointing device, e.g. trackball, touch pad, touch 

screen, pointing stick, mouse, and if a scroll wheel or keyboard was available to zoom 

in or out. Only our approach does not change the pathologist’s medical practice from the 

microscope. The microscope is a class I device appropriate for primary diagnosis according 

to the United States Food and Drug Administration, while whole slide imaging devices are 

class III [20].

In light of the confounds of alternatives, its centuries of use in pathology, and its favorable 

regulatory position for primary diagnosis, we believe the microscope is the gold standard for 

measuring image region saliency. Indeed, there is prior work annotating regions of interest at 

the microscope for cytology technicians to automatically position the slide for a pathologist 

[4].

We therefore propose a new, noninterfering workflow for automated video-based detection 

of region saliency using pathologist viewing time at the microscope (Fig 1). Viewing time 

is known in the psychology literature to measure attention [8, 15], and we define saliency 

as pathologist attention when making a diagnosis. Using a commodity digital camera, rather 

than a custom embedded eye-tracking device [7, 16], we video record the pathologist’s 

entire field of view at a tandem microscope to obtain slide region viewing times and register 

these regions to whole slide image scan regions. Second, we train a convolutional neural 

network [CNN] on these observation times to predict whether or not a whole slide image 

region is viewed by a pathologist at the microscope for more than 0.1 seconds [s]. As more 

videos become available, our CNN predicting image saliency may be further trained and 

improved, through online learning.

2 Materials and Methods

Pathologists

Pathologists were assistant attending rank with several years experience each. Trainees have 

different, less efficient, slide viewing strategies [5, 18]. Region viewing times and path were 

automatically recorded during a pathologist’s routine slide analysis, without interference.
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Patient slides

Two bladder cancer patients were studied by author SJS. Two prostate cancer patients were 

studied by author HAA. One slide per patient was used, for four slides total (Fig 2).

Scan preprocessing

Microscope slides, inspected by a pathologist, were scanned at 0.5±0.003 microns per pixel 

[px], using an Aperio AT2 scanner. The resulting SVS data file consists of multiple levels, 

where level 0 is not downsampled, level 1 is downsampled by a factor of 4, level 2 by 

a factor of 16, and level 3 by a factor of 32. From each level, 800 × 800 px patches 

were extracted via the OpenSlide software library [13]. In bladder, adjacent patches in a 

level overlap at least 50%, to avoid windowing artifacts in registration. In prostate, adjacent 

patches overlap at least 75%, to best center the pathologist’s field of view on the little tissue 

in a needle biopsy. Patches evenly cover the entire level without gaps. Scans were either 

taken before a technician applied marker to the slides, to indicate regions of interest to the 

pathologist, or after markings were scrubbed from the slide. However, these marks were 

evident in the pathologist videos discussed in the next section.

Video acquisition

A Panasonic Lumix DMC-FH10 camera with a 16.1 megapixel charge-coupled device 

[CCD], capable of 720p motion JPEG video at 30 frames per second fps], was mounted 

on a second head of an Olympus BX53F multihead teaching microscope to record the 

pathologist’s slide inspection. Microscope objective lens magnifications were 4x, 10x, 20x, 

40x, and 100x. Eyepiece lens magnifications was 10x. The pathologist was told to ignore 

the device and person recording video at the microscope during inspection. The mount (Fig 

1) for this camera was designed in OpenSCAD and 3D-printed on a MakerBot 2 using 

polylactic acid [PLA] filament.

Camera choice

Many expensive microscope-mounted cameras exist, such as the Lumenera INFINITY-HD 

and Olympus DP27, which have very good picture quality and frame rate. The Lumenera 

INFINITY-HD is a CMOS camera, not CCD, so slide movement will skew the image rather 

than blur it, and we did not want to confound image registration or motion detection with 

rolling shutter skew. Both cameras trim the field of view to a center-most rectangle for 

viewing on a computer monitor, which is a loss of information, and we instead assign 

viewing time to the entire pathologist-viewed 800×800 px PNG patch from the SVS file 

representing the whole slide scan image. Both cameras do not have USB or Ethernet ports 

carrying a video feed accessible as a webcam, for registration to the whole slide scan. 

The Olympus DP27 may be accessible as a Windows TWAIN device, but we could not 

make this work in Linux. Finally, the HDMI port on both carries high-quality but encrypted 

video information that we cannot record, and we did not wish to buy a Hauppauge HDMI 

recording device, because we had a cheaper commodity camera on hand already. We also 

considered automated screenshots of the video feed in Aperio ImageScope as displayed 

on a computer monitor, but we observed a lower frame rate and detecting lens change is 

complicated because the entire field of view is not available. Recording low-quality video 

Schaumberg et al. Page 3

Comput Intell Methods Bioinform Biostat. Author manuscript; available in PMC 2018 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on a commodity camera to a SecureDigital [SD] memory card is inexpensive, captures the 

entire field of view, and is generally applicable in any hospital. For this pilot study, we 

used only one camera for video recording, rather than two different microscope cameras, 

potentially eliminating a confound for how many pixels are moving during rapid short 

movements of the slide. For 3D printing requisite camera mounts, open source tools are 

available.

Video preprocessing and registration

A Debian Linux computer converted individual slide inspection video frames to PNG files 

using the ffmpeg program. OpenCV software detected slide movement via a dense optical 

flow procedure [9, 10], comparing the current and preceding video frames, shown in Fig 

3. Through this dense optical flow procedure. we calculated a movement vector for each 

pixel of each camera video frame, where a movement vector magnitude of one means 

the pixel has been displaced by one pixel in the video frame of interest, with respect 

to the previous video frame. Though the details of this procedure are beyond the scope 

of this work, a computationally efficient polynomial expansion method explains a pixel’s 

movement vector as the previous frame’s pixel neighborhood polynomial transformed 

under translation to the current frame’s pixel neighborhood polynomial, where a 39×39 

px Gaussian weighting function averages pixel movement vectors for smoothing [9, 10]. 

We defined slide movement to start if 10% or more of pixels in the entire field of view of 

the camera have a movement vector magnitude of at least one, and defined slide movement 

to stop if 2% or fewer of the pixels in the entire field of view of the camera have a 

movement magnitude vector of at least one. The entire field of view of the camera is 640 

× 480 px, and a small subset of these capture the circular field of view at the microscope 

eyepiece, with the remaining pixels being black (Fig 3). The representative frame among 

consecutive unmoving frames moved the least. The ImageJ [24] SURF [3]6 and OpenCV 

software libraries registered each representative to an 800 × 800 px image patch taken from 

the high-resolution Aperio slide scanner. Each patch aggregated total pathologist time.

The partially automated registration process starts with initial manual registration of a frame, 

followed by automated registration within the preceding registration’s spatial neighborhood 

(Fig 4 and Alg 1). First, (i) a set Sframe of SURF interest points were found in the video 

frame, (ii) a set St of SURF interest points were found in a slide image patch, (iii) SURF 

interest point feature vectors were compared in Sframe and St to determine which points were 

shared in Sframe and St, and (iv) subsets of Sframe and St points that were shared were then 

stored in Sfs and Sts, respectively. Points shared between a camera video frame and an image 

patch (Fig 4 at left, top and bottom) change depending on the image patch (Fig 4 at right, 

top and bottom). Second, we used the OpenCV implementation of random sample consensus 

[RANSAC] [11] for point set registration, to calculate a rigid body transformation from 

Sfs point pixel positions in the video frame to Sts point pixel positions in the image patch, 

to find the distance in pixels that the video frame is off-center from the patch. Following 

this procedure for every image patch in the spatial neighborhood of the previous image 

registration, we selected the least off-center image patch as the best registration, because the 

6ImageJ SURF is released under the GNU GPL and is available for download from http://labun.com/imagej-surf/
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pathologist’s fovea is in approximately the same place in this video frame and image patch. 

Finally, a manual curation of registrations ensures correctness. Because slide movements 

are usually slight, this automated process reduces manual curation effort because automatic 

registrations are rarely far from the correct registration, so after the registration is corrected 

within a small localized neighborhood, automatic registrations may proceed from there. 

Fully automated image registration is not part of this study.

Slide magnification may change during inspection as the pathologist changes objective 

lenses. Lens change is detected automatically when the field of view bounding box of 

nonblack pixels changes size (Fig 5). SURF is scale-invariant so registrations may otherwise 

proceed at an unchanged magnification.

Deep learning

We used Caffe [14] for deep learning of convolutional features in a binary classification 

model given the 800 × 800 px image patches labeled with pathologist viewing times in 

seconds. To adapt for our purpose CaffeNet (Fig 6), which is similar to AlexNet [17], we 

re-initialized its top layer’s weights after ImageNet [6] pre-training. Two output neurons 

were connected to the reinitialized layer, then training followed on augmented 800 × 800 px 

patches for 10,000 iterations in Caffe. In bladder, our model simply predicted whether or not 

a pathologist viewed an 800×800 px patch more than 0.1 s (30 fps camera). In prostate, due 

to the higher overlap between adjacent patches and less tissue available, to be salient a patch 

met at least one of these criteria: (1) viewed more than 0.1 s, (2) immediately above, below, 

left, or right of at least two patches viewed more than 0.1 s, or (3) above, below, left, right, 

or diagonal from at least three patches viewed more than 0.1 s such that all three are not on 

the same side. In this way, image patches highly overlapping in the neighborhood (Alg 1) of 

salient patches were not themselves considered non-salient if a pathologist happened to jump 

over them during observation.

3 Experiments

Urothelial carcinoma (bladder) in Fig 7 was analyzed first, with author HAA inspecting 

at the microscope. Viewed regions at the microscope corresponded to the whole-slide scan 

SVS file at magnification levels 2 and 1. We restricted our analysis to level 2, having 

insufficient level 1 data. We split level 2 into three portions: left, center, and right. Due to 

over 50% overlap among the slide’s total 54 800 × 800 px level 2 patches, we excluded the 

center portion from analysis, but retained left and right sides, which did not overlap (Fig 8).

In bladder, we considered a negative example to be a patch viewed for 0.1 s (3 frames or 

fewer, 30 fps) or less, and a positive example viewed for more than 0.1 s (4 frames or more). 

This produced 9 positive and 9 negative examples on the left side, and the same number on 

the right. We performed three-fold cross-validation on the left (6+ and 6− examples training 

set, 3+ and 3− examples validation set), then used the model with the highest validation 

accuracy on the right to calculate test accuracy, an estimate of generalization error (Fig 9). 

This cross-validation was duplicated ten times on the left, each time estimating test accuracy, 

to calculate a confidence interval. We then duplicated this training/validating on the left and 

testing on the right.
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Training and validation data were augmented. For a 800 × 800 px patch, all flips and one-

degree rotations through 360 degrees were saved, then cropped to the centermost 512×512 

px, then scaled to 256×256 px. This rotation-based data augmentation biases the neural 

network to learn rotationally-invariant features rather than overfit to the training data’s 

particular orientation, e.g. the angle of prostate needle biopsy tissue strips. Thus intrapatient 

and interpatient test sets are not augmented, but training and validation sets are augmented. 

The cancer diagnosis or viewing time in pathology is not expected to change when rotating 

or flipping a slide. We direct readers to Krizhevsky et al. 2012 [17] for more information 

on data augmentation. Like Krizhevsky’s data augmentation of 224 × 224 px random crops 

for small translations, we further augment our dataset through random crops of 227×227 

px, which is the default for CaffeNet. Unlike Krizhevsky, we do not augment our dataset 

through minor perturbations in the principal components of the RGB color space.

In bladder, the augmented training set size was 8,640 patches. This 8,640 count includes 

rotations and flips, but does not include random crops, which were performed automatically 

by Caffe at training time. Caffe randomly cropped 256×256 px patches to 227×227 px 

for each iteration of CaffeNet learning. No images in the validation set were derived from 

the training set, and vice versa. A training set consists of two concatenated folds, with 

the remaining fold as validation. In addition to the bladder cancer slide, we analogously 

processed two prostate cancer needle biopsy slides, with author SJS inspecting these slides. 

In prostate, the augmented training set size was 8,160 patches.

Training and validation sets are drawn from the same side of the slide, i.e. both sets on the 

left or both sets on the right (Fig 8). Patches in a training set may have at least 50% overlap 

with patches in a validation set. Overlapping regions of these images have identical sets of 

pixels, guaranteeing training and validation sets are exchangeable for valid cross-validation. 

If training error steadily decreases while validation error steadily increases, where training 

and validation sets are exchangeable, then the classifier is overfit. In contrast, the other side 

of the slide is used as a test set and may appear obviously different than the training and 

validation sets, e.g. the left side of Fig 8 appears different than the right side. We test the 

other side to estimate generalization error, which measures how the classifier may perform 

on data unseen at training time. Testing on the other side of the slide guarantees there is no 

overlap with the training set, so the test data is unseen by the classifier at training time.

Different cross-validation schemes are conceivable, such as (i) a top versus bottom split 

rather than a left versus right split or (ii) a leave-one-out [LOO] cross-validation approach. 

Unfortunately, Fig 8 shows a slight overlap in the row second from the top and the row 

second from the bottom, effectively reducing by 25–50% the amount of data for training, 

validation, and testing compared to our left versus right approach. Separately, in a LOO 

setting, one may draw a test patch, then draw training and validation sets randomly that 

do not overlap with the test patch, keeping training and validation set sizes constant for 

every possible test patch in the slide. Unfavorably, if the test patch is drawn from the 

middle column of the slide, then only the leftmost and rightmost columns of patches do 

not overlap with the test patch, reducing the amount of data for training and validation sets 

by 33% compared to our left versus right approach. This 33% reduction for middle test 

patches is in contrast to the 111% increase in training and validation data quantity for test 
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patches drawn from the corners of the leftmost or rightmost columns, where this excess is 

randomly discarded to maintain constant training and validation set sizes for all possible 

test patches. Moreover, if the test patch is in the bottom row on the right side, the top row 

on the right side may be sampled for training, which may inflate the LOO generalization 

accuracy estimate compared to our cross-validation approach that trains only on the left 

when testing on the right, due to patches on the right appearing similar to one another. 

We show in Section 4 that training on the left and testing on the right gives significantly 

different accuracy compared to training on the right and testing on the left, suggesting the 

left and right sides have indeed different distributions of information. Thus compared to 

these alternatives, our left versus right three-fold cross-validation approach (i) maximizes 

the sizes of the training, validation, and test sets, (ii) conservatively estimates generalization 

error by not training the classifier on data that appear similar to the test set, and (iii) samples 

each patch on the left or right sides exactly once for an overall validation error measure for 

that side.

4 Results

In bladder, when training/validating on the left side and testing on the right, mean test 

accuracy is 0.781±0.0423 (stdev) with 95% confidence interval [CI] from 0.750 to 0.811 

(df=9, Student’s T, Table 1). When training/validating on the right and testing on the left, 

mean test accuracy is 0.922±0.0468 with 0.889–0.956 95% CI (Table 1). Overall mean 

test accuracy is 85.15%. The left and right test accuracies differ (p=0.000135, Wilcoxon 

rank-sum, n=20), while validation accuracies do not (p=0.9118, n=20). This suggests 

nonhomogenous information content throughout the slide. Indeed, the pathologist started 

and ended slide inspection on the right, and spent double the time on the right versus the left 

(Fig 7, 8.32 s right, 4.07 s left). The second bladder had different morphology and model 

accuracy reduced to 0.678±0.0772, 0.623–0.734 95% CI. Moreover, the second bladder had 

only 7 positive examples available, whereas both prostates and the first bladder had at least 9 

positive examples.

For the first prostate slide, training on the left side and testing on the right, we find accuracy 

0.867±0.0597, 0.824–0.909 95% CI (Table 2). Training on the right and testing on left, we 

find 0.961±0.0457, 0.928–0.994 95% CI (Table 2). Overall mean test accuracy is 91.40%. 

Taking the best model learned from this first prostate (right side, test accuracy 100%, 18/18), 

we tested on the second prostate’s right side (because the left did not have 9 positive training 

examples) and find 0.967±0.0287, 0.946–0.987 95% CI. We also tested this model on the 

bladder cancer slide, and find 0.780 accuracy on the left and 0.720 on the right (9+ and 9− 

training examples each), mean accuracy 75.00%. The best bladder cancer model predicts 

every patch is not salient in both prostates, presumably because the little tissue in prostate is 

insufficient for a positive saliency prediction.

Interpatient AUROC for bladder and prostate is shown in Fig 10. In prostate, nine salient 

and nine nonsalient examples are drawn from the second patient. Average AUROC was 

calculated from ten such draws, achieving a mean±stdev of 0.9568±0.0374 and 95% CI of 

0.9301–0.9835. Over all 17 salient and 13 nonsalient patches used from the second prostate 

patient, the AUROC is 0.9615. In bladder, due to fewer patches available in the small 
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slide, only seven salient and seven nonsalient examples are drawn from the second patient. 

Average AUROC was calculated for ten such draws, achieving 0.7929±0.1109 and 95% CI 

of 0.7176–0.8763. Over all 7 salient and 17 nonsalient patches used from the second bladder 

patient, the AUROC is 0.7437. These nonoverlapping confidence intervals are evidence 

the bladder cancer classifier distinguishes salient from nonsalient patches less well than 

the prostate cancer classifier, and a Wilcoxon rank-sum test indeed finds the difference 

in classifier performance by these ten draws each from bladder and prostate is significant 

(p=0.0001325) (Fig 9).

The deep convolutional network CaffeNet emits a score from 0 to 1 when predicting if 

an image patch is salient or not. When taking a score of greater than 0.5 to be salient, 

the p-value from Fisher’s Exact Test is 1.167e-7 in prostate (16 true positives, 1 false 

negative, 0 false positives, 13 true negatives) and 0.009916 in bladder (7 true positives, 0 

false negatives, 7 false positives, 10 true negatives), indicating our trained CaffeNet classifier 

in both tissues accurately distinguishes salient from nonsalient regions when trained on one 

patient and predicting in another.

5 Conclusion

Collecting image-based expert annotations for the deluge of medical data at modern 

hospitals is one of the tightest bottlenecks for the application of large-scale supervised 

machine learning. We address this with a novel framework that combines a commodity 

camera, 3D-printed mount, and software stack to build a predictive model for saliency on 

whole slides, i.e. where a pathologist looks to make a diagnosis. The registered regions from 

the digital slide scan are markedly higher quality than the camera frames, since they do 

not suffer from debris, vignetting, and other artifacts. The proposed CNN is able to predict 

salient slide regions with a test accuracy of 85–91%. We plan to scale up this pilot study to 

more patients, tissues, and pathologists.
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Fig. 1. 
Proposed microscope-based saliency predictor pipeline workflow. The pathology session is 

recorded, the slide is scanned, the video frames are registered to scan patches. Lens change 

detection guides registration and viewing time is recorded for periods without motion. A 

convolutional neural net learns to classify patches as salient (long looks) or not.
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Fig. 2. 
Bladder cancer left, prostate cancer right. Training, validation, testing done on top slides, 

with additional same-tissue testing on bottom slides. For cross-tissue testing, top slide tested 

against other top slide. Viewing time heatmap for top left bladder shown in Fig 7. Note how 

the top bladder has more edges than the more solid bottom bladder, while the prostates have 

similar tissue texture. We believe this impacts interpatient accuracy, shown in Fig 9.
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Fig. 3. 
Optical flow, showing pixel movement grid. The frame has few moving pixels before (left) 
and after (right) pathologist moves the slide. A pathologist looks at a slide region for the 

duration of consecutive stationary frames.
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Fig. 4. 
The best image registration for a given video frame (same frame top left and top right) from 

the commodity camera at the microscope eyepiece compared to two different high-quality 

patches (bottom left and bottom right) from the whole slide scan image minimizes the length 

of the green line, which is the distance from the center of the patch to the center of the frame 

mapped into the patch’s coordinate space. The green line’s length is distance d in Alg 1.
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Fig. 5. 
Lens change detection: the normal non-black pixel bounding box is initially 415×415 px. 

A change to 415×282 px indicates the pathologist changing the lens, thus changing slide 

magnification. Note some pixels that may appear black are called non-black due to difficult 

to perceive noise in the image, which effects calculated bounding box size. All images 

shown at same scale trimmed to bounding box.
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Fig. 6. 
Caffenet neuron counts, convolutional layers, pooling layers, dropout [26] layers, and fully-

connected layers.
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Fig. 7. 
Pathologist viewing times in seconds at the microscope for low (left, 10x, level 2) and high 

magnification (right, 20x, level 1), registered to the same urothelial carcinoma slide scan.
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Fig. 8. 
Scaled image patches of left and right sides of bladder patient 1 slide (Fig 2). Middle 

excluded here and not used in analysis, to isolate left and right sides from each other. Note 

far left and far right have less tissue, but tissue is present for training. The overlap among 

patches is evenly distributed and greater than 50%.
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Fig. 9. 
Ten three-fold cross-validation trials for bladder [BLCA] and prostate [PRAD], evaluated 

for intrapatient training/validating on left while testing on the right and vice versa. Each 

model is evaluated against a different patient (interpatient), slides in Fig 2). The needle 

for prostate cancer biopsy may standardize the distribution of prostate tissue in the whole 

slide, maintaining a higher accuracy of the prostate classifier on an interpatient basis than 

the bladder cancer classifier. The bladder patients are transurethral resections taken by cuts 

rather than a standard gauge needle.
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Fig. 10. 
Interpatient area under the receiver operating characteristic [AUROC] for bladder and 

prostate, with dashed black curve for average AUROC over draws of the data and blue 

line for all data used from the patient.
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Table 1

Accuracies of ten trials of three-fold cross-validation in bladder. Validation and test accuracies for a single 

slide video of urothelial carcinoma (patient 1, slide at upper left in Fig 2, performance plotted at left in Fig 9)), 

left side of the slide versus right side.

Direction Trial Fold0 Valid Fold1 Valid Fold2 Valid Valid Acc Fold0 Test Fold1 Test Fold2 Test Test Acc

leftright 0 0.9466 0.5850 0.9680 0.8332 0.8333 0.7222 0.7778 0.7778

leftright 1 0.8852 0.9070 0.9070 0.8997 0.7778 0.7222 0.7778 0.7500

leftright 2 0.9218 0.8602 0.8832 0.8884 0.8333 0.7222 0.7778 0.8333

leftright 3 0.7640 0.7812 0.7120 0.7524 0.7778 0.7778 0.7778 0.7778

leftright 4 0.7590 0.6576 0.5134 0.6433 0.8333 0.7778 0.7778 0.8333

leftright 5 0.9268 0.7416 0.5088 0.7257 0.8333 0.7778 0.7778 0.8333

leftright 6 0.8028 0.7988 0.7048 0.7688 0.7222 0.7778 0.7778 0.7222

leftright 7 0.7318 0.8402 0.9088 0.8269 0.7778 0.7778 0.7778 0.7778

leftright 8 0.9572 0.7608 0.8418 0.8533 0.7778 0.8333 0.8333 0.7778

leftright 9 0.7492 0.8774 0.9860 0.8709 0.7778 0.7778 0.7222 0.7222

rightleft 0 0.8802 0.8528 0.8554 0.8628 1.0000 0.8889 0.9444 1.0000

rightleft 1 0.7662 0.5982 0.9364 0.7669 0.8889 0.9444 1.0000 1.0000

rightleft 2 0.9492 0.8560 0.7308 0.8453 0.9444 0.8889 0.9444 0.9444

rightleft 3 0.5404 0.8206 0.8368 0.7326 0.9444 0.9444 0.8889 0.8889

rightleft 4 0.6560 0.7114 0.6748 0.6807 0.8889 0.8889 0.8333 0.8889

rightleft 5 0.8932 0.7062 0.7310 0.7768 0.9444 0.8889 0.8333 0.9444

rightleft 6 0.8560 0.8540 0.9966 0.9022 0.8889 0.9444 0.8889 0.8889

rightleft 7 0.8362 0.8560 0.7978 0.8300 0.8333 0.8889 1.0000 0.8889

rightleft 8 0.7200 0.8546 0.9740 0.8495 1.0000 0.9444 0.8889 0.8889

rightleft 9 0.8634 0.8634 0.6904 0.8057 0.8333 0.9444 1.0000 0.8889

Column “Fold0 Valid” reports validation accuracy when folds 1 and 2 were used for training. Similarly, “Fold1 Valid” is for folds 0 and 2 training. 
“Valid Acc” is the validation accuracy overall – the average of “Fold0 Valid”, “Fold1 Valid”, and “Fold2 Valid”. Because we will use a single 
classifier for saliency prediction, we selected the classifier with highest validation accuracy and highlighted it yellow, e.g. we selected the Fold0 
classifier with 0.9218 validation error as shown in the third row, namely Trial 2 leftright.

Column “Fold0 Test” reports the test accuracy of the classifier trained on folds 1 and 2. Because we will use a single classifier not an ensemble, 
we highlight the test accuracy of the classifier selected by highest validation accuracy and report this in “Test Acc“ as generalization accuracy, 
e.g. we selected the Trial 2 leftright Fold0 classifier having “Fold0 Test” of 0.8333 and copied this to “Test Acc”. We report test accuracies 
for all three classifiers, showing Fold1 and Fold2 classifiers tie for highest validation accuracy in Trial 1 leftright, so their test accuracies of 
0.7222 and 0.7778 were averaged for a “Test Acc” of 0.7500. As another sanity check in our small data setting, we report that the variance 
in the selected-versus-non-selected test accuracy differences is not greater than the selected-versus-non-selected validation accuracy differences 
(F-Test p=0.5662 and Bartlett’s Test p=0.5661. Validation differences normally distributed by Anderson-Darling p=0.08837, and test differences 
by p=0.1734). If it were greater, there may be experimental setup problems because training would not be stably producing classifiers that learn 
the saliency concept. Finally, one may train a classifier on all folds then evaluate test accuracy with this classifier, but a performance boost from 
additional training data may inflate generalization accuracy. In Sec 4 we show without such inflation there remains a significant difference in 
generalization accuracy and interpatient accuracy in bladder.

Testing the best classifier (highlighted in cyan, highest test accuracy on this and other folds, secondarily highest mean validation accuracy) on 
draws of the data on the second bladder patient, accuracies are 0.643, 0.786, 0.714, 0.786, 0.714, 0.714, 0.643, 0.571, 0.643, and 0.571.
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Table 2

Accuracies of ten trials of three-fold cross-validation in prostate. Validation and test accuracies for a single 

slide video of prostate adenocarcinoma (patient 1, slide at upper right in Fig 2, performance plotted at right in 

Fig 9)), left side of the slide versus right side.

Testing the best classifier on draws of the data on the second prostate patient, accuracies are 0.944, 1, 0.944, 

0.944, 1, 0.944, 0.944, 0.944, 1, and 1.

Direction Trial Fold0 Valid Fold1 Valid Fold2 Valid Valid Acc Fold0 Test Fold1 Test Fold2 Test Test Acc

leftright 0 0.9992 0.9946 1.0000 0.9979 0.7778 0.7778 0.7778 0.7778

leftright 1 0.9512 0.7282 0.9994 0.8929 0.8889 0.8889 0.8889 0.8889

leftright 2 0.9550 1.0000 0.6530 0.8693 0.8889 0.7778 0.7222 0.7778

leftright 3 0.8636 0.9992 1.0000 0.9543 0.8889 0.7778 0.9444 0.9444

leftright 4 0.8276 0.7760 0.9940 0.8659 0.8889 0.7778 0.8889 0.8889

leftright 5 0.8654 0.9986 1.0000 0.9547 0.9444 0.9444 0.9444 0.9444

leftright 6 0.8560 0.9862 0.9992 0.9471 0.8889 0.8889 0.8889 0.8889

leftright 7 0.8674 1.0000 0.9984 0.9553 0.8889 0.8333 0.8889 0.8333

leftright 8 0.9560 0.8560 0.8760 0.8960 0.8889 0.8333 0.9444 0.8889

leftright 9 0.6846 0.9992 0.9560 0.8799 0.8333 0.8333 1.0000 0.8333

rightleft 0 0.9786 0.7760 0.9146 0.8897 0.8889 0.9444 1.0000 0.8889

rightleft 1 1.0000 0.7292 0.8460 0.8584 1.0000 0.9444 1.0000 1.0000

rightleft 2 0.7130 0.9512 0.8676 0.8439 0.8889 1.0000 0.8333 1.0000

rightleft 3 0.9998 1.0000 0.9664 0.9887 0.9444 0.9444 1.0000 0.9444

rightleft 4 0.7760 1.0000 0.8842 0.8867 0.8889 0.9444 1.0000 0.9444

rightleft 5 0.9758 0.9984 0.5926 0.8556 0.9444 0.8889 0.9444 0.8889

rightleft 6 0.6344 0.9770 1.0000 0.8705 0.8889 1.0000 1.0000 1.0000

rightleft 7 0.7760 0.9028 1.0000 0.8929 0.8889 1.0000 1.0000 1.0000

rightleft 8 0.8560 0.8560 0.9992 0.9037 0.9444 0.9444 0.9444 0.9444

rightleft 9 0.8560 0.9412 0.8538 0.8837 1.0000 1.0000 1.0000 1.0000
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Algorithm 1

Automated image registration procedure (Fig 4) to find the least off-center patch from a given commodity 

camera video frame. The whole slide image is split into N overlapping 800 × 800 px patches. “Three or fewer 

patches spatially removed” means any In must be (i) Iprior, (ii) adjacent to Iprior, (iii) adjacent to a patch 

adjacent to Iprior, or (iv) adjacent to a patch adjacent to an Iprior-adjacent patch. In this way, In is restricted to a 

spatial neighborhood localized around the prior match, typically improving image registration performance 

because most slide movements are small. On lens change, (i) the patch at lower magnification and (ii) the 

patches at higher magnification covering the same area as the current magnification’s neighborhood are 

considered for registration only.
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