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Objective—The comprehensive assaying of low-molecular-weight compounds, for example, 

metabolomics, provides a unique tool to uncover novel biomarkers and understand pathways 

underlying myocardial infarction (MI). We used a targeted metabolomics approach to identify 

biomarkers for MI and evaluate their involvement in the pathogenesis of MI.

Methods and results—Using three independent, prospective cohorts (KORA S4, KORA S2 

and AGES-REFINE), totalling 2257 participants without a history of MI at baseline, we identified 

metabolites associated with incident MI (266 cases). We also investigated the association between 

the metabolites and high-sensitivity C reactive protein (hsCRP) to understand the relation between 

these metabolites and systemic inflammation. Out of 140 metabolites, 16 were nominally 

associated (p<0.05) with incident MI in KORA S4. Three metabolites, arginine and two 

lysophosphatidylcholines (LPC 17:0 and LPC 18:2), were selected as biomarkers via a backward 

stepwise selection procedure in the KORA S4 and were significant (p<0.0003) in a meta-analysis 

comprising all three studies including KORA S2 and AGES-REFINE. Furthermore, these three 

metabolites increased the predictive value of the Framingham risk score, increasing the area under 

the receiver operating characteristic score in KORA S4 (from 0.70 to 0.78, p=0.001) and AGES-

REFINE study (from 0.70 to 0.76, p=0.02), but was not observed in KORA S2. The metabolite 

biomarkers attenuated the association between hsCRP and MI, indicating a potential link to 

systemic inflammatory processes.

Conclusions—We identified three metabolite biomarkers, which in combination increase the 

predictive value of the Framingham risk score. The attenuation of the hsCRP–MI association by 

these three metabolites indicates a potential link to systemic inflammation.

INTRODUCTION

Myocardial infarction (MI) is the leading cause of death worldwide,1 and identifying 

individuals at an increased risk for MI represents a major opportunity and challenge for 

prevention.2 High-sensitivity C reactive protein (hsCRP) is a promising biomarker for MI,3 

and shows modest added value to conventional risk scores.45 However, a Mendelian 

randomisation study provided no evidence for a causal association between hsCRP and MI.6 

Genome-wide association studies have identified loci associated with MI, but genetic risk 

scores have not substantially improved the predictive value of established models.7 Thus, the 

research community remains in need of predictive and causal biomarkers for MI.8

Metabolomics, the study of intermediate and/or end products of physiological processes, 

provides a novel tool to reveal pathways associated with metabolism and uncover 

biomarkers for cardiovascular diseases (CVD).9 Metabolites and metabolic risk scores are 

associated with incident CVD.10–15 Ganna et al used a non-targeted Liquid hromatography–

Mass spectrometry (LC-MS)-based method and reported four metabolites associated with 

coronary heart disease (CHD).16 Additionally, variations in metabolite levels are associated 

with risk factors for CVD, such as type 2 diabetes.1718 These findings underscore the 

capacity of metabolomics as a tool to explore pathophysiological processes associated with 

CVD and MI.

Although these previous studies revealed metabolites associated with CVD, they often 

employed relatively small metabolite panels or focused on high-risk individuals. Our study 
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assesses multiple classes of metabolites in prospective population-based cohorts to identify 

metabolite biomarkers for incident MI. We also investigate the association between the 

metabolites and hsCRP, to understand the relationship between MI-associated metabolites 

and inflammation.

METHODS

Study population

The Cooperative Health Research in the Region of Augsburg (KORA) surveys are 

population-based studies conducted in Augsburg, Germany, and initiated as part of the WHO 

Multinational Monitoring of Trends and Determinants in Cardiovascular Diseases 

(MONICA) project.19 The baseline KORA survey 4 (S4) consists of 4261 individuals (aged 

25–74 years) examined between 1999 and 2001.20 Serum metabolite profiling was 

performed on 1610 individuals (1545 without prior MI) aged 55 to 74 years.

Our outcome was a combined endpoint of incident fatal and non-fatal MI. All MI events 

were identified via the KORA Augsburg coronary event registry or through questionnaires 

for subjects residing outside the study area. Through 31 December 2000, the diagnosis of a 

major non-fatal MI event was based on the MONICA algorithm taking into account 

symptoms, cardiac enzymes and ECG changes. Afterwards, MI events were diagnosed by 

the European Society of Cardiology and American College of Cardiology criteria.21 Deaths 

from MI were validated by chart reviews, death certificates, autopsy reports and information 

from the last treating physician.22 hsCRP was measured by latex-enhanced nephelometry 

(Siemens, Germany).23 Based on a follow-up conducted through 2009, 67 KORA S4 

participants (4.5%) had an incident MI.

We replicated metabolite biomarkers found in KORA S4 in both non-fasting (KORA S2) 

and fasting (AGES and REFINE) cohorts. KORA S2 is a baseline survey of 4940 

participants examined between 1989 and 1990.23 We constructed a case–cohort replication 

population from all incident MI cases aged <75 years, identified before 2003 (n=112) and a 

subcohort of randomly selected participants without prevalent MI at baseline (n=549).24 

hsCRP was measured using a high-sensitivity immunordiometric assay for men aged 45–74 

and a high-sensitivity latex-enhanced nephelometric assay for mean aged 35–44 and all 

women. Additional details can be found in the online supplementary methods.

The Age, Gene/Environment Susceptibility (AGES)-Reykjavik and the Risk Evaluation For 

Infarct Estimates (REFINE)-Reykjavik studies25 are two separate studies that were merged 

to create a nested case–control sample of fasting individuals. After merging, we selected an 

age and sex-matched nested case–control sample of 87 participants with incident MI and 

167 participants without MI within 6 years of follow-up.25 hsCRP was measured on a 

Hitachi 912, using reagents from Roche Diagnostics (Mannheim, Germany).

All participants gave written informed consent, and all studies were approved by their 

respective ethics committees.
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Population characteristics for all studies are given in table 1, and the timeline of baseline 

assessment and follow-up for all cohorts is given in online supplementary figure S1. Further 

details for all cohorts are given in the online supplementary materials.

Metabolite quantification

Serum samples from KORA participants were assayed for 188 metabolites using the 

AbsoluteIDQ p180 Kit (BIOCRATES Life Sciences AG, Innsbruck, Austria, online 

supplementary methods). The targeted metabolomics approach allows simultaneous 

quantification of 188 metabolites using liquid chromatography and flow injection analysis–

mass spectrometry. Serum samples from AGES and REFINE Reykjavik studies were 

assayed with the Biocrates AbsoluteIDQ p150 Kit. Identical quality control (QC) procedures 

were used for all studies.18 Each analysed metabolite met two criteria: (1) a coefficient of 

variance of <25% in the reference samples and (2) 50% of all measured sample 

concentrations above 3× the median of the zero samples. The metabolites that met QC 

included one hexose (H1), 21 acylcarnitines, 21 amino acids, 8 biogenic amines, 13 

sphingomyelins, 33 diacyl (aa) phosphatidylcholines (PCs), 35 acyl-alkyl (ae) PCs and 8 

lysophosphatidylcholines (LPCs) (see online supplementary table S1). Metabolite 

concentrations are given in micromolar and were natural-log transformed for all analyses.

Metabolite biomarker discovery

The study design is shown in figure 1, and online supplementary figure S2 contains an 

overview of the analytical strategy. Cox regression models were used to assess the 

association between metabolite concentration and incident MI. We used a basic model 

adjusting for age and sex, followed by a multivariable model additionally adjusting for body 

mass index, smoking status, alcohol intake, diabetes, systolic blood pressure, high-density 

lipoprotein cholesterol and total cholesterol. To examine the relation between the 

metabolites and systemic inflammation, we added log-transformed hsCRP to the 

multivariable model, and examined the change in the MI–hsCRP association when the 

metabolites were additionally added to this model. Sensitivity analyses were conducted to 

understand the effects of statin medication and diabetes.

Potential biomarkers were selected from metabolites with p<0.05 in all three Cox regression 

models via a two-step process in KORA S4. We used a nominal p value cut-off to retain 

metabolites that might be significant predictors in a multivariate model despite not 

independently having a multiple-test significant p value. First, metabolites with non-zero β 
estimations after L1-regularised estimation were retained. A priori we chose to filter these 

metabolites via Akaike information criterion (AIC)-guided backward stepwise regression, 

following commonly used practices. The metabolites remaining after this step were referred 

to as the potential biomarkers.

We obtained estimates of the predictive capabilities of the metabolite biomarkers by 

including them in models containing the Framingham risk score (FRS)26 in KORA S4 and 

also adding them to the multivariable model in KORA S4. Increased predictive power was 

replicated in KORA S2 and the AGES and REFINE Reykjavik studies (see online 

supplementary figure S2). In KORA, the oversampling of cases was accounted for by 
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weighting the subcohort samples by the inverse of the sampling probability.24 The AGES 

and REFINE Reykjavik studies were analysed using conditional logistic regression models. 

We designated our potential biomarkers from KORA S4 as metabolite biomarkers if they 

significantly increased incident MI prediction when added to the FRS as measured by the 

area under the receiver operating characteristic curve (AUC). Sensitivity analyses were 

performed to evaluate the influence of potential confounders on the metabolite biomarkers.

Further details of statistical methods and sensitivity analysis are described in the 

supplemental methods. All statistical analyses were performed in R,27 using the packages 

penalised,28 pROC29 and PredictABEL.30

RESULTS

Identification of metabolite biomarkers for incident MI

Sixteen metabolites were associated (p<0.05) with incident MI in the basic and multivariable 

models in KORA S4 (see online supplementary table S2). These 16 metabolites belong to 

three classes (amino acids, LPCs, PCs), and displayed high intraclass correlations and low 

interclass correlations. The PCs were modestly correlated with total cholesterol in KORA S4 

and S2, while the LPCs were negatively correlated with hsCRP levels (see online 

supplementary figure S3). Arginine, LPC 17:0 and LPC 18:2 were identified as potential 

biomarkers via AIC-guided backwards stepwise selection in KORA S4. In the KORA S4 

multivariable model, an SD increase in log-transformed arginine, LPC 17:0 and LPC 18:2 

was associated with a +35%, −31% and −35% risk of incident MI, respectively (table 2).

Arginine, LPC (17:0) and LPC (18:2) were significant (p<0.0003) in the meta-analysis of all 

three cohorts (table 2). The direction of the association was consistent in all cohorts where 

increased arginine concentrations and decreased concentrations of LPC (17:0) and LPC 

(18:2) were associated with increased risk of incident MI.

Increased predictive capability of metabolite biomarkers

When added to the FRS in KORA S4, the three potential metabolite biomarkers significantly 

improved MI risk prediction as the AUC increased from 0.70 to 0.78 (p=0.001, table 3). 

When calibrated the FRS components’ coefficients to KORA S4, the KORA S4 AUC 

remained significantly improved (AUC: 0.68 to 0.73, p=0.007). We replicated associations 

in AGES-REFINE (AUC: 0.70 to 0.76, p=0.02, table 3), but not in the non-fasting KORA S2 

cohort (AUC: 0.74 to 0.77, p=0.14). The AUC, net reclassification index and integrated 

discrimination improvement when the metabolite biomarkers were added to both the 

multivariable model and FRS are given in table 3. Individually, none of the metabolite 

biomarkers significantly increased the AUC in any cohort (data not shown), and only LPC 

18:2 was independently associated with MI in all cohorts (table 2). The metabolite–MI 

associations are independent of diabetes status and statin users, and remain when the limited 

non-fasting samples were included in KORA S4 (see online supplementary table S3). Based 

on these results term, these three metabolites ‘metabolite biomarkers’ (figure 1, see online 

supplementary figure S2).
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Association of metabolite biomarkers with hsCRP

To examine links with inflammation, we evaluated the association between the metabolite 

biomarkers and hsCRP and their attenuation of MI–hsCRP associations. The three 

metabolites were significantly correlated (Spearman) with each other and with hsCRP with 

the exception of arginine which was strongly correlated with hsCRP but weakly correlated 

with LPC 17:0 and LPC 18:2 (see online supplementary table S4). hsCRP was associated 

with each metabolite biomarker in all three cohorts (see online supplementary table S5).

hsCRP was significantly associated with incident MI in the multivariable model (figure 2A). 

Addition of the metabolite biomarkers removed this association (figure 2B), but did not 

attenuate the association with MI for other clinical covariates (see online supplementary 

table S6). This attenuation implies that a substantial proportion of the hsCRP–MI association 

was mediated by these three metabolite biomarkers. Conversely, the metabolites were only 

slightly attenuated by the addition of hsCRP to the multivariable model (see online 

supplementary table S2).

DISCUSSION

Using a targeted metabolomics approach across three cohorts, we identified arginine, LPC 

17:0 and LPC 18:2 as metabolite biomarkers for incident MI. Adding arginine, LPC 17:0 

and LPC 18:2 to the FRS significantly increased the predictive value in fasting cohorts and 

in a meta-analysis of the three cohorts. These metabolite biomarkers were independent of 

conventional risk factors for MI, but strongly attenuated the hsCRP–MI associations 

indicating a potential role in systemic inflammation. Although this is the first time that these 

three metabolites in combination have been suggested as biomarkers for incident MI, each 

has been linked to CVD.31–35

Arginine

An SD increase in serum arginine concentrations was associated with a 26% higher risk of 

incident MI risk in the meta-analysis. Ornithine, a product of splitting urea from arginine, is 

associated with CHD.36 A possible mechanism linking arginine and inflammation is 

production of oxygen radicals (O2
−) and peroxynitrite. Arginine is metabolised to NO via 

the NO synthases NOS3 and NOS2 in vascular cells.37 In the presence of high 

concentrations of O2
−, NO reacts with O2

− to generate peroxynitrite, reducing the 

bioavailability of NO and contributing to inflammatory processes.3839 Additionally, 

peroxynitrite and O2
− trigger the uncoupling of NO synthases, shifting the production of NO 

to O2
−,40 creating a feedback loop (figure 3).

Lysophosphatidylcholines

LPCs are associated with lipid metabolism, inflammation and MI.31–344142 In our study, 

participants with higher serum LPC 17:0 and LPC 18:2 concentrations had a lower risk of 

MI. LPCs also have a negative association with a combined CVD outcome of MI, ischaemic 

stroke and sudden cardiac death,14 further supporting our findings, and LPC 18:2 is 

associated with CHD.16
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LPCs are associated with inflammatory processes via a variety of mechanisms (figure 3). 

LPCs can increase expression of NOS3, which is involved in NO synthesis.31 LPCs can also 

drive production of antioxidant enzymes, for example, SOD3, which reduce superoxide 

anion concentrations (figure 3).32 As a consequence, lower LPC concentrations may 

increase oxidative stress and promote inflammation as indicated by the negative association 

with hsCRP. Finally, LPCs increase the synthesis of prostaglandin I2 resulting in improved 

vasodilation.3441 Thus, lower LPC concentrations may contribute to endothelial dysfunction, 

increasing the risk for MI.

High-sensitivity C reactive protein

hsCRP is a measure of systemic inflammation. Our three metabolite biomarkers explained 

10% of the variation in hsCRP concentrations and attenuated the hsCRP–MI association 

coefficient by 34%–74%, making it no longer significant (see online supplementary table 

S6). Therefore, inflammation likely represents a pathway through which our novel 

biomarkers are associated with MI.

MI risk prediction and previous CVD studies

Metabolomics can potentially reveal causal biomarkers with strong predictive value for 

CVD,9 and baseline metabolomics profiles are associated with risk of death or incident MI.
11 Recently, there have been several metabolomic studies using general population-based 

cohorts.14–1636 Stegemann et al used a shotgun lipidomics approach to identify lipid species 

associated with incident CVD.14 Würtz et al used a Nuclear magnetic resonance (NMR)-

based approach to identify CVD-associated metabolites and calculate a risk score for CVD.
15 Vaarhorst et al also used an NMR-based approach and identified metabolites associated 

with incident CHD; however, their score did not significantly increase CHD risk prediction.
36 Ganna et al used an LC-MS/MS-based lipidomics approach and associated LPC 18:2 with 

CHD.16 Covering 140 metabolites, our MS approach is more comprehensive than that taken 

by Stegemann et al (135 metabolites), Vaarhorst et al (100 metabolites) or Würtz et al (68 

metabolites), and with 266 incident MI events, our study is the largest by the number of MI 

events. Additionally, while previous studies assessed a combined cardiovascular endpoint,
111436 we exclusively analysed incident MI.

Strengths and limitations of our study

A strength of our study is its prospective design using general population-based cohorts. 

Study participants were initially free of MI, and thus we analysed only incident events. All 

samples were handled in a similar, unbiased manner. We controlled for a variety of 

demographic characteristics, lifestyle factors, medication and clinical variables. All data 

were collected and verified by trained personnel162325 to reduce measurement error. We 

applied stringent QC procedures to our metabolite assays,18 and observed no sources of 

systematic error. Though nested case–cohort and case–control designs are less efficient than 

assaying the entire cohort,43 we still observed associations with our approach. Also, 

associations for the LPC 18:2 and the metabolite score were similar for KORA and AGES-

REFINE despite reports of potential bias with stratified case–control designs.43

Ward-Caviness et al. Page 7

Heart. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A limitation of using backward stepwise selection to reduce the set of predictors is that the 

pruning is done in an agnostic manner. Thus, the predictors selected may not represent the 

most meaningful or causal metabolites, but may be markers for unmeasured or unselected 

metabolites. We were unable to control for dietary intake, which is associated with incident 

MI.44 This may have affected our inability to identify associations with metabolites 

influenced by diet, for example, tryptophan.4546 Additionally, the non-fasting status of the 

KORA S2 cohort may have introduced variability that obscured associations in this cohort. 

We suggest that future studies of MI and metabolic profiles collect detailed dietary 

information and use fasting samples.

A key point of all biomarker discovery studies is generalisability. We incorporated samples 

from Germany and Iceland indicating that our associations generalise across European 

populations. Although we provide substantial evidence for improved baseline discrimination 

for future incident MI for our novel biomarkers, future studies are needed to formulate and 

validate an incident MI risk scoring function based on these metabolite biomarkers.

CONCLUSION

We identified three metabolite biomarkers associated with incident MI which improved MI 

prediction when added to the FRS. We replicated this MI prediction improvement in 

independent fasting samples. These three metabolites were associated with hsCRP and 

attenuated the hsCRP–MI association while being independent of other traditional CVD risk 

factors, indicating a potential link to systemic inflammation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key messages

What is already known on this subject?

Metabolites have been associated with cardiovascular disease (CVD); however, the 

majority of published studies have focused on combined events (eg, myocardial infarction 

(MI), stroke, and sudden cardiac death) or limited, non-targeted metabolite panels. Large 

population-based studies using targeted metabolomics data are limited. There are also 

limited studies showing improvement in CVD risk assessment when metabolites are 

added to CVD risk scores.

What might this study add?

This study used a targeted metabolomics assay to uncover metabolites associated with 

incident MI. When assessed in fasting samples, three of these metabolites (arginine, 

lysophosphatidylcholines (LPC 17:0 and LPC 18:2)) significantly improved risk 

prediction as compared with the Framingham risk score. LPC 18:2 has been previously 

associated with a combined CVD outcome, and this study adds to these results by 

demonstrating the LPC 18:2 association specifically in MI in the largest study to date. 

Conditional analyses showed that the metabolites substantially attenuated the C reactive 

protein–MI association, and thus may be biochemical mediators of inflammation.

How might this impact clinical practice?

This study establishes that the addition of metabolite biomarkers to the Framingham risk 

score gives an improved assessment of risk in fasting samples. The association of the 

metabolite biomarkers with inflammation and mediation of C reactive protein 

associations suggests that they are new targets for studying the inflammation-driven 

pathophysiology of MI.
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Figure 1. 
Cohort, metabolite profiling and analysis outline. Description of the cohorts, metabolite 

profiling, statistical analysis, model evaluation and mechanistic exploration for this study. 

CVD, cardiovascular disease; hsCRP, high-sensitivity C reactive protein; KORA, 

Cooperative Health Research in the Region of Augsburg; LPC, lysophosphatidylcholine; MI, 

myocardial infarction.
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Figure 2. 
Attenuation of high-sensitivity C reactive protein–myocardial infarction (hsCRP–MI) 

association by metabolite biomarkers. Association of hsCRP with incident MI in the 

multivariable model (A) and in the multivariable model after including the three metabolite 

biomarkers (B). The multivariable model adjusted for age, sex, body mass index, alcohol 

consumption, systolic blood pressure, diabetes status, total cholesterol and high-density 

lipoprotein cholesterol. *=p<0.05, **=p<0.01, ***=p<0.001. KORA, Cooperative Health 

Research in the Region of Augsburg.
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Figure 3. 
Pathway annotation of metabolite biomarkers. Based on the literature references, we 

diagram the NO-O2
−–peroxynitrite biochemical process which links the three candidate 

biomarkers. GLUT4, glucose transporter type 4; hsCRP, high-sensitivity C reactive protein; 

LPC, lysophosphatidylcholine; MI, myocardial infarction; NO, nitric oxide; NOS2, 

inducible nitric oxide synthase; NOS3, endothelial nitric oxide synthase; SOD3, 

extracellular superoxide dismutase.
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