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ABSTRACT

There is a lack of personalized treatment options for women with recurrent 
platinum-resistant ovarian cancer. Outside of bevacizumab and a group of poly 
ADP-ribose polymerase inhibitors, few options are available to women that relapse. 
We propose that efficacious drug combinations can be determined via molecular 
characterization of ovarian tumors along with pre-established pharmacogenomic 
profiles of repurposed compounds. To that end, we selectively performed multiple 
two-drug combination treatments in ovarian cancer cell lines that included reactive 
oxygen species inducers and HSP90 inhibitors. This allowed us to select cell lines that 
exhibit disparate phenotypes of proliferative inhibition to a specific drug combination 
of auranofin and AUY922. We profiled altered mechanistic responses from these 
agents in both reactive oxygen species and HSP90 pathways, as well as investigated 
PRKCI and lncRNA expression in ovarian cancer cell line models. Generation of dual 
multi-gene panels implicated in resistance or sensitivity to this drug combination was 
produced using RNA sequencing data and the validity of the resistant signature was 
examined using high-density RT-qPCR. Finally, data mining for the prevalence of these 
signatures in a large-scale clinical study alluded to the prevalence of resistant genes 
in ovarian tumor biology. Our results demonstrate that high-throughput viability 
screens paired with reliable in silico data can promote the discovery of effective, 
personalized therapeutic options for a currently untreatable disease.

INTRODUCTION

Drug repurposing circumvents the high costs and 
extended timeframes associated with drug discovery. It 
is a cost-effective approach to identifying and prioritizing 
novel therapeutic combinations for low prevalence yet 
highly lethal diseases such as epithelial ovarian cancer 
(EOC), the deadliest of the gynecological diseases. EOC 
is diagnosed in 225,000 women worldwide and results in 
more than 140,000 deaths annually [1]. Though primary 
tumors typically respond to frontline treatment, peritoneal 
dissemination of malignant cells resistant to taxanes 

and/or platinum-based compounds eventually result in 
recurrent disease. There are no common causative somatic 
gene mutations, outside of TP53 alterations in serous 
adenocarcinoma and KRAS, BRAF and PTEN in mucinous, 
endometrioid, and low grade serous cancers, suggested to 
be associated with the pathogenesis of EOC [2]. Since 
there is not a dominant pathway to exploit across these 
genetically complex tumors, generalized EOC-specific 
targeted therapy has proven elusive and for the most 
part futile. Precision cancer medicine directed at distinct 
tumor vulnerabilities is imperative to make the vertical 
advancement in treatment in order to improve quality and 
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duration of life for EOC patients. Consequently, there is 
a critical need to screen EOC tumors for specific genetic 
signatures to determine the most effective combinatorial 
treatment options on a case-by-case basis. Until then, 
chemotherapy resistance and drug toxicity will continue 
to hinder improvements in overall survival of patients with 
EOC.

Clinically relevant genetic signatures should both 
stratify patients into prognostic subtypes and predict 
chemotherapeutic response [3]. Relying solely on 
clinicopathologic markers to guide treatment decisions 
has proven ineffective mainly due to lack of knowledge 
of the inherent molecular vulnerabilities within individual 
tumors. The development of early prediction models 
initially utilized microarray technology to discern small 
gene sets predictive of treatment response [4–7]. However, 
as sequencing and gene silencing technologies continue 
to become commonplace, a more exact analysis of tumor 
biology is possible [8–10]. If solid tumors are truly 
heterogeneous diseases with assorted molecular features, 
hybrid signatures that take into account a combination 
of clinical and genetic characteristics allow oncologists 
the most informed criteria possible regarding therapeutic 
choices and risk of recurrence. The introduction of online 
publication compendiums and queryable databases offer a 
vast resource of data mining at little to no cost of access 
[11–14], this enables bioinformatical inquiry to become 
an integral component of modern research projects. Meta-
analyses of multiple data sets, inconceivable before the 
advent of Internet technology, allows a global perspective 
on genetic relationships across a spectrum of tumor types 
[15–17]. The molecular assay PAM50 (and the clinical 
equivalent Prosigna®) run on the NanoString nCounter®-
platform is an example of an integrated breast cancer-
subtyping platform developed for use in local laboratories 
[18, 19]. The Cancer Genome Atlas (TCGA) supplies 
both mutational and clinical data for a 33 tumor types, 
including ovarian serous adenocarcinoma [2], allowing 
researchers to identify molecular subtypes with survival 
correlations for EOC patients [20, 21]. Therefore, novel 
computational approaches identifying clinically relevant 
predictive signatures have the potential to advance EOC 
therapy in ways not conceivable through traditional basic 
science approaches [22, 23].

Auranofin (Ridaura®) is a gold complex originally 
approved as an antirheumatic agent that has emerged as 
a potential candidate for multiple repurposed therapies 
including neurodegenerative diseases, HIV/AIDS and 
microbial infections [24, 25]. Auranofin has an acceptable 
safety profile and has recently completed a Phase 2 study 
for treatment of chronic lymphocytic leukemia [26, 27]. 
Even though its specific anti-inflammatory mechanisms 
are not fully understood, auranofin also demonstrates 
several anticancer properties. Its most well studied 
mechanism of action is inhibition of thioredoxin reductase 
(TrxR) enzyme with subsequent induction of reactive 

oxygen species (ROS) [28, 29]. It has also been shown to 
mimic proteasomal inhibition by acting upon proteasome-
associated deubiquitinases (DUBs) [30]. Other areas of 
research for the anti-growth activity of this heavy metal 
compound focus on inhibition of the STAT3 and NFκB 
pathways [31, 32]. When directed against EOC cell lines, 
additional mechanisms of action have been demonstrated. 
It was shown to be more potent than cisplatin in 
decreasing cell viability, especially in cells conditioned 
for cisplatin-resistance [33]. In addition, studies in ovarian 
cancer models have implicated auranofin as a potent 
activator of the FOXO3 tumor suppressor [34], as well 
as a selective inhibitor of oncogenic protein kinase C iota 
(PKCι) signaling [35]. The latter studies include a clinical 
trial evaluating the benefits of oral dosing of auranofin 
alongside CA-125 monitoring in asymptomatic ovarian 
cancer patients [36]. Auranofin has also been shown to be 
more effective in BRCA1-defective ovarian cells due to 
accumulations in unrepaired DNA damage [37]; however, 
this observation has not been confirmed clinically. 
Importantly, substantial evidence has demonstrated the 
synergistic enhancement of auranofin effects when used 
in combination with other compounds [28, 38–42].

The HSP90 chaperone protein utilizes an ATP-
dependent mechanism to orchestrate various cellular 
functions, including the protection and activation of 
oncogenic client proteins [43]. Due to exploitation of its 
housekeeping functions by malignant cells, therapeutics 
directed at disabling HSP90 activity is a current area of 
drug discovery. Though early natural products induced 
severe toxicities, current synthetic analogs display 
acceptable safety profiles and are being investigated in 
the treatment of a broad spectrum of neoplasms [43]. 
Among these next-generation compounds are AUY922 
(Vernalis) and ganetespib, both of which are resorcinol 
class compounds that inhibit the ATP-binding domain of 
HSP90 [44–46], though few investigations have evaluated 
their impact on ovarian tumor biology. One such study 
was a meta-analysis of siRNA screens indicating that 
degradation of HSP90 client proteins has the potential to 
sensitize EOC cell lines to additional targeted therapies. 
Moreover, exposure to ganetespib sensitized orthotopic 
ovarian xenografts to treatment with paclitaxel [47]. 
Although not currently being investigated in the treatment 
of EOC, studies have also demonstrated AUY922 efficacy 
in EOC models [48, 49].

As indicated, current methods of clinical 
intervention for EOC patients are dismal. Although the 
introduction of platinum and taxane-based therapy led to 
substantial improvements in patient survival, very little 
progress has occurred over the last few decades. In order 
to repurpose available FDA-cleared compounds based 
on pharmacogenomic profiles, we attempted to classify 
a phenotypic response to the combinatorial effects of 
auranofin and AUY922 through the use of transcriptional 
expression data. We selectively performed twelve different 
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two-drug combination treatments in ten EOC cell lines 
and utilized RNA sequencing data to group expression 
signatures according to drug sensitivity or resistance. 
We show that combinations of auranofin (ROS inducer) 
and AUY922 (HSP90 antagonist) are highly potent 
towards a subset of EOC cells while others show inherent 
resistance. We have demonstrated that these lines exhibit 
dissimilar disruption of ROS homeostasis after auranofin 
treatment, while AUY922 activity displays potency across 
all lines. The in silico analyses identified two 23-gene 
panels correlated with either resistance or sensitivity to 
this combination and interrogation of these gene sets in 
the TCGA data set demonstrate a proclivity of tumors 
expressing genes related to the resistant panel more so than 
the sensitive panel. The goal of this project is to provide 
evidence for pre-treatment transcriptional profiling of 
clinical tumors in order to predict efficacy of novel drug 
combinations, as well as identify genetic markers involved 
in chemotherapeutic response by integrating high-
throughput screening and in silico exploration.

RESULTS

Viability studies of FDA-approved drugs in EOC 
cell lines

Utilizing a robotic screening assay in a 384-
well format, we exposed ten EOC cell lines to twelve 
different two-drug combination treatments using FDA-
approved drugs not currently in use as EOC therapies 
(Supplementary Table 1). Although many of the single 
agent and drug combinations showed robust inhibition 
of cell viability across all lines, we were interested in 
drug combinations that demonstrate disparate phenotypes 
across EOC cell lines. After analyzing the preliminary 
data, we chose to further investigate the combinatorial 
effects of auranofin (a reported ROS inducer) paired with 
either AUY922 or ganetespib (HSP90 inhibitors). This 
mechanistic combination was chosen due to the diverse 
effects we saw on viability among the panel of EOC lines, 
where some lines showed sensitivity to the combination 
(A1847, A2780, OVCAR8) while others displayed 
resistance (OVCAR4, PEO4, SKOV3) (Supplementary 
Figure 1A & 1B). In order to validate these results in a 
96-well format, we first performed single agent viability 
screens using the three compounds to determine dose 
response curves of each cell line (Supplementary Figure 
1C-1E). Initial investigations revealed that the two HSP90 
inhibitors exhibited similar activities across the cell lines; 
therefore, we focused our efforts on a single combination 
of auranofin and AUY922. We then confirmed the 
preliminary high-throughput viability results to this drug 
combination in the two groups of EOC cell lines using a 
checkerboard design (Figure 1A & Supplementary Figure 
2A). In further experiments, we utilized A1847 and PEO4 

as representative cell lines for the sensitive and resistant 
groups, respectively.

To distinguish synergistic from additive effects 
of auranofin and AUY922, a combination index (CI) 
was calculated for each of the sensitive and resistant 
cell lines (Figure 1B & Supplementary Figure 2B). The 
CI model, originally developed by Chou et al. [50], is 
commonly used to assess drug interactions. Of the 48 total 
concentrations, auranofin and AUY922 are synergistic 
(<0.8 CI score) at 56% of the concentrations against 
A1847 cells compared to 27% for PEO4 cells. Moreover, 
this drug combination is highly synergistic (<0.3 CI score) 
for 29% of drug concentrations against A1847 cells versus 
only 4% for the PEO4 line (Figure 1B).

Induction of apoptosis is increased in sensitive 
cells

Due to the synergistic effects seen in the sensitive 
EOC cell lines, we investigated if cellular viability was 
mediated through an apoptotic mechanism. To examine 
auranofin and AUY922-induced apoptosis, we evaluated 
Annexin V staining 48 hours after single agent and 
combinatorial treatment at the indicated concentrations 
(Figure 1C & Supplementary Figure 3A). After treatment, 
the fraction of Annexin V positive A1847 cells increased 
by an average of 3.2-fold in the auranofin group, 6.0-fold 
in the AUY922 group and 6.9-fold in the combination 
group relative to the vehicle group. Alternatively, in the 
resistant PEO4 cells the average induction of Annexin V 
staining was 1.6-fold in the auranofin group, 1.8-fold in 
the AUY922 and only 2.2-fold in the combination group 
relative to the vehicle group. We also evaluated p53 and 
CDKN1A protein levels after drug treatment (Figure 
1D & Supplementary Figure 3B). Western blot analysis 
demonstrated strong p53 expression in A1847, A2780, 
OVCAR4 and PEO4 cells, yet undetectable in both 
OVCAR8 and SKOV3. Treatment of cells with auranofin 
for 24 hours did not alter p53 expression in any of the 
tested cell lines, though exposure to AUY922 alone or in 
combination with auranofin decreased expression of p53 
in the sensitive A1847 and resistant OVCAR4 lines. A 
downstream effector of p53, the cyclin dependent kinase 
inhibitor CDKN1A, was increased in the sensitive A1847 
after incubation with both auranofin and AUY922, as well 
as after combinatorial treatment of the two compounds. 
The resistant PEO4 line failed to demonstrate a marked 
increase in CDKN1A after any type of treatment, 
corroborating the decreased Annexin V staining seen post-
treatment. Increased CDKN1A expression was also seen 
after single agent and combinatorial treatment in sensitive 
A2780 and resistant OVCAR4 cell lines, undetectable in 
OVCAR8 regardless of treatment and only increased after 
exposure to auranofin in SKOV3 cells (Supplementary 
Figure 3B).
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Figure 1: Combination analysis for auranofin and AUY922 in sensitive A1847 and resistant PEO4 cell lines. (A) Color 
scale for percentage of viability inhibition is shown across 48 different drug combinations of auranofin and AUY922 for A1847 (upper) 
and PEO4 (lower) cell lines. (B) Dose response data was used to calculate the Combination Index (CI) values for auranofin and AUY922 
combination treatment for A1847 (upper) and PEO4 (lower). Shown is the average calculated CI value ± standard error of the mean. CI 
value of >0.8 [green] indicates no synergy; CI = 0.3-0.8 [yellow] indicates synergistic effects; CI value of <0.3 [red] indicates strong 
synergistic effects. (C) Fold-change of A1847 and PEO4 cells positive for Annexin V staining 48 hours after incubation with indicated 
compounds, both alone and in combination (Aur + AUY). Data were quantified for fold-changes relative to vehicle treated cells and are 
presented as bar graphs showing average fold-change ± standard error of the mean, * = p < 0.05. (D) Protein expression of TP53 and 
CDKN1A 24 hours after incubation with indicated compounds, both alone and in combination (Aur + AUY). β-actin was used as a loading 
control and densitometric analysis of western blot data was performed using ImageJ software.
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Auranofin-induced disruptions of reactive 
oxygen pathways

We compared the auranofin IC50 dose response 
curves of our sensitive and resistant cell lines using a 
Student’s t-test and revealed a statistically significant 

difference between groups (Figure 2A). We next 
performed Western blot analyses of these cultures after 
incubation with the indicated concentrations (Figure 2B 
& Supplementary Figure 4A). The NRF2/KEAP1 pathway 
is a key regulator of cellular responses to oxidative stress 
in several ovarian cancer models [51, 52], and has been 

Figure 2: Single agent and combinatorial effects on reactive oxygen species homeostasis. (A) IC50 values of auranofin 
treatment across A1847, A2780, OVCAR8 [sensitive] and OVCAR4, PEO4, SKOV3 [resistant] cell lines. The points represent average 
viability ± standard error of mean following 72 hours of drug treatment at the indicated concentrations. Curve-fit lines were generated using 
non-linear regression analysis in GraphPad Prism. (B) Protein expression of NRF2, KEAP1 and pan-ubiquitin 24 hours after incubation 
with indicated compounds, both alone and in combination (Aur + AUY). β-actin was used as a loading control and densitometric analysis 
of western blot data was performed using ImageJ software with band quantification relative to DMSO-treated samples. (C) Inhibition of 
TXNRD1 activity was measured by NADPH-dependent reduction of DTNB in A1847 and PEO4 cell lines 6 hours after incubation with the 
indicated compounds. (D) Measurement of total ROS levels was measured using DCF fluorescence in A1847 and PEO4 cell lines 6 hours 
after incubation with the indicated compounds. (E, F) Transcriptional expression of TXN and TXRND1 in A1847 and PEO4 cell lines 6 
hours after incubation with the indicated compounds, both alone and in combination (Aur + AUY). Data were quantified for the indicated 
fold-changes relative to vehicle treated cells and are presented as bar graphs showing the average fold-change ± standard error of the mean. 
* = p < 0.05, ** = p < 0.01, *** = p < 0.001.
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shown to be influenced by auranofin treatment [28, 53, 
54]. We hypothesized that the effects of auranofin on 
ROS disruption are mediated, in part, through these 
proteins. We demonstrate that the sensitive A1847 cell 
line has strong basal expression of NRF2 while all other 
cell lines have diminished basal levels. Upon incubation 
with auranofin, either as a single agent or in combination 
with AUY922, the expression of NRF2 increased in all 
cell lines tested, indicating a common mechanism of 
action of auranofin. Conversely, protein expression of 
KEAP1 was similar between all cell lines at the basal 
level, though differences in KEAP1 inhibition were seen 

upon treatment with auranofin and/or AUY922 (Figure 
2B & Supplementary Figure 4A). We also wanted to 
investigate the pan-ubiquitination status of proteins after 
incubation with auranofin due to its previous implication 
as an inhibitor of proteasome-associated deubiquitinases 
(DUBs) [30]. Our results showed that, although treatment 
with auranofin either alone or in combination with 
AUY922 increased total ubiquinated proteins across all 
lines tested, this phenomenon was markedly higher in the 
sensitive group, suggesting a role of DUB inhibition in 
the increased apoptotic effects of auranofin (Figure 2B & 
Supplementary Figure 4A).

Figure 3: Single agent and combinatorial effects on the HSP90 pathway. (A) IC50 values of AUY922 treatment across A1847, 
A2780, OVCAR8 [sensitive] and OVCAR4, PEO4, SKOV3 [resistant] cell lines. The points represent average viability ± standard error 
of mean following 72 hours of drug treatment at the indicated concentrations. Curve-fit lines were generated using non-linear regression 
analysis in GraphPad Prism. (B) Protein expression of HSP70, HSP90, pAKT-Thr308, pAKT-Ser473 and AKT 24 hours after incubation with 
indicated compounds, both alone and in combination (Aur + AUY). β-actin was used as a loading control and densitometric analysis of 
western blot data was performed using ImageJ software. (C, D) Transcriptional expression of the HSP90AA1 and HSP90AB1 subunits in 
A1847 and PEO4 cell lines 6 hours after incubation with the indicated compounds, both alone and in combination (Aur + AUY). Data were 
quantified for the indicated fold-changes relative to vehicle treated cells and are presented as bar graphs showing the average fold-change 
± standard error of the mean. * = p < 0.05, ** = p < 0.01, *** = p < 0.001.
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Gold compounds such as auranofin have been 
shown to induce cell death through the deregulation of 
the thioredoxin reductase/thioredoxin (TXNRD1/TXN) 
redox system [55]. We therefore investigated the activity 
of our preferred drug combination on this system in 
EOC cell lines. TXNRD1 functions as a critical enzyme 
to maintain homeostasis of a reduced cellular milieu. 
Inhibition of TXNRD1 performance results in amplified 
levels of oxidized thioredoxin that further impairs the 
cellular response to oxidative stress. To determine if 
auranofin was inhibiting the enzymatic function of 
TXNRD1, we monitored TXNRD1 activity after 6 hours 
of auranofin exposure (Figure 2C & Supplementary 
Figure 4B). Interestingly, auranofin inhibits TXNRD1 

activity at doses above 0.1 μmol/L in all cell lines tested, 
irrespective of its effects on viability (Supplementary 
Figure 4C). This finding demonstrates strong support that 
a principle mechanism of this gold compound is direct 
action on the TXNRD1/TXN system. To further delineate 
the influence auranofin has on the cellular response to 
impaired oxidative stress mechanisms, we performed 
RT-qPCR on sensitive A1847 and resistant PEO4 cell 
lines to examine transcriptional changes after treatment 
with auranofin and AUY922 (Figure 2E & 2F). We 
observed significant increases in the production of both 
TXN and TXNRD1 transcripts in the resistant PEO4 line 
after 6 hours of auranofin as both a single agent and in 
combination, while the presence of AUY922 alone did 

Table 1: List of genes representing the resistant genetic signature
Gene ID Gene name logFC FDR

CDH6 cadherin 6, type 2, K-cadherin (fetal kidney) 9.9 1.77E-19

IGFBP7 insulin-like growth factor binding protein 7 12.2 1.82E-15

MXRA5 matrix-remodelling associated 5 13.7 1.10E-12

ITGB6 integrin, beta 6 10.6 1.07E-11

WNT7A wingless-type MMTV integration site family, 
member 7A 11.7 6.96E-11

TACSTD2 tumor-associated calcium signal transducer 2 9.4 3.31E-09

KRT19 keratin 19, type I 9.3 3.78E-09

ESR1 estrogen receptor 1 13.0 6.46E-08

MUC16 mucin 16, cell surface associated 11.6 1.23E-07

EHF ets homologous factor 9.5 2.28E-07

S100A14 S100 calcium binding protein A14 9.2 1.48E-06

MAL2 mal, T-cell differentiation protein 2 8.5 2.04E-08

LAMA3 laminin, alpha 3 7.7 1.94E-06

ZBED2 zinc finger, BED-type containing 2 9.1 6.53E-06

LAD1 ladinin 1 9.2 3.12E-05

IRF6 interferon regulatory factor 6 9.9 3.12E-05

CFI complement factor I 9.2 3.35E-05

CACNA2D3 calcium channel, voltage-dependent, alpha 2/delta 
subunit 3 10.1 1.09E-04

TSTD1 thiosulfate sulfurtransferase (rhodanese)-like 
domain containing 1 10.5 1.78E-04

COL5A1 collagen, type V, alpha 1 8.8 7.63E-05

MMP2 matrix metallopeptidase 2 8.2 8.56E-05

PDZK1IP1 PDZK1 interacting protein 1 8.6 1.77E-04

FAT2 FAT atypical cadherin 2 8.0 1.89E-04

RNA sequencing analyses was condensed to Gene ID, Gene name, logFC (log2-fold change) and FDR (Benjamini-
Hochberg adjusted p-value to account for multiple comparisons). The panel of 23 genes that exhibit the highest logFC and 
FDR in the three resistant cell lines as compared to the three sensitive lines were selected as the resistant signature.
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not produce similar results. Both cell lines demonstrated 
significant increases in TXNRD1 transcript production 
due to auranofin treatment, possibly due to a cellular 
compensatory mechanism for inhibited activity at the 
enzymatic level. Similar results were seen at 24 hours 
post-treatment, although by this time point even the 
sensitive A1847 line was increasing TXN transcriptional 
production due to auranofin exposure (Supplementary 
Figure 4D & 4E). We also wanted to measure differences 
in total ROS levels in the cells after exposure to these 
compounds. Although total ROS levels did not strictly 
correspond to cellular viability results between all cell 
lines (Supplementary Figure 5A), we did observe and 
increase in total ROS levels in the sensitive A1847 cell 
line 6 hours after treatment using a high concentration 
of auranofin (Figure 2D). This may indicate a higher 

sensitivity to auranofin on ROS homeostasis in A1847 
as compared to PEO4. Finally, we investigated the 
effects of auranofin and AUY922 on mitochondrial 
function by monitoring disruptions in mitochondrial 
membrane potential. Changes in membrane potential 
lead to decoupling of the respiratory chain and is a 
key component of the early stages of programmed cell 
death. JC-1 is a dye that permeabilizes the mitochondrial 
membrane depending on its depolarization. The ratio 
of JC-1 aggregates-to-monomers is determined by the 
red/green fluorescence of JC-1 and is used as a general 
readout of mitochondrial membrane potential. However, 
we saw no changes in mitochondrial health of any cell 
line using this assay after treatment with auranofin, 
suggesting that the actions of auranofin are independent 
of mitochondrial stability (Supplementary Figure 5B).

Table 2: List of genes representing the sensitive genetic signature
Gene ID Gene name logFC FDR

IGF2BP1 insulin like growth factor 2 mRNA binding protein 1 9.0 3.32E-06

ITPRIPL1 inositol 1,4,5-triphosphate receptor interacting protein-like 1 8.5 2.96E-05

ELFN1 extracellular leucine-rich repeat and fibronectin type III domain 
containing 1 9.7 3.12E-05

CCND2 cyclin D2 11.2 1.89E-04

PLAC8 placenta specific 8 6.0 3.71E-04

ARHGAP28 Rho GTPase activating protein 28 6.3 4.15E-04

SERPINF1 serpin peptidase inhibitor, clade F, member 1 7.9 8.03E-04

NOS3 nitric oxide synthase 3 5.1 1.49E-03

TBX2 T-box 2 7.4 1.68E-03

TEX15 testis expressed 15 7.7 2.00E-03

RASGRP2 RAS, guanyl releasing protein 2 7.4 2.24E-03

BAHCC1 BAH domain and coiled-coil containing 1 6.0 3.20E-03

APC2 adenomatosis polyposis coli 2 5.8 4.92E-03

COL13A1 collagen, Type XIII, Alpha 1 6.3 5.85E-03

FREM2 Fras1 related extracellular matrix protein 2 6.2 6.15E-03

AGAP2 ArfGAP with GTPase domain, ankyrin repeat and PH domain 2 6.7 6.37E-04

MME membrane metallo-endopeptidase 5.6 9.19E-03

ESPNL espin-like 6.1 9.31E-03

DDR2 discoidin domain receptor tyrosine kinase 2 6.1 0.01

PDGFRB platelet-derived growth factor receptor beta 5.2 0.01

SCARF1 scavener receptor class F member 1 5.8 0.02

COL3A1 collagen type III alpha 1 7.1 0.03

STAG3 stromal antigen 3 6.2 0.04

RNA sequencing analyses was condensed to Gene ID, Gene name, logFC (log2-fold change) and FDR (Benjamini-
Hochberg adjusted p-value to account for multiple comparisons). The panel of 23 genes that exhibit the highest logFC and 
FDR in the three sensitive cell lines as compared to the three resistant lines were selected as the sensitive signature.
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Figure 4: Expression of a 23-gene resistant signature using both in vitro and in vivo models. (A) The 23-gene resistant 
profiles of A1847 and PEO4 cultured cells were evaluated utilizing TaqMan assays on the Biomark high-density qPCR system. Absolute 
cycle threshold values ± standard error of the mean from triplicate reactions of two independent experiments are graphed. Asterisks designate 
lack of amplification curves within 40 cycles. (B) Average variation of cycle thresholds for A1847 and PEO4 cultured cells treated with the 
indicated compounds, both alone and in combination (Aur + AUY). Data are displayed as bar graphs representing the difference of absolute 
threshold cycle ± standard error of the mean as compared to basal transcription from triplicate reactions of two independent experiments. 
Positive and negative columns signify higher and lower Ct values, respectively. (C, E) The 23-gene resistant profile was evaluated in A1847 
and PEO4 spheroids and in vivo xenografts utilizing TaqMan assays on the Biomark high-density qPCR system. Absolute cycle threshold 
values ± standard error of the mean from triplicate reactions of two independent experiments are graphed. Asterisks designate lack of 
amplification curves within 40 cycles. (D, F) Absolute variation of cycle threshold for A1847 and PEO4 spheroids and in vivo xenografts 
compared to cultured cells. Data are displayed as bar graphs representing the difference between absolute threshold cycles using triplicate 
reactions of two independent experiments. Positive and negative columns signify higher and lower Ct values, respectively.
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AUY922 mediated effects on sensitive and 
resistant cell models

Similar to auranofin, we compared the AUY922 IC50 
dose response curves of our cell lines (Figure 3A). Again, 
a Student’s t-test of the respective IC50’s demonstrated 
a significant p-value of 0.03 between groups. We next 
performed Western blot analysis 24 hours after incubation 

with indicated concentrations (Figure 3B, Supplementary 
Figure 6A & 6B). One of the hallmarks for effective 
HSP90 inhibition is an increase in the protein expression 
of HSP70 while HSP90 protein levels are maintained, as 
well as degradation of HSP90 client proteins [48, 56]. 
We observed this phenomenon across all cell lines using 
AUY922 either alone or in combination with auranofin. 
Additional verification that AUY922 efficacy is robust in 

Figure 5: Investigation of publicly available datasets for prevalence of genetic signatures. (A) Average expression values 
of Agilent probes related to an increase in the resistant signature from 518 TCGA tumors relative to 8 fallopian control samples. Data are 
displayed as box plots representing 8 genes (derived from 9 unique probes) that showed average increase of expression in tumors (yellow) 
greater than 2-fold increase over fallopian (green). (B) Average expression values of Agilent probes related to a decrease in the sensitive 
signature from 518 TCGA tumors relative to 8 fallopian control samples. Data are displayed as box plots representing 7 genes (derived from 
7 unique probes) that showed average decrease of expression in tumors (yellow) greater than 2-fold increase over fallopian (green). The 
whiskers of each box plot represent expression values at 5th and 95th percentiles. Average fold change expression and p-values are indicated 
for each probe. (C, D) Heat map data of mRNA expression related to resistant and sensitive signatures from 266 TCGA serous ovarian 
patient samples sequenced using Illumina technology. All samples are mean-normalized per gene to 19 tumor types using Pan-Cancer 
analysis. Red and blue indicate increased and decreased mRNA expression, respectively.
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all lines is the collective decrease in both phosphorylated 
AKT (at Thr308 and Ser473) and total AKT protein levels. 
We also wanted to observe transcriptional changes in 
HSP90 subunits after incubation with these compounds, 
therefore we performed RT-qPCR on sensitive A1847 and 
resistant PEO4 cell lines 6 hours after exposure (Figure 
3C & 3D). We demonstrate significant increases in both 
the HSP90AA1 and HSP90AB1 subunits with either single 
agents, although AUY922 and the combination produced 
higher fold-changes then auranofin alone. Similar results 
were also seen at 24 hours post-incubation (Supplementary 
Figure 6C & 6D).

Generation of predictive genetic signature

In order to evaluate the basal transcriptional activity 
of EOC cell lines that exhibit sensitivity versus resistance 
to the drug combination of auranofin and AUY922, RNA 
sequencing was performed to compare global expression 
profiles. We cultured the sensitive (A1847, A2780, 
OVCAR8) and resistant (OVCAR4, PEO4, SKOV3) 
lines, then extracted and purified total RNA. Paired end 
sequencing was performed and initial analyses were 
prepared using RSEM expected gene counts. The data 
were first filtered to remove non/low-expressed genes 
which resulted in a total of ~14,000 genes that were 
examined for differential expression. Next, normalization 
factors were calculated to scale the library sizes followed 
by estimation of the tag wise negative binomial dispersion 
values. An exact test for differences in gene wise mean 
expression values was then implemented and provided 
both log fold change (logFC) and false discovery rate 
(FDR) values. We discovered 283 differentially expressed 
genes (FDR cutoff of <0.05) between the “sensitive” and 
“resistant” subgroups which allowed us to finalize the 
list by using the top 23 genes expressed in the resistant 
and sensitive cell lines as determined by logFC and FDR 
(Tables 1 & 2). We also compiled expected counts of 
sequenced isoforms from each signature and determined 
the total average counts per cell line as well as group 
average for each RefSeq ID (Supplementary Tables 2 & 
3). In addition, we queried our RNAseq data for lncRNA 
expression and compiled three transcripts, including 
HOTAIR, that were highly expressed in sensitive cell lines 
while six lncRNAs were upregulated in the resistant group 
(Supplementary Table 4).

RT-qPCR validation of signature genes

Before moving on to high-density RT-qPCR 
analysis, we first wanted to validate the robustness of 
the dual signatures using conventional SYBR Green 
qPCR on a subset of genes. We designed primers and 
interrogated three genes from each list to determine 
if the in silico data was an accurate representation of 
the in  vitro profiles. Primers targeting resistant genes 

(CDH6, IGFBP7, WNT7A) and sensitive genes (ELFN1, 
ITPRIPL1, MME) led to prominent discrepancies between 
cycle threshold (Ct) values from A1847 and PEO4 cell 
lines (Supplementary Figure 7A & 7B). In certain cases, 
no amplification curves were evident within 40 cycles, 
implying miniscule to null transcriptional activity of these 
genes. As predicted, A1847 mRNA transcripts related 
to the resistant signature demonstrated much higher Ct 
values as compared to PEO4 transcripts, with a minimal 
mean Ct variation of 10.9 ± 1.2 cycles. Similarly, PEO4 
transcripts of the sensitive genes showed higher Ct values 
with a minimal mean of 8.6 ± 1.7 cycles. Notably, similar 
amplification curves were seen in the reference control 
gene PPIA in both lines, indicating that the disparate 
mRNA levels were not a global phenomenon but instead 
restricted to genes selected from RNA sequencing 
(Supplementary Figure 7A & 7B). We next wanted to 
determine if the transcriptional profile of A1847 and PEO4 
cell lines persisted when grown in vivo. To that end, we 
extracted RNA from intraperitoneal tumors grown from 
these cell lines in NOD scid gamma (NSG) mice and 
investigated transcriptional levels of the above validation 
genes (Supplementary Figure 7C & 7D). Interestingly, 
the disparity of the resistant signature is dampened due to 
increased transcription in A1847 xenografts, as evident by 
lower Ct values resulting in a minimal mean difference of 
3.9 ± 1.4 cycles. However, the sensitive validation genes 
displayed comparable differences in Ct between cell line 
xenografts with a minimal mean variation of 7.9 ± 1.3 
cycles. Furthermore, in vivo PPIA expression remained 
comparable between tumor types (Supplementary Figure 
7C & 7D).

We then moved forward with high-density RT-
qPCR studies by measuring mRNA expression of the 23 
resistant signature genes in A1847 and PEO4 cultured 
cell lines using a 48x48 dynamic array on the Biomark™ 
HD system (Fluidigm microfluidic quantitative PCR 
platform). Using TaqMan® probes we determined basal 
Ct values of the resistant gene signature and demonstrate 
that they parallel the in silico data with a minimal mean 
variation of 15.9 (Figure 4A). We also used the Biomark 
assay to analyze gene signature fluctuations after 6 hours 
incubation with auranofin and AUY99, both as single 
agent and in combination (Supplementary Figure 8A, 
8C & 8E). We observed moderate changes in Ct values 6 
hours after drug treatment compared to basal levels with 
the greatest variations occurring in combination treated 
cells (Figure 4B & Supplementary Table 5). Similar to 
the SYBR Green results, the divergent gene expression 
of both basal and drug treated cultures is not reflected in 
the geometric mean of three reference controls GUSB, 
PPIA and TBP screened to confirm overall mRNA quality 
(Supplementary Figures 7E, 8B, 8D & 8F).

We next wanted to examine alterations in signature 
expression during the evolution towards a 3D tumor. To 
that end we forced the A1847 and PEO4 cultured cells 
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into spheroid formation by culturing them in agarose-
coated wells then extracted mRNA and compared Ct 
values for the resistant signature and reference controls 
from these spheroids (Figure 4C & Supplementary Figure 
7F). Similar results were seen using mRNA from in vivo 
xenografts grown in mice (Figure 4E & Supplementary 
Figure 7G). Notable exceptions of genes displaying 
disparate Ct values as compared to the in vitro data are 
decreased expression of WNT7A and CACNA2D3 in PEO4 
spheroids as well as decreased expression of FAT2 paired 
with increased expression of MMP2 in A1847 spheroids 
(Figure 4D). Significant changes for in vivo xenografts 
as compared to in vitro cultured cells are an increase in 
IGFBP7 and MMP2 expression alongside a decrease in 
IRF6 within the A1847 tumors (Figure 4F). Altogether, 
these results imply that the genetic machinery responsible 
for robust expression inherent to a given cell line may not 
be remarkably affected during the transformation from 2D 
to 3D models.

Investigation of publicly available datasets for 
prevalence of genetic signatures

In order to determine whether EOC clinical samples 
are best represented by the resistant or sensitive signatures, 
we sought out the prevalence of these genes in publicly 
available databases. To substantiate the results produced 
from cell lines grown in the laboratory to those found in 
online resources, we first utilized the Cellminer database 
that queries molecular datasets focused on NCI-60 cell 
lines [57, 58]. Using this portal, we were able to extract 
average z-scores for our genes of interest from three of 
the cell lines used in our studies (OVCAR8, OVCAR4 & 
SKOV3) that reflected similar expression trends for both 
signatures (Supplementary Figure 9A & 9B). OVCAR8 
displayed an average z-score of -0.5 for resistant genes 
and +0.6 for sensitive. Alternatively, OVCAR4 and 
SKOV3 show a +1.4 and +1.0 for resistant genes and -0.5 
and -0.7 for sensitive, respectively. These results validate 
both the integrity of our cell lines as well as the robustness 
of the in silico data.

Recent interest in targeting the PRKCI pathway 
using auranofin as a treatment for ovarian cancer patients 
led us to investigate expression of this molecule in cell 
line models and to see if any correlation exists with 
our viability data. Using Cellminer, we determined the 
combined NCI-60 ovarian lines exhibited both the highest 
average z-score and protein RPLA levels relative to the 
other eight cancer types (Supplementary Figure 10A & 
10B). We then performed copy number analysis on our 
sensitive and resistant cell line models that showed a 
modest trend toward increased PRKCI (the gene encoding 
protein kinase C iota) copy number in our resistant group 
(OVCAR4, PEO4 and SKOV3), though this difference 
was not significant (Supplementary Figure 10C). Finally, 
we analyzed if the log gene counts of our RNAseq data 

correlated with auranofin IC50 values across ten of our 
ovarian lines (Supplementary Figure 10D). The log 
gene count was elevated across all lines tested; further 
indicating that high expression of PRKCI is a common 
feature in ovarian cancer signaling. Although there is a 
significant Pearson correlation (0.66, p-value=0.036), this 
predictive value may be limited by the small dynamic 
range and high expression across all samples. Therefore, 
further investigation into the synergistic effects of PRKCI 
inhibition is warranted, but overall these data suggest that 
PRKCI is an attractive molecular target with enhanced 
specificity to ovarian cancer signaling.

To investigate if genes from our signatures are 
endemic in clinical EOC expression studies, we mapped 
TCGA Agilent probe IDs to our HGNC genes of interest. 
We then extracted gene expression data from 518 TCGA 
tumor samples and 8 normal fallopian tissues. Eight of 
the 23 genes in our resistant signature displayed average 
expression in tumor samples greater than 2-fold normal 
controls (CDH6, IRF6, MXRA5, WNT7A, MUC16, MAL2, 
ZBED2 and S100A14) (Figure 5A & Supplementary Table 
6). Alternatively, the sensitive signature showed only 
a single gene with significantly increased expression 
in tumors (COL3A1) (Supplementary Figure 9C & 
Supplementary Table 6), implying that these genes are 
less likely to be detected in large tumor panels compared 
to our selections based on resistance. Likewise, only a 
single gene from the resistant panel had higher expression 
in fallopian tissue compared to tumors (IGFBP7) 
(Supplementary Figure 9D, Supplementary Table 6), 
while 7 genes from the sensitive panel were shown to 
be expressed at significantly greater values in normal 
versus control tissue (PLAC8, STAG3, DDR2, SERPINF1, 
BAHCC1, CCND2, TBX2) (Figure 5B & Supplementary 
Table 6). This provides evidence that genes affiliated with 
resistance to our drug combination are more prevalent in 
tumor biology compared to those linked to sensitivity. 
Next, we determined the percentage of tumors that 
expressed individual Agilent probes greater than 2-fold of 
fallopian tissue (Supplementary Figure 9E & 9F). Again, 
expression of resistance genes was more common in the 
patients’ tumors (6 of the genes upregulated in > 50% 
of all tumor samples and 9 genes upregulated in < 20%) 
compared to those from the sensitive panel (2 of the genes 
upregulated in > 50% of all tumor samples with 18 genes 
upregulated in < 20%).

Finally, we wanted to investigate the relationship 
between our cell line signatures and the Pan-Cancer 
datasets that compile genomic information from TCGA 
studies across a multitude of cancer types [59, 60]. 
Assembling this mean-normalized RNA sequencing data 
provides the opportunity to evaluate genes of interest 
across a spectrum of cancer cohorts and is possible using 
the UCSC Cancer Genomics Browser (https://genome-
cancer-ucsc.edu) [61]. Again, genes pertaining to our 
resistant signature appear much more likely to be detected 

https://genome-cancer-ucsc.edu
https://genome-cancer-ucsc.edu
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within the 266 curated serous ovarian TCGA tumors than 
those from the sensitive list as compared to the sensitive 
signature (Figure 5C & 5D). Altogether, these studies 
provide justification that the cell lines displaying inherent 
resistance to the combination treatment of auranofin and 
AUY922 are superior models than the sensitive group for 
recapitulating the transcriptional profile of clinical EOC 
samples.

DISCUSSION

Our motivation for this study was to determine 
if we could garner reliable information from 384-well 
high-throughput drug screening all the way through to 
existing clinical databases. The therapeutic potential 
provided would be feasible novel treatment options. 
We focused on the development of high-throughput 
viability screens of EOC cell lines paired alongside RNA 
sequencing technology to provide linkage between global 
gene expression and specific drug activity. To that end, 
we performed large-scale drug screening experiments 
with multiple ovarian cancer lines tested against a panel 
of clinically relevant compounds. Although we saw 
considerable potency from auranofin or AUY922 alone 
against several EOC cell lines, we focused on combining 
due to the inherent resistance displayed by other EOC 
lines, similar to what is seen among clinical responses 
using current chemotherapeutic protocols. We then 
investigated pathways downstream of these compounds 
and created multi-gene signatures linked to sensitivity or 
resistance. The availability of publically available genomic 
data through collections such as the TCGA allowed us to 
visualize the proclivity of our resistance signature within 
the patient population. Taken together, this study provides 
a platform to logically develop personalized treatments for 
patients with ovarian cancer.

By using a broad screening panel and correlating 
the response to genomic signatures, it may be possible 
to circumvent the diverse genetic complexity preventing 
successful treatment of late-stage EOC. Aberrant p53 and 
DNA repair functions in HGS tumors result in widespread 
genomic variance [2]. Relying solely on tissue of origin 
to determine treatment protocols is imprecise, instead the 
focus needs to shift to specific vulnerabilities inherent to 
individual tumors. Other tumor types, such as pancreatic 
ductal adenocarcinoma, demonstrate marked heterogeneity 
and have also proven difficult to treat successfully [62]. 
Even well characterized tumor types with dependable 
molecular biomarkers can be stratified into a spectrum of 
classifications previously unavailable using histologic or 
single-gene criteria. Therefore, the historical method of 
elucidating communal drivers intrinsic to certain tumor 
types to gauge effective therapeutic response may be 
better utilized by cataloging the efficacy of all available 
compounds against families of gene signatures. New and 
repurposed drug combinations could then be best matched 

to individual patients. The correlation between in vitro or 
clinical sequencing information to sensitivity data for the 
vast collection of FDA-cleared drugs can provide a system 
for therapeutic discovery.

Although randomized clinical trials have led to 
substantial advancement in understanding numerous 
disease processes, they have also resulted in needless 
treatment for patients who receive no benefit, which in turn 
leads to statistical insignificance of potentially effective 
compounds. In certain instances, targeted therapies have 
demonstrated improved response rates due to increased 
activity in subsets of tumors. The tyrosine kinase inhibitor 
imatinib mesylate (Gleevec®), for the treatment of 
Philadelphia chromosome-positive chronic myelogenous 
leukemia and KIT-positive gastrointestinal stromal 
tumors [63, 64], as well as the monoclonal antibody 
trastuzumab (Herceptin®) directed against HER2-positive 
breast cancer and gastroespohageal cancer [65], are two 
notable examples of targeted therapies with high activity 
in subsets of tumors. However, acquired resistance to 
single agent targeted therapy is commonplace and poses 
a substantial challenge to the management of aggressive 
cancers. Additionally, the cost and time commitment 
related to developing new therapies is prohibitive [66]. 
One potential explanation for the disparity between 
positive results in preclinical studies and negative results 
during human trials is a reliance on “disease-specific” cell 
culture models. Historically, a subset of cellular models 
has been utilized to recapitulate a wide spectrum of patient 
tumors resulting in unreliable activity during trials. As 
our studies show, a broad panel of mechanistic assays 
in ovarian cell lines demonstrated little commonality for 
signaling markers between the cell lines of the sensitive 
and resistant groups. Realistically, in  vitro genomic 
alterations occur due to frequent passaging, variance in 
culturing techniques and/or extended cryopreservation. 
Therefore, performing preclinical studies using 2D 
cells that once demonstrated histological similarities 
to a given tumor type is an outdated and inefficient use 
of resources. Though dominant pathways may continue 
to drive proliferation among particular tumor cell line 
models, a more widespread molecular profile is warranted 
to determine the extent of genetic evolution and its 
usefulness as a clinical surrogate [67]. Researchers may 
find it best to first determine expression profiles from a 
tumor of interest and then screen for relevant cell lines that 
exhibit comparable signatures, even if that results in the 
use of atypical cell line models for the tumor type being 
evaluated. In our studies, the gene expression signatures 
from our resistant cell lines were more similar to clinical 
samples in the TCGA database than were the signatures of 
the sensitive group, thereby strengthening the importance 
of the resistant lines as the relevant tumor models.

It may prove more practical to investigate 
therapeutic intervention with existing FDA-approved 
compounds generated for other indications [68, 69]. 
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However, one potential pitfall with a repurposing approach 
for existing compounds is achieving the clinically 
effective dosing needed in order for them to be used as 
chemotherapeutic agents. For example, although auranofin 
is helpful in reducing inflammation for arthritic patients, 
it has poor bioavailability when taken orally, with only 
15-20% detected in plasma after dosing [25]. Two recent 
trials assessing auranofin as a monotherapy concluded 
with mixed results, possibly reflecting inefficient 
pharmacokinetics [36, 70]. Our recent studies of Ewing 
sarcoma further suggested that gold levels obtained via 
oral delivery of auranofin might be insufficient to achieve 
optimal anti-cancer effects [69]. Therefore, reformulation 
of the active gold component using intravenous or 
intraperitoneal delivery could potentially enhance the 
anti-tumoral activity of auranofin in ovarian cancer 
patients through both spatial targeting of the tumor and 
avoidance of the myriad of physiological factors affecting 
drug absorption via the gastrointestinal tract. Additionally, 
evaluating synergistic effects between repurposed classes 
of drugs may prove useful in circumventing resistant 
phenotypes through complementary blockade of discrete 
signaling pathways [71, 72]. Whereas auranofin as a 
single-agent has shown limited usefulness, multiple 
independent studies are investigating its benefit as a 
cooperative agent [28, 38–42, 73]. It is possible that the 
value of auranofin lies in contributing specific insults 
alongside other classes of chemotherapeutics. Heightened 
levels of ROS paired with inhibition of the proteasome 
ubiquitin system could overstress an adaptive tumor cell 
towards apoptosis. In our study, the use of auranofin 
in combination with an HSP90 inhibitor increased the 
effectiveness of the drug at lower concentrations, which 
could be beneficial to overcoming the clinical pitfalls seen 
with patient toxicities.

In order to make truly informed treatment decisions, 
a broader clinical evaluation of tumoral heterogeneity 
beyond single-pathway analysis is warranted. Cataloging 
genetic signatures could prove to be a sensible method 
for stratifying EOC patients into relevant targeted 
clinical trials [3, 74]. Microfluidic chips, RNAseq and 
digital multiplexed gene expression analysis have all 
demonstrated robustness and versatility using nucleic acid 
screening technologies [19, 75–77]. Global expression 
within individual tumors can now be generated using 
instrumentation available in clinical laboratories. Although 
the amount of raw sequencing data produced is abundant, it 
can be packaged into practical information using available 
bioinformatical toolboxes. Collective portals containing 
metadata of in vitro and in vivo metadata such as genetic 
signatures, isoform specificity and drug sensitivity 
information can be utilized by researchers to seek out 
pattern recognition across a milieu of cellular and tumor 
types, a process unfeasible using conventional detection 
methods. Resources such as the Pan-Cancer prognostic 
signatures utilized in this study will allow access to 

~11,000 human tumors encompassing 33 malignances 
from the TCGA data sets [78]. Additional inclusion of 
alternate molecular information, such as epigenomic 
and proteomic data, will lead to greater understanding 
of both tumor biology and pharmacogenomic influences. 
Burgeoning fields of study such as lncRNA activity allow 
for ample opportunity to detect patterns of expression 
in large, publically accessible datasets. lncRNA is a 
broad term denoting non-coding RNA greater than 200 
nucleotides in length linked to various cancer types due 
to tissue-specific expression of 28,000 distinct transcripts 
mediating gene regulation and chromatin modification 
[79]. HOTAIR, an lncRNA originating in the HOXC 
cluster targets PRC2 complexes across chromosomes in 
the HOXD locus, has been linked to tumor progression 
in ovarian cancer. Recent studies involving both meta-
analyses and gene signature construction are further 
gleaning the importance of lncRNAs, including HOTAIR, 
as biomarkers in this disease [80–82].

In conclusion, this study provides a platform to 
guide therapy based on widespread genomic signatures 
instead of single pathway inhibition. This is a promising 
approach to help tackle the treatment of ovarian cancer 
that lacks the common driver mutations necessary for 
targeted therapy. Instead, selection of drug combinations 
directed towards multiple cellular pathways associated 
with ovarian cancer progression may provide a platform 
for preselection based on genetic signatures.

MATERIALS AND METHODS

Compounds

Auranofin, AUY922 and ganetespib were purchased 
from Selleckchem. Upon receipt, dimethyl sulfoxide 
(DMSO) was used to prepare 10 mM stock solutions for 
all compounds except auranofin, which was prepared at 5 
mM concentration due to reduced solubility. Single-use 
aliquots of stock solution were stored at -80°C.

Cell culture

All cell lines used in this study were obtained or 
derived at the Fox Chase Cancer Center (Philadelphia, 
PA). Details of the origin of the EOC cell lines (A1847, 
A2780, C30, CP70, OVCAR4, OVCAR5, OVCAR8, 
OVCAR10, PEO4 and SKOV3) have been previously 
reported [83, 84]. All cell lines were grown in RPMI 1640 
media (Corning Cellgro) containing 2 mM L-glutamine 
and supplemented with 10% FBS (Gibco), 100 U/mL 
penicillin (Corning Cellgro), 100 μg/mL streptomycin 
(Corning Cellgro), and 7.5 μg/mL insulin (Gibco) and 
maintained at 37°C in a humidified atmosphere with 5% 
CO2. Spheroids were formed using the liquid-overlay 
method with agarose coated 96-well plates. Briefly, 96-
well flat bottom plates were coated with 50 μL 1.5% 
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agarose (Sigma Aldrich). Agarose was dried for 30 
minutes then 3,000 cells (A1847 or PEO4) were plated in 
media to commence spheroid formation. Fresh media was 
overlaid after four days and spheroids were collected after 
seven total days growth.

Drug screening and cell viability measurements

The six EOC cell lines were grown to 80% 
confluency, harvested and seeded into 96-well plates at 
concentrations of 2000 to 4000 cells per well in a total 
volume of 95 μL. Twenty-four hours after seeding, drug 
compounds were prepared using cell growth media and 5 μL 
of each were added to the seeded cells of the 96-well plates. 
A Microlab Nimbus 96 pipetting robot (Hamilton) was used 
to prepare serial dilutions and drug addition to the cell lines. 
The final drug solutions consisted of eight concentrations 
ranging from 20 to 0.0012 μmol/L (serial four-fold 
dilutions). Vehicle-only wells were included on each plate 
to serve as interplate normalization controls. Seventy-
two hours following drug addition, CellTiter Blue reagent 
(Promega) was added directly to each well using a Matrix 
WellMate (Thermo Scientific). The plates were incubated 
at 37 °C for 150 minutes and the fluorescent signal was 
measured using an Infinite® M200 Pro microplate reader 
(Tecan). The ratio of fluorescent signal in drug treated wells 
to that of average fluorescent signal from vehicle treated 
wells on each plate multiplied by 100 was calculated to yield 
percent cell viability for each drug treated well. A minimum 
of two biological replicates was performed for each cell line. 
Data analysis calculated IC50 values using Prism 5 software 
(GraphPad). All data in the viability curves are reported as 
mean ± standard error of the mean (SEM).

Drug combination studies

In order to determine synergistic effects of the two 
compounds, EOC cells were seeded into 96-well plates as 
described above. Twenty-four hours after seeding, serial 
dilutions of auranofin, AUY922 or both were freshly 
prepared in DMSO/media and added to the wells either 
as single agent or a combination. Assays were performed 
as biological duplicates using triplicate wells within each 
experiment. Cell viability following 72 hours of treatment 
was evaluated using CTB as described above and CalcuSyn 
(Biosoft) software was used based on the Chou-Talalay 
method [50, 85]. The CalcuSyn software generates 
combination index (CI) values that determine the effect of the 
drug combination in comparison to the single compounds. 
A CI of <0.3 indicates strong synergistic effect between the 
two compounds, whereas a CI of 0.3 - 0.8 and >0.8 indicates 
synergistic and non-synergistic effect, respectively.

Apoptosis

Annexin V labeling was performed using the Guava 
Nexin assay kit (Millipore) that contains a premixed 

cocktail of phycoerythrin-conjugated Annexin V and a cell 
impermeant dye (7-AAD). Cells in log phase of growth 
were grown to subconfluency, detached and seeded into 
6-well plates at a concentration of 1×105 - 2×105 cells per 
well. Cells were allowed to attach overnight then treated 
with or without compound at the indicated concentrations. 
After 48 hours, cells were diluted to 5×105 cells/mL and 
incubated with Guava Nexin reagent for 30 minutes. The 
assay was performed three independent times with three 
technical replicates each. Results were analyzed using a 
Guava easyCyte HT instrument (Millipore) and expressed 
as fold change of gated cells that are positive for Annexin 
V staining compared to vehicle control.

Western blot

Cell lysates were prepared in M-PER Mammalian 
Protein Extraction Reagent (Thermo Scientific) with Mini 
protease and Halt phosphatase inhibitor cocktails (Thermo 
Scientific) and protein concentration was determined using 
the BCA assay (Thermo Scientific). 25 μg of total cellular 
protein was separated on SDS/PAGE gels and transferred 
to nitrocellulose membrane that was blocked for 1 hour at 
room temperature in 5% nonfat milk. Primary antibodies 
were added overnight at 4°C with gentle shaking. The 
primary antibodies used were: anti-TP53 (Sigma), 
anti-CDKN1A (Cell Signaling), anti-NRF2 (Abcam), 
anti-KEAP1 (Abcam), anti-ubiquitin (Cell Signaling), 
anti-HSP70 (Enzo), anti-HSP90 (Cell Signaling), anti-
pAKTThr308 (Cell Signaling), anti-pAKTSer473 (Cell 
Signaling) and anti-AKT (Cell Signaling). After incubation 
with the appropriate secondary antibody, signals were 
detected using ECL Western Blotting Substrate (Thermo 
Scientific). Equal protein loading in each lane was 
confirmed with β-actin antibody (Sigma). Densitometry 
analysis was performed using the freely available image-
processing program ImageJ (NIH).

Thioredoxin reductase assay

Cells in log phase of growth were grown to 
subconfluency, detached and seeded into 6-well plates at a 
concentration of 5×105 cells per well. Cells were allowed 
to attach overnight then treated with or without compound 
at indicated concentrations for 6 hours. Cells were lysed 
and 40 μg of total protein was used to measure TrxR 
activity using the TrxR Reductase Assay Kit (Abcam) 
according to manufacturer protocol.

ROS activity measurement

Cells in log phase of growth were grown to 
subconfluency, detached and seeded into 96-well plates 
at a concentration of 2.5x104 cells per well. ROS activity 
was measured using the Cellular Reactive Oxygen Species 
Detection Assay Kit (Abcam) according to manufacturer 
protocol. Briefly, cells were allowed to attach overnight, 
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washed then treated with or without compound at indicated 
concentrations and timepoints. Cells were then exposed to 
2’,7’-dichlorodihydrofluorescin diacetate (DCFH-DA) for 
40 minutes and fluorescence was measured at 485/535 nm 
on a Tecan microplate reader.

Copy number calculation

Total DNA was isolated from cultured cells using 
the JetFlex Genomic DNA Purification Kit (Invitrogen). 
Cells were lysed and subjected to Proteinase K prior to 
ethanol precipitation of DNA. An input concentration of 
5 ng/μL was processed with a TaqMan® Copy Number 
Assay (Applied Biosystems). Results from a real-time 
PCR reaction were imported into CopyCaller™ Software 
(Applied Biosystems, version 2.1) that performs a Δ ΔCT 
analysis which determines the relative copy number of the 
PRKCI gene normalized to the known copy number of 
RNAaseP.

Real-time RT-PCR

Total RNA was extracted from EOC cell lines 
and spheroids using Trizol (Invitrogen) in Phase Lock 
Gel Heavy tubes (5Prime) then transitioned to RNeasy 
(Qiagen) columns with subsequent DNase treatment. 
For in  vivo xenograft studies, A1847 and PEO4 cells 
were implanted intraperitoneally into female NOD.Cg-
PrkdcscidIl2rgtm1Wjl/SzJ mice (Jackson). Mice were housed 
in our approved University Animal Facility with 12-
hour light cycles, food/water were provided ad libitum. 
Institutional approval was granted for all experiments 
via an Animal Care and Use Protocol. Solid tumors were 
collected and tissue homogenized in Trizol using a Bullet 
Blender (Next Advance) followed by RNA isolation as 
above. cDNA was created from pooled RNA of three 
technical replicates using SuperScript III (Invitrogen) 
and amplification was performed on a CFX96 Real-Time 
System (Bio-Rad) using Maxima SYBR Master Mix 
(Thermo Scientific). All amplification reactions were 
performed at least twice using three technical replicates 
each and melting curve analyses were performed to 
ensure amplification specificity. Relative mRNA levels 
for each gene were assessed following normalization to 
an internal reference control (RC) PPIA. Threshold cycle 
(Ct) values were determined using amplification curves 
then normalized to RC expression to calculate ΔCt for 
each sample as follows: ΔCtgene of interest = Ctgene of interest – 
CtRC. The amount of mRNA in drug treated cells relative 
to vehicle treated cells was calculated as follows: 2-ΔΔCt, 
where ΔΔCt = ΔCtdrug treated gene of interest – ΔCtvehicle treated gene of 

interest. Due to large disparities in Ct values between A1847 
and PEO4 in signature validation and high-density RT-
qPCR studies, the customary 2-ΔΔCt method for comparing 
relative mRNA expression was abandoned and absolute 
Ct values provided. Bio-Rad CFX Manager and GraphPad 

Prism software were used for statistical analyses and 
graphs. Primer sequences are described in Supplementary 
Methods.

Generation of the dual genetic signatures

Total RNA was extracted as described above and 
prepared for paired end sequencing on a HiSeq 2500 using 
a stranded library prep kit (Illumina). Initial analyses were 
prepared using RSEM expected gene counts. First, data 
were filtered to remove non/low-expressed genes. This 
resulted in a total of ~14,000 genes that were examined 
for differential expression between the grouped sensitive 
versus resistant cell lines. Next, normalization factors 
were calculated to scale the library sizes followed by 
estimation of tag wise negative binomial dispersion 
values. An exact test was implemented for differences in 
gene wise mean expression values between resistance and 
sensitivity phenotypes. Genes were then ranked according 
to both log fold change and multiple testing adjusted false 
discovery rate (FDR) q-values. Expected isoform counts 
of corresponding genes were matched to RefSeq IDs and 
tabulated for each cell line. lncRNA quantification was 
extracted from RNAseq data by RefSeq IDs using the 
statistical software R, then pair-wise comparison between 
sensitive and resistant cell line groups was conducted 
using the edgeR bioconductor package.

High-density RT-PCR

The Fluidigm BioMark™ HD system was used 
to run 48x48 dynamic arrays to measure basal mRNA 
expression levels in EOC cell lines, spheroids and 
xenografts. Total RNA was extracted as described above 
and three biological replicates were pooled for analysis. 
250 ng of mRNA were reverse transcribed and the 
resulting cDNA was pre-amplified using a multiplexed 
specific target amplification protocol with gene specific 
TaqMan assays (Applied Biosystems). The targeted 
cDNA was diluted 5-fold and used as input cDNA for 
qPCR arrays on the BioMark following manufacturer 
recommended protocols. Absolute Ct values were 
determined using amplification curves and equality of 
amplifiable mRNA was assessed by comparing geometric 
means of three internal reference controls; GUSB, PPIA 
and TBP. GraphPad Prism software was used for statistical 
analyses and graphs.

In silico interrogation of publicly available 
databases

The CellMiner™ analysis tool (http://discover.
nci.nih.gov/cellminer/analysis.do) was used to query 
NCI-60 cell line signatures. It provides average z-scores 
and RPLA protein levels from genes of interest for 
the available lines. Analysis of the TCGA microarray 

http://discover.nci.nih.gov/cellminer/analysis.do
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gene expression dataset was performed using the log2 
transformed Agilent values for the genes of interest 
from 518 serous cystadenocarcinoma patients and 8 
organ-specific healthy control samples (http://tcga-data.
nci.nih.gov/tcga/tcgaHome2.jsp). Anti-log values were 
determined and mean expression values for all samples 
were calculated. The fold-change of average expression 
in the tumors relative to controls was constructed and a 
Student’s two-tailed t-test was performed. A fold-change 
of ≥ 2 with an associated p-value < 0.05 was set as a 
significant difference in expression between groups. The 
UCSC Cancer Genome Browser portal was used for 
investigation of direct RNA sequencing comparisons 
(https://genome-cancer.ucsc.edu/). It enables heat map 
construction using level 3 TCGA ovarian data from 266 
samples that is mean normalized to 19 tumor types from 
the Pan-Cancer datasets.
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