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ABSTRACT

Prion diseases are a group of fatal neurodegenerative disorders that affect humans and animals.
Besides of the pathological agent, prion, there are some elements that can influence or determine
susceptibility to prion infection and the clinical phenotype of the diseases, e.g., the polymorphism
in PRNP gene. Another polymorphism in ZBTB38-RASA2 has been observed to be associated with
the susceptibility of sporadic Creutzfeldt-Jacob disease (sCJD) in UK. MicroRNAs are endogenous
small noncoding RNAs that control gene expression by targeting mRNAs and triggering either
translation repression or RNA degradation. In this study, two polymorphic loci in miR-146a
(rs2910164 and rs57095329) and one locus in ZBTB38-RASA2 (rs295301) of 561 Chinese patients of
sCJD and 31 cases of fatal familial insomnia (FFI) were screened by PCR and sequencing. Our data
did not figure out any association of those three SNPs with the susceptibility of sCIJD. However, a
significant association of the SNP of rs57095329 in miR-146a showed the association with the
susceptibility of FFIl. Additionally, the SNP of rs57095329 showed statistical significances with the
appearances of mutism and the positive of cerebrospinal fluid (CSF) protein 14-3-3 in sCJD patients,
while the SNP of ZBTB38-RASA2 was significantly related with the appearance of myoclonus in sCJD
patients. It indicates that the SNPs of ZBTB38-RASA2 and miR-146a are not associated with the
susceptibility of the Chinese sCID patients, but may influence the appearances of clinical
manifestations somehow.

ARTICLE HISTORY
Received 1 September 2017
Revised 31 October 2017
Accepted 10 November 2017

KEYWORDS
Creutzfeldt-Jacob disease;
fatal familial insomnia
miR-146a; prion;
polymorphism; ZBTB38-
RASA2

Introduction Although the well-known polymorphism at codon 129

Prion diseases, also called transmissible spongiform
encephalopathies (TSEs), are progressive fatal neuro-
degenerative disorders that affect humans and ani-
mals. The human prion diseases comprise Kuru,
Creutzfeldt-Jakob disease (CJD), Gerstmann-Strauss-
ler-Scheinker syndrome (GSS), and fatal familial
insomnia (FFI). The majority (85%) of human prion
diseases are sporadic. Approximately 10%-15% of
human prion diseases are inherited, associated with
the mutations in the prion protein gene (PRNP), and
less than 1% is acquired [1].

PRNP is located on chromosome 20p12 in humans.
More than 50 mutations have been found in the
open reading frame (ORF) of PRNP, which are directly
linked with the genetic prion diseases [2]. In addition
to these mutations, some polymorphisms have also
been observed inside or outside the ORF of PRNP [3],
particularly the polymorphisms at codon 129 and 219.

is nonpathogenic, it does influence, even determine, the
sensitivity and susceptibility to prion infectious agents,
as well as the clinical phenotype of the diseases [2].

Recently, some other candidate genes have been
investigated for their potential association with
human prion disease, using genome-wide association
studies (GWAS) and other new methods [4].
ZBTB38-RASA2 (rs295301) loci are in the vicinity of
RASA gene. The product of this gene is member of
the GAP1 family of GTPase-activating proteins, which
stimulates the GTPase activity of normal RAS p21 but
not its oncogenic counterpart [5]. Although the high-
est score gene locus of ZBTB38-RASA2 was not sig-
nificant at genome-wide levels, a study performed in
UK has proposed that the SNPs at the ZBTB38-
RASA2 (rs295301) locus are associated with CJD.
However, the subsequent study in Germany did not
figure out the significant correlation [6].
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MicroRNAs (miRNAs) are 20-24 base-pair (bp)
long non-coding RNAs that participate in post-tran-
scription of gene expression in various cells by affect-
ing both the stability and translation of mRNAs.
MiR-146a locates on chromosome 5 in humans. MiR-
146a has the activity in immuno-inflammatory regula-
tion [7], showing direct down-regulation for the pro-
duction of pro-inflammatory cytokines by acting as a
negative-feedback effector of the inflammatory signal-
ing pathway initiated by NF-«B [8]. Recently, alter-
ation in expression of miR-146a has been observed in
some neurodegenerative disorders, including multiple
sclerosis (MS), pro-inflammatory neurodegeneration
and prion disease [9,10]. Our study also identified
that the amount of miR-146a in the blood of sCJD
patients is higher than the health control (data
unpublished). The SNPs of miR-146a have been also
screened in some kinds of diseases, such as AD, dia-
betes and hepatocellular cancer [11,12]. However, the
possible linkage of the SNPs of miR-146a with the
susceptibility of CJD remains unknown.

In this study, two polymorphic loci in miR-146a and
one locus in ZBTB38-RASA2 of 561 Chinese patients of
sporadic CJD (sCJD) and 31 cases of FFI were screened.
The possible associations of those three loci with the dis-
ease risk, main clinical manifestations and some exami-
nation results were further evaluated.

Materials and methods
Subjects

Totally 561 cases of probable diagnosed sCJD, 31casesof
definite diagnosed FFI and 231 health controls were
enrolled into study. All subjects were Chinese. The diag-
noses of sCJD and FFI were performed by China CJD
Surveillance Center, according to the diagnostic criteria
for human prion diseases issued by World Health Orga-
nization (WHO)[13,14] and by National Health and
Family Planning Commission of the People’s Republic of
China (http://www.nhfpc.gov.cn/ewebeditor/uploadfile/
2017/07/20170727150307976.pdf). The detailed pro-
cesses for the diagnosis of human prion diseases in China
CJD Surveillance System were described previously
[14,15,16]. Briefly, the clinical data (including the results
of EEG and MRI) and specimens of the suspected
patients were collected by the clinician from hospitals,
while their epidemiological data were collected by the
staff of provincial CDCs. The collected data and sample
were referred to the national reference laboratory for
human prion disease in China CDC for laboratory tests
and final diagnosis. The health controls were obtained
from blood donors in Beijing area.
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Ethics statement

Usage of human blood samples in this study was
approved by the Ethical Committee of National Institute
for Viral Disease Prevention and Control, China CDC.
Samples were obtained with the adequate understanding
and consent. All the data were analyzed anonymously,
and clinical investigations have been conducted accord-
ing to the principles Declaration of Helsinki.

PCR and genotyping

For PRNP analysis, genomic DNA was extracted from
peripheral blood leukocytes by using Qiagen’s DNA
purification kit according to the manufacturer’s instruc-
tions. The specific primers were synthesized based on the
sequences issued by NCBI, including the primers for
miR-146a 1s2910164: forward 5'-TGGTCTCCTCCA-
GATGTTTAT-3’ and reverse 5'- GCTACTTGGAACC

CTGCTTA-3’; the primers for miR-146ars57095329:for-
ward 5-TGAAACTCAGCCTGCGCG-3’ and reverse
5’-ATCCCTCCTCGGCACAGC -3’; the primers for
ZBTB38-RASA2 rs295301:forward 5'-CAGTTGCATTC
TGTTGGC-3’ and reverse 5'- CTATCTCATAACTGA

GCAAATC-3’. The PCR reactions were performed in a
total volume of 20 ul, containing 100 ng of genomic
DNA, with the experimental conditions of pre-denatur-
ation at 94°C for 1 min, 30 cycles of denaturation at 94°C
for 10 s, annealing at 60°C for 20 s and extension at 72°C
for 20 s. The amplified PCR products of rs2910164,
rs57095329 and rs295301 were sequenced and analyzed.

Statistical analysis

Pearson’s chi-square test was used to compare genotype
and allele frequencies between patients and controls.
Odds ratio (OR) together with 95% confidence interval
(CI) was also estimated, and a p-value less than 0.05
(two-tailed) was considered as statistically significant.
The association was also tested under log-additive model.
The Hardy-Weinberg equilibrium was performed using a
Fisher’s exact test. All statistical analyses were performed
using the SPSS 11.5 computer software program.

Results

The associations of the three SNPs with
the susceptibility to sCJD or FFI

Totally the blood samples from 561 patients of probable
sCJD, 31 patients of FFI, and 231 healthy blood donors
were collected and specific PCRs for miR-146a
rs2910164, miR-146a rs57095329 and ZBTB38-RASA2
rs295301 were conducted for each sample separately.
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Table 1. Distributions of the three SNPs and risks of sCJD patients.

sCJD n (%) Controls n (%) OR 95% Cl P value

Rs2910164 genotype

cc 194 (34.6%) 69 (29.9%) \

CG 26 (47.4%) 115 (49.8%) 0.8227 0.5790-1.169 0.2881

GG 101 (18.0%) 47 (20.3%) 0.7643 0.4913-1.189 0.2542
Rs2910164 allele

C 654 (58.3%) 253 (54.8%) \

G 468 (41.7%) 209(45.2%) 0.8662 0.6963 -1.078 0.1993
Rs57095329 genotype

AA 363 (64.9%) 142 (62.0%) \

AG 181 (32.4%) 81 (35.4) 0.8741 0.6309- 1.211 0.4507

GG 15 (2.6%) 6 (2.6%) 0.978 0.3720-2.571 1
Rs57095329 allele

A 904 (81.1%) 365 (79.7%) \

G 210 (11.3%) 93 (20.3%) 09117 0.6941-1.198 0.5267
Rs295301 genotype 558 229

GG 204 (36.6%) 86 (37.2%) \

GA 258(46.2%) 113 (48.9%) 0.9625 0.6883- 1.346 0.8644

AA 96 (17.2%) 30 (13.0%) 1.349 0.8336-2.183 0.2362
Rs295301 allele

G 666(59.7%) 285 (62.2%) \

A 450 (40.3%) 173 (37.8%) 1.113 0.8900-1.392 0.3642

The genotypes and allele frequencies of those three poly-
morphisms in the groups of sCJD, FFI and health control
were summarized in Table 1 and 2.

As shown in Table 1, the genotypes and allele fre-
quencies of the tested three loci were similar between the
groups of sCJD and health control, without statistical dif-
ference. It indicates little influence of those three poly-
morphisms on the risk of sCJD among Chinese. Two
significant associations were identified in the comparison
between the groups of FFI and health control (Table 2).
One was in the allele of miR-146a rs2910164. FFI cases
showed higher rate of CC homozygosis (41.9%) than
health controls (29.9%). Statistical analysis showed sig-
nificance between CC and GG genotypes (P = 0.04869).
Analysis of the frequencies of C and G in this allele also
revealed statistical difference between the groups of FFI
and health control (P = 0.057). The other association

Table 2 Distributions of the three SNPs and risks of FFI patients.

was in the allele of ZBTB38-RASA2 rs295301. Higher
rate of GA genotype (74.2%) was detected in the FFI
patients compared with that of health controls (48.9%),
showing statistical difference (P = 0.0252). However, no
difference in the frequency of G and A in this allele was
addressed between FFI and control. Additionally, analy-
sis of the genotype and allele frequency of miR-146a
rs57095329 did not find out difference between FFI and
control.

The association of the three SNPs with the main
clinical manifestations and the examinations results
of sCJD

Besides of dementia, other four clinical manifestations
are included in the diagnostic criteria for sCJD, including
pyramidal or extrapyramidal dysfunction, myoclonus,

FFI n (%) Controls n (%) OR 95%Cl P value

Rs2910164 genotype

cc 13(41.9%) 69 (29.9%) \

CG 16 (51.6%) 115 (49.8%) 0.7385 0.3350-1.628 0.5387

GG 2 (6.5%) 47 (20.3%) 0.2259 0.04869-1.048 0.0485
Rs2910164 allele

C 42 (67.7%) 253 (54.8%) \

G 20 (32.3%) 209(45.2%) 0.5764 0.3282-1.012 0.057
Rs57095329 genotype

AA 24 (77.4%) 142 (62.0%) \

AG 7 (22.6%) 81 (35.4) 0.5113 0.2110-1.239 0.1604

GG 0 (0%) 6 (2.6%) \ \
Rs57095329 allele

A 55 (88.7%) 365 (79.7%) \

G 7 (11.3%) 93 (20.3%) 0.4995 0.2202-1.133 0.1208
Rs295301 genotype

GG 6 (19.4%) 86 (37.2%) \

GA 23 (74.2%) 113 (48.9%) 2917 1.138-7.479 0.0252

AA 2 (6.5%) 30 (13.0%) 0.9556 0.1828-4.994 1
Rs295301 allele

G 35 (56.5%) 285 (62.2%) \

A 27 (43.5%) 173 (37.8%) 1.271 0.7432-2.173 0.4055




visual or cerebellar disturbance and akinetic mutism.
Since dementia is recorded in almost all enrolled sCJD
cases, the four main clinical manifestations were ana-
lyzed for their possible associations with those three
alleles. As summarized in Table 3, miR-146a rs2910164
did not reveal any significant association with the
appearances of the four symptoms and signs. However,
the patients with G allele in rs57095329 had a higher
positive rate of kinetic mutism than those with A allele
(P = 0.016). The patients with A allele in ZBTB38-
RASA2 rs295301 also showed a higher frequency in
appearance of myoclonus than the patients with G allele
(P = 0.013).

Further, the potential associations of the genotypes
and frequencies of those three alleles with the results of
main clinical examinations and laboratory tests in the
group of sCJD were analyzed, including positive in CSF
protein 14-3-3, periodic sharp wave complexes (PSWC)
in EEG and high signal in caudate/putamen in MRI. As
shown in Table 4, the genotypes and allele frequencies of
miR-146a rs2910164 and ZBTB38-RASA2 rs295301 did
not reveal statistical association with the results of CSF
14-3-3, EEG and MRI. The genotype and allele frequency
of miR-146a rs57095329 also showed no correlation with
the results of EEG and MRI. However, it revealed statisti-
cal significance with the result of CSF 14-3-3 test,
that the sCJD patients with allele A in rs57095329 had a
higher positive rate of CSF 14-3-3 than that of allele G
(P=0.011).

Discussion

As the most common types of human prion diseases,
sCJD constitutes up to 85% of all prion diseases,
characterized by highly sporadic occurrence without
linkage among the cases. The highest incidence of
Chinese sCJD cases is at the age group of 60-
69 year-old with the onset median of 62 year-old.
The clinical duration is relatively short with the
median of 5.3 months. FFI is a common genetic prion
disease worldwide with a mutation of D178N and a
M129M homozygous within PRNP gene. In China,
FFI is the most frequently identified genetic prion
disease. About 2/3 Chinese FFI cases show positive
family history. The highest incidence of FFI cases is
at the age group of 50-59 year-old with the onset
median of 51 year-old. The survival time of FFI is rel-
ative long with the median of 10 months [14,15].
Although the key mechanism in the pathogenesis of
prion diseases is the conversion from the cellular
prion protein (PrP®) to pathogenic PrP°:[17] it is
obvious that there are some other factors that
affect the developments of prion diseases. The
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polymorphism of codon 129 in PRNP gene is a well-
documented example, which not only affects the sus-
ceptibility of the diseases, such as sCJD and variant
CJD (vCJD), but also determines the clinical pheno-
type of some genetic prion diseases, such as D178N/
MI129M FFI and D178N/M129V gCJD. Along with
the development of gene sequencing, many research
groups have conducted the studies in different popu-
lations in order to address the possible relationships
of various SNP polymorphisms with prion diseases in
the past decade [3].

In this study, we have analyzed three SNPs based
on 561 sCJD cases, 31 FFI cases and 231 healthy per-
sons. Two of three SNPs are associated with miRNA-
146a. MiRNA-146a is known as an immune inflam-
mation regulatory factor that play as a key regulator
in astrocyte-mediated inflammatory response [9]. It
has been found that miRNA-146a is up-regulated in
the brain of GSS and sCJD patients, as well as in
prion-infected mice [18]. From the data of this study,
we do not figure out any association of those two
SNPs with the susceptibility of sCJD. However, one
SNP (rs57095329) shows statistical significances with
the appearance of mutism and the CSF 14-3-3 posi-
tive in sCJD patients. The rs57095329 (A/G) poly-
morphic locus locates at the binding site of the
transcription factor ETS-1 within the promoter region
of miR-146a. It has been reported that the G allele
can attenuate the binding of ETS-1 in the promoter
region, thereby reducing the transcription efficiency
of miR-146a and ultimately affecting the expression of
mature miR-146a [19]. The exact association of the
expression of miR-146a in the brain tissues with CSF
14-3-3 still remains unknown. It is described that
miR-146a may modulate the innate immune response
and the microglial activation state in prion disease
[20]. Actually, we have already reported activations of
microglia and complement system in the brains of
sCJD patients and many scrapie-infected rodent mod-
els [21]. Unfortunately, most of the sCJD cases in
this study are probable diagnosed sCJD without post-
mortem brain tissues. The correlation between the
brain miR-146a level and activation of innate immune
activity deserves further study. This site has been also
reported to be involved in the genetic susceptibility to
AD, and this risk AA genotype may increase the
expression of miR146a and influence certain proin-
flammatory cytokines, thus playing a role in the path-
ogenesis of AD [22].

Recently, an international collaborative based on
GWAS technique has conducted. In this large patient
cohorts study, the SNP at the ZBTB38-RASA2 locus
(rs295301) shows to be associated with sCJD in UK
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(p=313 x 107%) [4]. However, such SNP is confirmed
being not associated with German sCJD patients and in
Kuru based test. Here, the results of our study also do
not propose any correlation of polymorphic ZBTB38-
RASA?2 locus with the susceptibility with the develop-
ment of sCJD in Chinese population. However, the SNP
of ZBTB38-RASA2 seems to be significantly related
with the appearance of myoclonus in sCJD patients.
Myoclonus is a frequently observable sign in sCJD.
Meanwhile, myoclonus can be also noticed in many
other neurological diseases. Whether such correlation is
symptom-associated or disease-associated is an inter-
esting topic.

Based on the limited numbers of FFI cases in this
study, we have observed a significant association of a
SNP (rs57095329) in miR-146a with the susceptibility of
FFI. The 152910164 C/G locates in the hairpin region of
miR-146a, leading to a C:U instead of G:U pairing, which
may affect the maturation of the precursor miR-146a and
the expression of mature miR-146a [23]. In addition, the
genotype of ZBTB38-RASA2 shows also association with
the susceptibility of FFI. Majority of Chinese FFI patients
has positive family history [15], meanwhile, the FFI cases
also show regional-association (data not published).
Thereby, it is probably acceptable that SNPs can be
addressed in FFI patients, and even in other genetic
prion diseases with positive family history. Additionally,
asymptomatic carriers with D178M mutation are repeat-
edly identified in many FFI families, and some of them
are in the parent-generation of probands. Whether such
associations can influence the occurrence and develop-
ment of this special disease needs further exploration.

In this study, we have defined a significant difference
in the P value of 0.05. We have to admit that although P
value target of 0.05 shows significance between disease
and healthy groups, it is sometimes impossible to use as
a possible candidate in further usage, such as predication,
diagnosis and prognosis. Additionally, all P values show-
ing significance between disease and healthy groups in
this study are higher than 0.01. Together with the limited
patient numbers of those rare diseases, we have to raise
the limitation of the observations in this study. Study
with multiple centers and larger-size samples are defi-
nitely benefit to get more realistic conclusion.
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