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Abstract

Structural alerts are commonly used in drug discovery to identify molecules likely to form reactive 

metabolites and thereby become toxic. Unfortunately, as useful as structural alerts are, they do not 

effectively model if, when, and why metabolism renders safe molecules toxic. Toxicity due to a 

specific structural alert is highly conditional, depending on the metabolism of the alert, the 

reactivity of its metabolites, dosage, and competing detoxification pathways. A systems approach, 

which explicitly models these pathways, could more effectively assess the toxicity risk of drug 

candidates. In this study, we demonstrated that mathematical models of P450 metabolism can 

predict the context-specific probability that a structural alert will be bioactivated in a given 

molecule. This study focuses on the furan, phenol, nitroaromatic, and thiophene alerts. Each of 

these structural alerts can produce reactive metabolites through certain metabolic pathways but not 

always. We tested whether our metabolism modeling approach, XenoSite, can predict when a 

given molecule’s alerts will be bioactivated. Specifically, we used models of epoxidation, quinone 

formation, reduction, and sulfur-oxidation to predict the bioactivation of furan-, phenol-, 

nitroaromatic-, and thiophene-containing drugs. Our models separated bioactivated and not-

bioactivated furan-, phenol-, nitroaromatic-, and thiophene-containing drugs with AUC 

performances of 100%, 73%, 93%, and 88%, respectively. Metabolism models accurately predict 

whether alerts are bioactivated and thus serve as a practical approach to improve the 

interpretability and usefulness of structural alerts. We expect that this same computational 

approach can be extended to most other structural alerts and later integrated into toxicity risk 
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models. This advance is one necessary step toward our long-term goal of building comprehensive 

metabolic models of bioactivation and detoxification to guide assessment and design of new 

therapeutic molecules.

Graphical abstract

INTRODUCTION

Idiosyncratic adverse drug reactions (IADRs) are a challenging problem in drug 

development. They are the leading reason for both termination of clinical investigation and 

withdrawal from the market.1,2 Most IADRs are hypersensitivity-driven adverse drug 

reactions, and arise when drugs are bioactivated into reactive metabolites.3–7 Reactive 

metabolites frequently form covalent and noncovalent interactions with cellular 

macromolecules such as DNA, proteins, and lipids.4,7,8 Covalent interactions can lead to 

cancer or trigger hypersensitivity reactions. Nonconvalent interactions can cause oxidative 

and other intracellular stress.8–11

Structural alerts or toxicophores are chemical structures that can be bioactivated to generate 

reactive metabolites.12 About 78–83% of drugs with a high incidence of IADRs contain 

structural alerts, and around 62–69% of these drugs form reactive metabolites.13 Because 

structural alerts are understandable and inexpensive to apply, they are commonly used within 

the pharmaceutical industry, the FDA, and drug discovery tools to flag lead compounds with 

toxicity risk.14–17 Candidate compounds with one or more toxicophores are often chemically 

modified to remove the structural alerts and minimize toxicity risk.18,19 However, avoiding 

structural alerts is not always practical because alerts may be required for efficacy. Structural 

alerts like furan, thiophene, nitroaromatic, phenol, and aniline are building blocks with 

important pharmacological properties.20–22 They can give rise to pharmacological activity or 

provide pharmacokinetic benefits.

More importantly, toxicity due to a specific structural alert is conditional. A structural-alert-

containing compound would become harmful or remain safe depending on its metabolic 

pathways23 and the reactivity of its metabolites. For example, the thiophene structural alert 

is ambiguous; in the case of methapyrilene, the structural alert undergoes bioactivation, 

while no activation of the thiophene occurs for eprosartan (Figure 1). The differences in 

biotransformation lead to drastic differences in the safety profiles of the two compounds. 

While methapyrilene was withdrawn from the market due to hepatotoxicity, eprosartan is a 
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safe and commonly prescribed antihypertensive. In fact, of the 200 most frequently 

prescribed drugs in the US, about 50% of them contain more than one structural alert.13 

However, the vast majority of these drugs are not associated with IADRs.

Because structural alerts do not adequately model metabolism, they often fail to predict 

whether molecules will form reactive metabolites (Figure 2).13,14,24 Molecules are flagged 

even if (1) the structural alert is not bioactivated, (2) the reactive metabolite is quickly 

metabolized into a nonreactive form, or (3) an alternative, nonactivating metabolic pathway 

is responsible for the clearance of the parent compound.24 In addition, structural alerts can 

only identify toxic molecules with specific, well-known substructures; they do not identify 

substructures that have not yet been observed to generate reactive metabolites. For example, 

the formation of terbinafine’s reactive metabolite, an aldehyde generated through N-

dealkylation, was missed by the structural alert approach.25 Consequently, the 

recommendations of structural alerts are very difficult to interpret: safe molecules are often 

flagged as toxic, and unsafe molecules may slip through.24,26

In our prior work, we built several models of metabolism.27–29 We hypothesize that these 

models might more specifically identify when alerts are bioactivated, and the current study 

tests this hypothesis. Our method combines the knowledge of the biotransformation 

pathways of well-studied structural alerts with metabolism models to predict the formation 

of reactive metabolites. As a practical assessment of our approach, we apply individual 

metabolism models to predict the bioactivation of multiple structural alerts.

MATERIALS AND METHODS

Epoxidation Model

Furans and thiophenes can be bioactivated by epoxidation. We use a hierarchical deep neural 

network to predict the probability that each alert is epoxidized. This model is based on 524 

molecules, including 14 furans (Table 1), and was previously published by our group.28 All 

molecules epoxidized by human liver microsomes (HLMs) in the literature-derived Accelrys 

Metabolite Database (AMD) were used in the training set. Nonepoxidized molecules were 

selected for structural similarity to the epoxidized molecules. This model is available on the 

XenoSite Web server.29

Quinone Model

Phenols are bioactivated by quinone formation. We use a deep neural network that predicts 

whether phenols are metabolized to form quinones. This model is trained on 718 molecules, 

including 277 phenols (Table 1), from the AMD. This model is published in a separate 

study27 and is available on the XenoSite Web server.29

Reduction and S-Oxidation Model

Nitroaromatics can be bioactivated by reduction, and thiophenes can be bioactivated by 

sulfur-oxidation (S-oxidation). For these two structural alerts, we use a HLM metabolism 

model that predicts which part of the molecule is metabolized and what types of 

biotransformation (e.g., S-oxidation, hydroxylation, and/or reduction) the molecules 
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undergoes. This model is a deep neural network that has an output for reduction and an 

output for sulfur oxidation. It was trained on 3061 molecules, including 98 nitroaromatics 

and 50 thiophenes from the AMD (Table 1). This model will be published in a separate 

study but is currently available on the XenoSite Web server.29

Scaled Predictions

The three models produce probabilistic predictions that range from zero to one. Still, it is 

possible the predictions are not ideally scaled to each other. We investigated rescaling the 

models’ output by fitting the formula z = 1/(1 + exp (k log[y/(1−y)]+ w)), where z is the 

rescaled score, y is the unscaled model output, and k and w are tunable weights for each of 

the four models. This rescaling preserves the order in which sites of metabolism are 

predicted by each model within its assigned structural alert. Only requiring two weights for 

each structural alert, the score can be trained with very small amounts of data (see the 

Materials and Methods section). For assessment, final rescaled scores were obtained using 

leave-one-molecule-out cross-validation. As we will see, rescaling does not lead to a 

statistically significant improvement in performance, so it may not be necessary.

Performance Comparison

We used the area under the receiver operating characteristic curve (AUC)30 to evaluate the 

prediction accuracy of the metabolism model and structural alert approaches. To assess the 

statistical significance of different AUCs, two-tailed p-values were computed using the 

Hanley and McNeil formula.31 As a baseline method against which to assess performance, 

we used logP: the octanol/water partition coefficient. Lipinski’s well-known “rule of five” 

advises that highly hydrophobic drugs should be avoided because they are more likely to be 

metabolized.32 Indeed, logP directly correlates with in vivo toxicity, partly due to increased 

metabolism.33 Because logP is an easily computable, biologically relevant parameter, this is 

an informative comparison for our models.

Evaluation Set

We collected the structures of all FDA-approved and -withdrawn small molecule drugs from 

the DrugBank Database (May 2016).34 We used SMARTS patterns specifying the structural 

alert of interest to filter each of the four evaluation sets: furan, phenol, nitroaromatic, and 

thiophene (Table 1, Figure 3). Complete lists of molecules in these evaluation sets are 

provided in the Supporting Information. Next, we used the AMD database to identify which 

of these molecules were bioactivated at their structural alert. We counted all furans, phenols, 

nitroaromatics, and thiophenes bioactivated for which there were corresponding 

experimentally observed reactive metabolites (or their downstream products) resulting from 

epoxidation, quinone formation, reduction, and S-oxidation/epoxidation, respectively.

Sufficient molecules for each structural alert were identified to test our approach. Furans 

were identified in 17 approved or withdrawn drugs, 13 of which were in AMD, and 3 were 

bioactivated (Table S1). All of the bioactivated furan examples are activated by epoxidation. 

Phenols were identified in 188 approved or withdrawn drugs (Table S2), 127 of which were 

in AMD, and 33 were bioactivated into quinones. Nitroaromatics were identified in 37 

approved or withdrawn drugs (Table S3), 31 of which were in AMD, and 16 were 

Le Dang et al. Page 4

Chem Res Toxicol. Author manuscript; available in PMC 2018 April 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bioactivated. All of the bioactivated nitroaromatic examples are activated by reduction. 

Thiophenes were identified in 42 approved or withdrawn drugs, 31 of which were in AMD, 

and 8 were bioactivated (Tables S4). Of the bioactivated thiophene drugs, 8 are reported to 

be bioactivated by S-oxidation, 4 are reported to be bioactivated by epoxidation, and 8 are 

reported to be bioactivated by both S-oxidation and epoxidation.

Evaluation Set Predictions

In some cases, molecules in the evaluation set were also in the training sets. To ensure 

unbiased predictions on these molecules, we used a hold-out prediction. In turn for each 

validation molecule, the model was retrained with all of the molecules except the validation 

molecule, and the predictions from the newly trained model were used. This approach 

ensured unbiased predictions, even when molecules were in both sets.

RESULTS AND DISCUSSION

The following sections use metabolism models to predict the bioactivation pathways for four 

commonly observed structural alerts: furans, phenols, nitroaromatics, and thiophenes. In 

turn, we evaluate this approach’s performance with each alert. Next, we combine all four 

models to predict the bioactivation of molecules containing any of the four structural alerts. 

This combined model is a more practical tool for identifying possible problematic metabolic 

pathways for functionally and structurally diverse molecules. Finally, we discuss the 

limitations of this approach and solutions for future studies to improve estimations of 

toxicity risk.

Furans

Furans are oxygen-containing five-member aromatic rings that are commonly found in 

drugs, food, nutraceuticals, the environment, and industrial pollutants.20,35–38 Furans can be 

bioactivated via epoxidation (Figure 4). For example, furosemide is a frequently prescribed 

diuretic that sometimes causes idiosyncratic hepatitis, which may be due to the epoxidation 

of its furan ring.13,39–42 This epoxide metabolite is electrophilically reactive and conjugates 

to nucleophilic sites within proteins. The resulting adducted protein serves as a hapten to 

induce toxic immune responses.13,39,43 However, many furan-containing drugs are not toxic. 

For example, the H2 antagonist ranitidine does not provoke toxicity despite a high 

therapeutic dose because its furan is not bioactivated.13,44 Significantly, many drugs contain 

furans, but only 23% undergo bioactivation (Figure 3).

We applied the epoxidation model to predict which furan-containing drugs undergo 

bioactivation at the alert.28 Bioactivated furans were identified with an AUC of 100%, 

statistically outperforming using the structural alert alone, with a two-sided p-value of 0.01 

(Figure 5). This performance is also significantly better than that of logP alone (AUC of 

60%, two-sided p-value of 0.022). The bioactivated drugs included furosemide,13,39,43 

methoxsalen,45 and prazosin,46 and the not-bioactivated drugs were vilazodone, fluticasone, 

lapatinib, ranitidine, amiodarone, dantrolene, nitrofurantoin, furazolidone, nitrofural, and 

dronedarone. Encouragingly, the model perfectly identified bioactivated furans with 100% 

accuracy. Of note, we even correctly predicted that methoxsalen is epoxidized, despite the 
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drug being mislabeled as nonepoxidized in our training data drawn from the AMD. Upon 

further investigation, we found a source omitted by the AMD that reported methoxsalen’s 

epoxidation at its furan structural alert.45 We found it reassuring that our model revealed an 

error in our curated source data because it is evidence that the model was not overtrained.

Phenols

Phenols contribute significantly to biological and pharmacological properties and thus are 

found in many drugs. In fact, phenols are one of the most frequently observed structural 

alerts, present in about 10% of all drugs on the market. Unfortunately, this important 

structure can be readily converted into quinones (Figure 6). Quinone species, such as 

quinone-imines and quinone-methides, are electrophilic Michael acceptors that are often 

highly reactive and comprise over 40% of all known reactive metabolites.47 At the same 

time, many safe drugs contain phenol and do not form quinones. Consequently, phenol’s 

presence alone is not necessarily indicative of quinone formation. Furthermore, phenols may 

be “hidden” until phenyl rings undergo hydroxylation in vivo to form the phenol. Such cases 

would be missed by the structural alert approach. Avoiding phenyl rings in drug 

development is impractical. Therefore, an accurate method for identifying which phenols are 

actually at risk for quinone formation would be of great value.

We recently developed the quinone formation model, which accurately predicts quinone 

formation across diverse chemicals.27 On the phenol data set, the quinone formation model 

separated the quinone-forming molecules from the other molecules with an AUC of 73% 

(Figure 7).

Quinone formation is more complicated than the other pathways in this study because the 

process can involve multiple steps. The complexity of this biotransformation likely explains 

the lower accuracy of 73%. Nevertheless, this performance is still better than the structural 

alerts alone (AUC of 50%, two-sided p-value = 0.0026) and that of logP alone (AUC of 

50.5%, two-sided p-value of 0.003).

Nitroaromatics

Nitroaromatics are abundant in nature and the urban environment.48,49 We are frequently 

exposed to nitroaromatic compounds through daily activities like smoking, inhaling 

combustion gases, and consumption of grilled food.48,49 The nitroaromatic alert is also an 

important building block in many pharmaceutical agents.22,50 Unfortunately, some of these 

drugs cause adverse effects due to reactive metabolite formation.22,50

Nitroaromatic-containing compounds can undergo reductive metabolism through different 

pathways to form electrophilic, unstable intermediates such as nitroso compounds and nitro 

anion radicals (Figure 8). These reactive metabolites are responsible for the toxicity of some 

nitroaromatic containing drugs like tolcapone51 and nimesulide.52 On the other hand, many 

drugs like aranidipine53 and nifedipine54 are safe and lack reduction at their nitroaromatic 

group.

We used a reduction model to predict which nitroaromatic-containing drugs are bioactivated 

through reduction (Figure 9). The reduction model identified bioactivated nitroaromatics 
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with an AUC of 93%, which significantly outperforms the structural alert alone (two-sided 

p-value = 0.0002). This performance also is significantly better than that of logP alone (AUC 

of 77%, two-sided p-value of 0.048). Compared to the other structural alerts examined in 

this study, the nitroaromatic moiety is the most frequently bioactivated (51%) (Table 1). 

Nevertheless, nitroaromatic groups can be part of the pharmacophore, and nitro reduction is 

required for drugs like the antibiotic nitazoxanide and metronidazole to exert their 

pharmacological effects.55,56 So, this strong performance is encouraging and might 

effectively guide the safe use of nitroaromatics.

Thiophenes

Thiophene derivatives are ubiquitous in the environment as well as in many drugs on the 

market.21 Thiophene-containing compounds have a wide range of pharmacological 

properties, such as nematocidal, insecticidal, antifungal, antiviral, and antioxidant effects.
57–62 For example, thiophene is a critical pharmacophore of antithrombotic drugs like 

clopidogrel.63

Thiophenes can undergo oxidative metabolism through different pathways to form 

electrophilic, unstable intermediates such as thiophene S-oxides, thiophene epoxides, and 

sulfenic acids (Figure 10).21,64–66 Formation of reactive, electrophilic intermediates by the 

oxidative metabolism of thiophenes can induce toxicity, as reported for suprofen and tienilic 

acid.65–70 On the other hand, thiophene-containing drugs like eprosartan and rivaroxaban are 

neither bioactivated nor toxic.

There is disagreement in the literature about the dominant pathway of bioactivation in 

thiophenes. Some have argued that, at least in specific cases like suprofen, epoxidation is 

more important than S-oxidation.69,71 However, others have argued that S-oxidation is 

generally more important.72–79 In this analysis, therefore, we consider both S-oxidation and 

epoxidation, and aim to study empirically which model best discriminates bioactivated 

molecules.

We evaluated three models: the epoxidation model, the S-oxidation model, and a model that 

mathematically combines predictions from both models. The final model combines 

epoxidation and S-oxidation predictions using the probabilistic OR function. This combined 

score reflects the probability that a thiophene will be bioactivated by either pathway if both 

models are relevant. These three models were assessed by their performances at identifying 

bioactivated thiophenes (Table 2).

We find that the S-oxidation model identifies bioactivated thiophenes with an AUC of 88%, 

better than both the epoxidation and combined models. Remarkably, the S-oxidation model 

separates epoxidized from not-epoxidized thiophenes better than the epoxidation model 

(AUC of 85% versus 60%). This surprising result reflects the controversy in the literature 

about the dominant pathway of thiophene bioactivation.

Certainly, some thiophenes are epoxidized,69 but in most research studies, the experiments 

necessary to discriminate between epoxidation and S-oxidation are not performed. Both the 

S-oxide and epoxide metabolites result from the transfer of oxygen to the nucleophilic S 
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atom or double bond center of the thiophene. Consequently, S-oxide and epoxide 

metabolites look identical in mass spectrometric analysis used in most drug metabolism 

studies, as both are 16 mass units higher than the parent compound without a change in 

charge.69,80,81 Indeed, uncertainties in the site or type of reactions are quite common in 

metabolic data but for this case are consequential because most studies cannot reliably 

determine which pathway leads to the reactive metabolite. Moreover, both pathways can 

produce 5-hydroxyl thiophene and other downstream metabolites (Figure 10). When a 

downstream metabolite is observed, the presence of both short-lived S-oxide and epoxide 

thiophene are inferred. In this context, it is possible that there is a tendency to misreport S-

oxidations as epoxidations, especially if thiophene epoxidations are less common than S-

oxidation.

The model’s output in suprofen has direct relevance to the debate in the literature about S-

oxidation and epoxidation of thiophene rings. O’Donnell et al. conclude that suprofen 5-

hydroxythiophene was formed via epoxidation based on 18O incorporation analysis.69 This 

evidence, however, does not exclude suprofen bioactivation via S-oxidation. Our model 

predicts that epoxidation is slightly more likely than S-oxidation in this case (probability 

0.63 vs 0.49), but this is far from definitive. Encouragingly, our model’s assessment is 

echoed by the same authors two years later in a review of bioactivation,12 where they note 

that suprofen might be epoxidized instead of being S-oxidized, as they had originally 

reported. It would be interesting to see if the epoxidation pathway, which is predicted 

slightly more likely, could be confirmed in a more discriminative experiment. This, however, 

is beyond the scope of the current study, and we are encouraged that our model produces 

results consistent with the literature.82

Figure 11 depicts 12 example molecules: suprofen,69,82 zileuton,74 ticrynafen (tienilic acid),
83 methapyrilene,84 duloxetine,85 tiaprofenic acid, eprosartan,86 brotizolam,87 rotigotine, 

rivaroxaban, dorzolamide, and olanzapine.88,89 The first four drugs have been reported to 

form reactive metabolites through either S-oxidation or epoxidation catalyzed by 

cytochrome P450, while the other seven drugs do not undergo bioactivation within thiophene 

rings. All of these bioactivated drugs have been withdrawn from the market for reactive-

metabolite-related toxicity (Table S4). The model AUC of 88% accuracy is better than the 

structural alert one (AUC of 50%, two-sided p-value = 0.009) and that of logP alone (AUC 

of 50.8%, two-sided p-value of 0.01).

Combining the Alerts

In practice, molecules can have more than one structural alert at a time. An integrated model 

that can predict the bioactivation of all alerts in a molecule is important in this case. 

Theoretically speaking, it is possible for each model to correctly predict the bioactivation of 

each alert (Table 3) but then fail when combined if they are poorly scaled and require 

different cutoff scores for each alert (Table 4). Encouragingly, the global AUC across all 

alerts in the combined evaluation data set of 188 molecules is 74.0%, indicating that this 

issue is not a limiting problem with this approach (Figure 12). Moreover, the AUC can be 

improved to 81.1% by rescaling the scores of each model using the relevant structural alert 

evaluation set (Figure 12). This improvement is not statistically significant. Nonetheless, the 
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result is encouraging and suggests that a similar scaling may be useful as we expand to 

additional structural alerts in the future. Furthermore, across all molecules in the combined 

evaluation set that are bioactivated, the combined model assigns the bioactivated structural 

alert with higher scores than the rest of the molecule 100% of the time (both unscaled and 

scaled).

Limitations and Future Work

The most obvious limitation of this approach is that it only includes four structural alerts. 

Clearly, bioactivation of other structural alerts will not be handled by the current method. 

Nevertheless, this quality is not an intrinsic limitation, and our future work will expand this 

approach to all commonly observed alerts. While not definitive, these initial results are 

encouraging and suggest that metabolism modeling is broadly applicable. Our models 

performed far better than structural alerts alone and made quantitative predictions about how 

drugs will be bioactivated. As is expected in any modeling strategy, the current models do 

not make perfect predictions all cases. However, this strategy benefits from improved 

modeling approaches and data as they are developed, and we expect performance 

improvements as we refine our models. Ultimately, this approach might be most useful in 

identifying and prioritizing the most likely bioactivation pathways for a given molecule for 

follow-up. Mechanistic and systematic predictions of bioactivation enable focused 

experimental studies to confirm or rule out reactive metabolites in specific cases. More 

significantly, some metabolites that are formed from structural alerts are not reactive. For 

example, only a subset of quinones formed from phenols are actually reactive. Side chains 

can tune quinone reactivity up or down, and we expect better utility by combining 

predictions of quinone formation with predictions of the reactivity of quinone metabolites. 

We have already published accurate models of metabolite reactivity90,91 and plan to 

combine these with predictions of metabolites in our future work.

Perhaps most importantly, the toxicity profile of a drug reflects an intricate interplay of 

multiple factors, including dosage, competing metabolic pathways, the reactivity of its 

metabolites, and coadministration of other medicines. For example, reducing daily dose to 

under 20 mg/day can substantially reduce toxicity risk.24 These factors can be complex and 

hard to model. For instance, while acetaminophen overdose accounts for more than 50% of 

drug-induced primary liver failure cases in the U.S., the drug is generally safe when 

consumed at its therapeutic dose.9,92 At therapeutic doses, 85% of the administered 

acetaminophen undergoes phase II conjugation reactions and is primarily excreted in the 

urine as the corresponding O-glucuronide or O-sulfate.93 Only 15% of the administered dose 

undergoes phase I oxidation reaction to form the reactive N-acetyl-p-benzoquinoneimine 

(NAPQI) species. At safe doses of acetaminophen, the small amount of NAPQI is 

neutralized and removed by reduced glutathione (GSH) through conjugation.12 However, at 

higher doses, elevated amounts of NAPQI overwhelm GSH reserves, and the reactive 

NAPQI starts covalently binding to macromolecules and eventually disrupts cellular 

homeostasis. In future studies, we will move closer to predicting toxicity by integrating 

individual metabolism models94–97 with further tools to incorporate competing and 

sequential processes that occur in vivo and then couple them to models of reactivity,28,90 a 

key driver of drug toxicity.
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CONCLUSION

Structural alerts are commonly used to identify molecules likely to produce reactive 

metabolites. Unfortunately, alerts are not precise and incorrectly flag many safe molecules. 

This study demonstrated that metabolism models can improve the specificity of structural 

alerts by computationally modeling the relevant metabolism pathways. Our models predicted 

epoxidation of furans, quinone formation of phenols, nitrogenreduction of nitroaromatics, 

and sulfur-oxidation of thiophenes with AUC performances of 100%, 73%, 93%, and 88%, 

respectively. While we have not comprehensively covered all structural alerts or handled all 

the relevant complexities, our success suggests that computationally modeling metabolism 

could improve the interpretability of many structural alerts. Ultimately, we envision that 

models of metabolism coupled to models of toxicity will form a powerful new approach for 

assessing the IADR risk of drug candidates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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P450 cytochrome P450s
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Figure 1. 
Structural alerts (highlighted in red) incorrectly flag safe drugs because they do not 

adequately model metabolism. Known sites of metabolism are marked with white circles. 

The metabolism and reactivity91 predictions are plotted against each atom in the molecule, 

with color shading ranging from red (1.0, likely) to white (0.0, unlikely). Structural alerts 

indiscriminately flag both bioactivated and not-bioactivated compounds as problematic. For 

example, both methapyrilene and eprosartan contain the thiophene structural alert, yet their 

toxicity profiles are very different, as predicted by metabolism models (atom shading). 

While methapyrilene, an antacid, was withdrawn from the market due to hepatotoxicity 

caused by reactive metabolites,76 eprosartan is a safe antihypertensive that does not form 

reactive metabolites.82
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Figure 2. 
Metabolism models can identify safe molecules containing structural alerts. This figure 

overlays model predictions on a reproduction of a figure from Stepan et al.13 In contrast, 

structural alerts (highlighted in red) incorrectly flag many safe drugs. Known sites of 

metabolism are marked with white circles. Predictions by one of our metabolism models95 

are plotted against each atom in the molecule, with color shading ranging from red (1.0, 

likely) to white (0.0, unlikely). The model predicted that mycophenolic acid, pramipexole, 

and ziprasidone would be metabolized outside their structural alerts to form safe 

metabolites. Atomoxetine is predicted to be metabolized at the o-alkyl aromatic ether 

structural alert, but the predicted metabolite is not the reactive quinone (Figure 6). Darunavir 

is the only incorrect prediction because the drug is not oxidized at its aniline to form a 

reactive nitroso compound. These results were promising but preliminary based on a 

previously published model that does not make metabolite specific predictions.29,95,96 

Building on this initial and encouraging result, this study aims to systematically test more 

advanced metabolism models in predicting the bioactivation of structural alerts. Adapted 

from ref 13. Copyright 2011 American Chemical Society.
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Figure 3. 
Commonly observed structural alerts that bioactivation can render toxic. Our furan, phenol, 

nitroaromatic, and thiophene structural alert evaluation sets contain 17, 188, 37, and 42 FDA 

approved or withdrawn small molecule drugs (in purple), respectively. Among those, 13 

furan-, 127 phenol-, 31 nitroaromatic-, and 31 thiophene-containing drugs have been 

metabolically studied (blue and red). Of those metabolically studied drugs, the furan, 

phenol, nitroaromatic, and thiophene structural alerts are bioactivated, respectively, 23%, 

26%, 51%, and 26% of the time. Nitroaromatics can include aromatic rings of any size, so 

only a fragment of the ring is visualized.
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Figure 4. 
Furan is bioactivated by epoxidation. Cytochrome P450s bioactivate furans via epoxidation. 

The resulting epoxide is highly reactive to ring strain and polarized carbon–oxygen bonds. 

Consequently, the epoxide can react directly with proteins or first undergo ring scission to 

form a reactive cis-enedione that then conjugates to proteins.37
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Figure 5. 
Metabolism model identifies which furans (highlighted in red) are bioactivated. From left to 

right, top to bottom, the molecules are methoxsalen,45 furosemide,13,39,43 prazosin,46 

ranitidine, fluticasone, lapatinib, nitrofural, furazolidone, nitrofurantoin, dantrolene, 

amiodarone, vilazodone, and dronedarone. Experimentally observed sites of epoxidation are 

indicated by white circles. For each molecule, the colored shading represents bond 

epoxidation scores, which range from 0 to 0.746. The model’s AUC accuracy on the furan 

evaluation set is 100% (statistically outperforms the structural alert approach, two-sided p-

value = 0.01). Notably, methoxsalen (the highest ranked molecule) was not epoxidized in the 

AMD. However, this is an omission in the AMD data set; methoxsalen is actually 

epoxidized and is counted here as a positive drug.45 Markedly, the model correctly notes that 

terminal furans (with just one substituent) are most likely to be bioactivated but still 

correctly recognizes the one exception (fluticasone) to the rule.
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Figure 6. 
Phenol structural alert is bioactivated to form quinones by cytochrome P450. Quinones, such 

as quinone-imines and quinone-methides, are electrophilic Michael acceptors that are often 

highly reactive and comprise over 40% of all known reactive metabolites.47 Consequently, 

phenols are one of the most important types of structural alerts. Furthermore, any phenyl 

ring, an unavoidable building block of many drugs, can be subject to aromatic 

hydroxylation, thereby forming a phenol. “R” represents a carbon, oxygen, or nitrogen, 

which in conjunction with the phenol oxygen can form a quinone-methide, quinone, or 

quinone-imine, respectively. The R group can be either ortho or para to the phenol oxygen.
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Figure 7. 
Metabolism model identifies which phenols (highlighted in red) are bioactivated into 

quinones. Twelve examples from the phenol evaluation set, from left to right, top to bottom: 

amodiaquine,98–100 thymol,101 oxymetazoline,102 capsaicin,103 eugenol,104 propofol,105 

diflunisal, aminosalicylic acid, dronabinol, orciprenaline, fluorescein, and doxycycline. The 

remaining molecules and their prediction are reported in the Supporting Information (Table 

S2). Attached numbers are the molecule quinone formation score, with red for the 

bioactivated phenols and blue for the rest. Experimentally observed sites of quinone 

formation are indicated by white circles. For each molecule, the colored shading represents 

quinone site scores, which range from 0 to 0.97. The model’s AUC accuracy on the phenol 

evaluation set is 73% and is better than the structural alert alone (two-sided p-value = 

0.0026).
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Figure 8. 
Nitroaromatics are bioactivated through reduction. Nitroaromatic compounds undergo 

sequential two-electron reductive steps to the nitroso, N-hydroxy, and amine. Alternatively, 

they can form nitro anion radicals through a one-electron reduction in the absence of 

oxygen. The reaction chain can also be reversed when an aromatic amine is oxidized to the 

N-hydroxy/nitroso compound. However, because the intracellular environment is reducing at 

physiological conditions, the equilibrium usually shifts toward the right.106,107
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Figure 9. 
Metabolism model identifies which nitroaromatics (highlighted in red) are bioactivated. 

Twelve examples from the nitroaromatic evaluation set, from left to right, top to bottom: 

nitrofurantoin,108 furazolidone,109 clonazepam,54 tolcapone,51 dantrolene,52,110 nimesulide,
52 flutamide,52 entacapone,106,111 tinidazole,112 nifedipine,54 benidipine, and lercanidipine. 

The remaining molecules and their prediction are reported in the Supporting Information 

(Table S3). Site reduction scores are indicated by color shading, ranging from red (1.0 

highly probable) to white (0.0, low probability). Experimentally observed sites of reduction 

are indicated by white circles. Attached numbers are molecule reduction scores. The 

reduction model was able to assign drugs that are known to be bioactivated at nitroaromatic 

structural alerts (scores in red) with higher scores than those that do not (scores in blue). The 

model AUC accuracy on the nitroaromatic evaluation set is 93% (significantly outperforms 

the structural alert approach, two-sided p-value = 0.0002).
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Figure 10. 
Thiophene is bioactivated through S-oxidation and epoxidation. The two bioactivation 

pathways of thiophene structural alerts are epoxidation and S-oxidation.21,65,82 Cytochrome 

P450s are the major catalyzing enzymes of both pathways. These pathways yield 

electrophilic, unstable thiophene S-oxides,64 thiophene epoxides,69 and sulfenic acids.66 

Notably, mass spectrometry experiments cannot reliably determine which bioactivation 

pathway leads to reactive metabolites because the thiophene S-oxide and the thiophene 

epoxide have the same mass and charge. This creates some ambiguity in the literature about 

the exact pathway by which some thiophenes are bioactivated.
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Figure 11. 
Metabolism model identifies whether thiophenes (highlighted in red) are bioactivated. 

Twelve examples from the thiophene evaluation set, from left to right, top to bottom: 

suprofen,69,82 zileuton,74 ticrynafen (tienilic acid),83 methapyrilene,84 duloxetine,85 

tiaprofenic acid, eprosartan,86 brotizolam,87 rotigotine, rivaroxaban, dorzolamide, and 

olanzapine.88,89 The remaining molecules and their predictions are reported in the 

Supporting Information (Table S4). S-oxidation model predictions are used to shade atoms, 

ranging from red (1.0, likely) to white (0.0, unlikely). Experimentally observed sites of S-

oxidation (atoms) and epoxidation (bonds) are highlighted by white circles. The numbers are 

the numerical scores of the S-oxidation model, with bioactivated molecules scored in red 

and not-bioactivated molecules scored in blue. The model’s AUC accuracy on the thiophene 

evaluation set is 88% (statistically outperforming the structural alert approach, two-sided p-

value = 0.009).
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Figure 12. 
Integrated model identifies which structural alerts in the combined evaluation set are 

bioactivated. Cross-validated scaled predictions within structural alerts are indicated by the 

colored shading on atoms and bonds. Experimentally observed sites of metabolism are 

indicated by white circles. Unscaled score global AUC is 74.0%, and the scaled score global 

AUC is 81.1%. The two accuracies are not statistically different (two-sided p-value = 0.199). 

Six molecules in the combined evaluation set that have more than one type of structural alert 

(highlighted in red) and are bioactivated from left to right, top to bottom are nitrofurantoin, 

furazolidone, nitrofural, tolcapone, dantrolene, and raloxifene. The combined model, both 

scaled and unscaled, correctly identifies the bioactivated structural alert of these compounds 

100% of the time.
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