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Abstract

Many adverse drug reactions are thought to be caused by electrophilically reactive drug 

metabolites that conjugate to nucleophilic sites within DNA and proteins, causing cancer or toxic 

immune responses. Quinone species, including quinone-imines, quinone-methides, and imine-

methides, are electrophilic Michael acceptors that are often highly reactive and comprise over 40% 

of all known reactive metabolites. Quinone metabolites are created by cytochromes P450 and 

peroxidases. For example, cytochromes P450 oxidize acetaminophen to N-acetyl-p-benzoquinone 

imine, which is electrophilically reactive and covalently binds to nucleophilic sites within proteins. 

This reactive quinone metabolite elicits a toxic immune response when acetaminophen exceeds a 

safe dose. Using a deep learning approach, this study reports the first published method for 

predicting quinone formation: the formation of a quinone species by metabolic oxidation. We 

model both one- and two-step quinone formation, enabling accurate quinone formation predictions 

in nonobvious cases. We predict atom pairs that form quinones with an AUC accuracy of 97.6%, 

and we identify molecules that form quinones with 88.2% AUC. By modeling the formation of 

quinones, one of the most common types of reactive metabolites, our method provides a rapid 

screening tool for a key drug toxicity risk. The XenoSite quinone formation model is available at 

http://swami.wustl.edu/xenosite/p/quinone.
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INTRODUCTION

Unanticipated toxicity frequently causes drug candidates to be discontinued late in 

development.1 Furthermore, idiosyncratic adverse drug reactions (IADRs) are often detected 

only after approval, causing significant morbidity and mortality.2,3 Around 75% of IADR 

cases result in liver transplants or death.4,5 There is considerable evidence that many 

varieties of drug toxicity, including IADRs, may be driven by a common mechanism: drug-

metabolizing enzymes bioactivate drugs into electrophilically reactive metabolites, which 

covalently bind to sites within DNA or proteins.6–9 Frequently, DNA adducts are mutagenic 

and may interfere with transcription, replication, or regulation, causing gene dysfunction or 

initiating cancer.10–12 Likewise, protein adducts can disturb important biological activities or 

engender adverse immune responses.12–14 This study focuses on quinones, a major class of 

Michael acceptors, which are soft electrophiles15 and the most common type of reactive 

metabolites.16 Quinone species, such as quinone-imines, quinone-methides, or imine-

methides, are commonly highly electrophilically reactive.17 Over 40% of all known reactive 

metabolites are quinones.16 Quinone formation, the formation of quinones by metabolic 

oxidation, is performed by cytochromes P45018–20 and peroxidases.9,21–23 Quinone 

formation generally occurs in one or two metabolic steps, where the final step is usually the 

coreduction of a cytochrome P450’s catalytic iron by the substrate, thereby dehydrogenating 

and oxidizing the substrate into a quinone species.24 For example, in a single step both 

cytochromes P45025 and peroxidases26 convert acetaminophen to the toxic metabolite N-

acetyl-p-benzoquinone imine, which covalently binds to proteins (Figure 1). In contrast, 

lumiracoxib requires two steps to form a quinone. First, cytochromes P450 hydroxylate 

lumiracoxib, the product of which then forms a quinone after further metabolism by 

cytochromes P450 or peroxidases.18,27,28

Detecting or anticipating quinone formation is critical for avoiding drug candidates early in 

drug development that can form reactive metabolites. Experimental methods for detecting 

quinone formation, most commonly incubation with glutathione, are well developed.29 

However, these techniques require time and resources, which can be significant, especially 

when considering thousands of candidates during the initial screening phase of drug 

development. Moreover, some methods detect metabolic events that are inconclusive for 

quinone formation, such as aromatic hydroxylation, because the product may not form a 

subsequent quinone in the in vitro screens, which are often tuned to only generate one-step 

metabolites. For example, buspirone undergoes aromatic hydroxylation but does not form a 
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quinone (Figure 2). In contrast, after hydroxylation at a structurally similar motif, the 

analogue nefazodone does proceed to form a hepatotoxic quinone.30,31 An accurate 

computational method for predicting both one-and two-step quinone formation pathways 

would be complementary to experimental screens and might identify otherwise undetected 

quinone formation risk.

Several studies demonstrated that computational methods can predict sites of metabolism.
32–38 However, these methods do not predict the metabolic structures produced by these 

reactions, and cytochromes P450 can alter the same site in different ways, each with 

different consequences to toxicity.39,40 In contrast, we recently published a computational 

model that went beyond site of metabolism prediction to specifically predict the formation 

of epoxides, the second most common type of reactive metabolites after Michael acceptors 

such as quinones, which demonstrated the feasibility and utility of modeling the formation 

of specific reactive metabolites.41

In this study, we built the quinone formation model (Figure 3), which succeeded at two 

crucial tasks. First, the model accurately predicted the specific atom pairs within molecules 

that form quinones: their quinone-forming pairs (QPs). Knowledge of QPs can guide 

structural modifications to reduce the chances of reactive metabolite formation. Second, the 

model distinguished quinone-forming and nonquinone-forming molecules. Molecule 

quinone formation predictions can be used to quickly screen for molecules likely to form 

reactive metabolites, a key toxicity risk.

MATERIALS AND METHODS

Quinone Formation Training Data

From the literature-derived Accelrys Metabolite Database (AMD), we extracted an extensive 

data set of chemically diverse metabolic reactions that form quinones. Overall, 576 reactions 

were extracted, each observed in humans, human cells, or human microsomes. These 

reactions consisted of 377 single-step quinone formation reactions and 199 two-step quinone 

formation reactions. An automated algorithm used the structure of each quinone product to 

label the QP on its metabolic parent, for one-step quinone formation, and its metabolic 

grandparent, for two-step quinone formation. We use “metabolic parent” to refer to the 

starting molecule of a one-step quinone formation reaction and “metabolic grandparent” to 

refer to the starting molecule of a two-step quinone formation reaction. Metabolic parents 

form quinones directly, whereas metabolic grandparents form a quinone through an 

intermediate structure. Both metabolic parents and grandparents were included in the 

training data. The results of the labeling algorithm were manually inspected and corrected as 

necessary.

For this study, we defined a QP as the pair of ring carbons that forms a quinone. In 

depictions, the atoms of these QPs are indicated by circles. When a pair of atoms was 

topologically equivalent to an observed QP, it was itself labeled as a QP. Duplicate starting 

molecules were merged into a lone training molecule with all observed QPs marked. The 

final data set included 359 quinone-forming molecules, each with its QPs labeled. Primarily, 

these QPs were found in six-membered rings (Table S1). Excluding atoms shared between 
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fused rings of different sizes, such as the fused six- and seven-member rings of nevirapine in 

Figure 4, 90.2% of the QP atoms were in six-membered rings, compared to 8.6% and 1.2% 

for five- and seven-membered rings, respectively.

Predicting which molecules will form quinones is a key goal of a useful model. Therefore, 

the training data set also included molecules that do not form quinones. To assemble these 

molecules, first all metabolically studied molecules in human-relevant experiments were 

extracted from the AMD. Second, all molecules that contained a six-membered aromatic 

ring were selected. Third, all molecules that formed quinones were filtered out, including 

quinones that formed in multiple steps. This procedure yielded a pool of 11884 molecules 

that have been studied in humans, human cells, or human microsomes but have not been 

reported to form quinones. From this pool, 359 (the same number of quinone-forming 

molecules) randomly selected nonquinone-forming molecules were added to the training set, 

for a total of 718 training molecules.

External Non-Quinone-Forming Test Sets

After removing the 359 nonquinone-forming molecules added to the training data, 11525 

nonquinone-forming molecules remained. From this pool, external test sets were similarly 

extracted by randomly selecting 359 molecules for each test set. We repeated this process 20 

times, thereby constructing 20 external test sets with 359 molecules apiece. All of these 

molecules were withheld from model training and were only evaluated by the final model.

Because of the terms of our AMD license, we were not able to share the structures of the 

training and test molecules. Instead, all reaction and molecule registry numbers were 

included in the Supporting Information, consistent with the June 2015 AMD release.

Topological Descriptors

To predict quinone formation, the first step of our method assigned each atom a vector of 

numbers, topological descriptors, which described chemical properties of that atom. Each 

atom was assigned 390 numbers, including 375 atom descriptors and 15 molecule 

descriptors. These descriptors were computed by in-house Python software using the 

structure of each molecule as input.42 We used topological descriptors, previous versions of 

which have been used for models of metabolism,32,43 reactivity,44,45 and epoxidation.41 For 

this study, we started with our most recent set of topological descriptors,44 which we 

supplemented with several new atom descriptors for ortho, meta, and para substituents. A 

second descriptor generation step assigned two descriptors to each pair of atoms: the 

connectivity distance between the atoms, and whether this distance was odd or even. A 

comprehensive listing of descriptors is available in the Supporting Information (Tables S3–

S7), which also specifies the new topological descriptors developed for this study.

Combined Pair- and Molecule-Level Quinone Formation Model

We built a model using a deep convolutional neural network with one molecule layer, one 

input layer, three hidden layers, and three output layers (Figure 3). The top output layer 

computed molecule quinone formation scores (MQS), the middle output layer computed pair 

quinone formation scores (PQS), and the bottom output layer computed atom quinone 
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formation scores (AQS). Respectively, the molecule-, pair-, and atom-level scores 

represented the probability that a molecule, pair, or atom formed a quinone, each score 

ranging from zero to one. The network was trained in three stages.

First, the atom-level network was trained to produce accurate atom-level scores. In this 

training step, each ring carbon within a molecule was considered a possible atom of quinone 

formation. Each atom was assigned a vector of numbers that described chemical properties 

of that atom. The data set was a matrix, with one row per atom, and one column per 

descriptor. Experimentally observed atoms of quinone formation were labeled with a 1 in a 

final binary target vector. Using gradient descent on the cross-entropy error, we trained the 

network weights so that atoms of quinone formation received higher scores than other 

atoms.

Second, the pair-level network was trained to compute scores for each pair of atoms. In this 

training step, each row of the data matrix was a pair of ring carbons, and each column was a 

descriptor. Descriptors included the atom-level score of each atom and both pair-level 

descriptors. For each atom pair, the two associated atom-level scores were sorted by 

magnitude and transformed by the logit function into log-odds. The pair-level network was 

trained to assign experimentally observed QPs with higher scores than all other atom pairs.

Third, the molecule-level network was trained. Each row of this data matrix was a molecule, 

and each column was a descriptor. Descriptors included the top three atom-level scores, the 

top three pair-level scores, and all molecule-level descriptors. The weights of the network 

were trained to assign quinone-forming molecules with higher scores than those for 

nonquinone-forming molecules.

The final model included hidden layers at all three stages. Several alternative models were 

considered, including a logistic regressor at all three stages, an AND function that mapped 

the atom-level to the pair-level, and a max layer that used a molecule’s maximum PQS as its 

molecule-level score. For all three stages, adding a hidden layer offered either higher 

classification performance or a better scaled prediction than alternative methods.

Quantum Chemical Descriptors

Currently, there are no other methods for explicitly predicting quinone formation. However, 

there are several computational tools available for predicting sites of metabolism, which 

frequently use quantum chemical calculations that correlate to the activation energies of 

cytochromes P450.34,35,46–49 Because of the absence of other methods for predicting 

quinone formation, we computed several quantum chemical descriptors to establish baseline 

performances (Tables S8 and S9). These descriptors were calculated by MOPAC, a quantum 

chemistry package that performs self-consistent field computations, with the COSMO 

implicit solvent model and the semiempirical method PM7.50,51 On both the pair- and 

molecule-level, we compared the performances of quantum chemical descriptors to those of 

the quinone formation predictions from the model, which only used topological descriptors. 

Atom-level quantum chemical descriptors were mapped to the pair-level by multiplying the 

descriptor values of both atoms together.
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RESULTS AND DISCUSSION

The following sections analyze the performance and applications of the quinone formation 

model. First, we quantified the power of pair quinone formation scores (PQS) to predict 

quinone-forming atom pairs within quinone-forming molecules. Second, we evaluated the 

ability of molecule quinone formation scores (MQS) to separate quinone-forming and 

nonquinone-forming molecules. Third, we investigated whether MQS can separate drugs 

containing the same structural alert. Fourth, we screened for drugs that are predicted to form 

quinones but are not currently known to do so. Finally, we studied how the model can 

potentially direct rational drug modifications to prevent quinone formation.

Accuracy at Predicting Quinone-Forming Pairs

To minimize reaction metabolite formation during drug design, identifying a molecule’s QP 

is critical. Additionally, knowledge of the QP, the exact pair of carbons involved in quinone 

formation, provides a precise hypothesis about the source of a molecule’s toxicity. 

Information about QPs also suggests where a molecule could be modified to prevent quinone 

formation, thereby minimizing a key toxicity risk. The quinone formation model is the first 

published computational method that specifically predicts QPs across a wide range of 

molecules.

To predict QPs, the model was trained in two stages. First, the model computed an atom 

quinone formation score (AQS) for each ring carbon within a test molecule. The atom-level 

scores ranged from zero to one, reflecting the probability than an atom was involved in 

quinone formation. The weights of the network were trained such that experimentally known 

atoms of quinone formation receive high scores, and all other atoms received low scores.

The atom-level scores were intended to predict whether a single atom is part of a quinone 

formation reaction. However, because quinone formation always operates on a pair of atoms, 

the atom-level scores did not directly predict quinone formation. Therefore, a second 

training step maps the atom score to the pair level, producing a pair-level score. Within each 

molecule, this step considered all pairs of ring carbons as possible QPs. For each pair of 

atoms, this training step took as input two atom level scores (corresponding to each atom), as 

well as pair-level descriptors. The weights of this stage of the network were trained to assign 

QPs with high pair-level scores and all other pairs with low scores.

For both the atom-level and pair-level training steps, 10-fold cross-validation was used, a 

standard procedure in machine learning for estimating generalization accuracy. Within 

quinone-forming molecules, accurate predictions should differentiate QPs from all other 

pairs. We used two metrics to quantify the accuracy of cross-validated atom- and pair-level 

scores. First, we calculated the “average pair AUC” by computing the area under the receiver 

operating characteristic curve (AUC) for each molecule and averaging the AUCs across all 

molecules to measure performance for the entire data set.41,44,45 Second, we calculated “top-

two” performance, which considers a molecule correctly predicted if any of its QPs are 

predicted in the first or second rank positions, a standard metric for site of metabolism 

predictions.32,34,41,52,53
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To assess the performance of the atom-level model, we translated the atom-level scores to 

the pair-level by multiplying the scores of both atoms together, thereby calculating the 

probability that both atoms were involved in quinone formation. By this approach, the atom-

level scores computed by a neural network yielded an average pair AUC performance of 

97.1% and a top-two performance of 83.8% (Figure 4). In contrast, a logistic regressor 

computed significantly less accurate predictions, with performances of 94.4% (average pair 

AUC) and 70.2% (top-two). On the basis of this result, we selected the neural network for 

the atom-level training stage.

For the second training stage, on the pair-level, we similarly tested both a neural network 

and a logistic regressor. The neural network predicted QPs with performances of 97.6% and 

86.9%, for average pair AUC and top-two, respectively. These did not exceed the 

performances of the logistic regressor: 97.8% (average pair AUC) and 88.3% (top-two). 

However, both the pair-level neural network and the pair-level logistic regressor significantly 

improved performance compared to only training on the atom-level, especially by the top-

two metric. For example, comparing the top-two performances of the pair-level logistic 

regressor and the atom-level neural network by a paired t-test54 yielded a p-value of 0.037. 

Consequently, we retained the pair-level training and model.

However, at the pair level, choosing between the neural network and the logistic regressor 

was more difficult because they had statistically indistinguishable classification 

performances. Paired t-tests54 indicated that the neural network and the logistic regressor 

were statistically equivalent for both average pair AUC (p-value 0.339) and top-two (p-value 

0.286). To break the tie, we constructed reliability plots, which quantify how well 

predictions correlate to probabilities (Figure 5).41,55 These plots revealed that the neural 

network is a better scaled prediction than the logistic regressor, with the lowest root-mean-

square error to a perfectly scaled prediction. Well-scaled predictions are interpretable as 

probabilities, so we decided to use the neural network. Nevertheless, the choice between the 

neural network and the logistic regressor is arguable because the logistic regressor is a 

simpler model structure. While we settled on the neural network for this component of the 

model, we believe a logistic regressor could likely be utilized with comparable results.

The majority of the QPs in the data were found in six-membered rings (Table S1), which 

raised concerns that we would not accurately predict quinone formation on five-membered 

rings due to insufficient data. With this in mind, we investigated whether QPs in five-

membered rings were also accurately predicted by calculating accuracy only on those 

molecules. Across the 36 molecules where a five-membered ring formed a quinone, pair-

level scores predicted QPs with performances of 96.7% and 86.1%, for average pair AUC 

and top-two, respectively. These performances matched the accuracies across the whole data 

set of 97.6% (average pair AUC) and 86.9% (top-two). We accurately predicted QPs in five-

membered rings despite limited training data, suggesting that the underlying principles that 

guide quinone formation on six-membered rings also applied to quinone formation on five-

membered rings.

Currently, there are no other models published for predicting quinone formation to which 

this model can be compared. Instead, to provide a baseline we calculated several quantum 
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chemical descriptors (Tables S8 and S9), which correlate to the activation energies of 

cytochromes P450 and are often used by sites of metabolism predictors.34,35,46–49 Each 

quantum chemical descriptor was considered as a model to predict QPs. To map each 

descriptor to the pair-level, the descriptor value of both atoms was multiplied together. None 

of the quantum chemical descriptors approached the accuracy of the pair-level score. For 

example, the best descriptor by the top-two metric was the density of the highest occupied 

molecular orbital (HOMO) on the test atom, which only had a top-two performance of 

34.8%, far below the pair-level model’s performance of 86.9%. By considering many 

chemical attributes together using machine learning, the model predicted QPs more 

accurately than any quantum chemical descriptor.

Accuracy at Identifying Quinone-Forming Molecules

We also evaluated how well the model separated quinone-forming from nonquinone-forming 

molecules. A model that accurately predicts molecule quinone formation could be used to 

quickly screen drug candidates for a key toxicity risk.

In this assessment, we trained the model to differentiate molecules that formed quinones 

from those that did not. In addition to quinone-forming molecules, the training data 

contained molecules that could form quinones, defined as containing a six-membered 

aromatic ring, and that were metabolically studied in human-relevant experiments in the 

Accelrys Metabolite Database (AMD) but did not form quinones. Following pair-level 

training, we investigated several methods of discriminating between quinone-forming and 

nonquinone-forming molecules (Figure 6). To measure performance at this objective, we 

calculated the AUC across the full data set (molecule AUC).

First, we tried the most straightforward method of predicting molecule quinone formation: 

taking each molecule’s maximum cross-validated pair-level scores. This procedure 

distinguished quinone-forming and nonquinone-forming molecules with a molecule AUC of 

88.5%. Second, we added a training step that submitted the top three pair-level scores, the 

top three atom-level scores, and all molecule descriptors to a neural network or a logistic 

regressor. Using 10-fold cross-validation, neither the neural network nor the logistic 

regressor outperformed the maximum pair-level score, with molecule AUCs of 88.2% (p-

value 0.16) and 88.4% (p-value 0.31), respectively, with significance evaluated by a false 

positive rate paired t-test.54

However, the neural network supplied a better scaled prediction than both the logistic 

regressor and the maximum pair quinone formation score, as indicated by the reliability 

plots of Figure 7. Furthermore, compared to both of the other methods, the neural network 

predicted more quinone-forming molecules with high scores and nonquinone-forming 

molecules with low scores. On the other hand, both the logistic regressor or the maximum 

PQS were simpler models with equivalent molecule AUC performance. Still, because of its 

well-scaled predictions, we decided to use the neural network, but we expect that the other 

two methods would provide similar results.

Compared to the performance of the pair-level model in identifying QPs (97.6% AUC), the 

molecule-level model had a considerably lower AUC of 88.2%. This drop in accuracy might 
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be because the molecule-level data contained more noise than the pair-level data. When 

selecting “nonquinone-forming” molecules, we inferred that a molecule did not form a 

quinone if it was not reported to do so in the AMD. This supposition, while obligatory for 

molecule-level training, was not a robust indication that molecules do not form quinones 

because not every study measures quinone products. As a result, our data set construction 

procedure imprecisely labeled some quinone-forming molecules as nonquinone-forming. In 

contrast, the pair-level quinone formation data were much cleaner because they were 

extracted from experiments capable of reporting quinone formation. Our previous studies 

with the AMD have observed comparable drops in site-level (equivalent to the pair-level in 

this study) to molecule-level accuracy.41,44,45

Even so, the molecule-level scores classified quinone-forming molecules with 88.2% AUC, 

greatly exceeding that of any comparison quantum chemical descriptor and demonstrating 

that the model produces illuminating molecule-level predictions. The best quantum chemical 

descriptor was the energy of the highest occupied molecular orbital (EHOMO), which only 

had an AUC of 64.2%. The relatively high performance of the molecule-level model 

supports our assumption that many of the molecules labeled as nonquinone-forming indeed 

do not form quinones. If the quinone-forming and nonquinone-forming molecules were 

actually extracted from identical chemical populations, separating them in our cross-

validated experiments, which simulated performance on external data, would be highly 

unlikely.

To further confirm that molecule-level performance was not a consequence of overfitting, we 

evaluated the model on several external test sets of nonquinone-forming molecules. Each 

external test set was predicted by the final trained model. Separation between each external 

nonquinone-forming test set and the quinone-forming training molecules was measured by 

the molecule AUC. Over the 20 test sets, the AUC was 85.9% ± 1.2%, which is comparable 

to the previously reported cross-validated AUC of 88.2% computed by training on both 

quinone-forming and nonquinone-forming molecules. The model successfully generalized to 

new data, assigning nonquinone-forming molecules it had never seen before with much 

lower scores than quinone-forming training molecules.

Comparison to Structural Alerts

We compared the model to “structural alerts,” which are motifs known to commonly form 

reactive metabolites. A library of structural alerts can be easily used to flag potentially 

problematic molecules during drug development.18,56 This is a widely used approach, but 

unfortunately structural alerts for quinone formation, such as anilines or phenols, are also 

found in many safe drugs because they are not bioactivated due to specific molecular 

context. We would hope that the model could identify which structural alerts are bioactivated 

to quinones and which are not.

To systematically evaluate whether the model distinguishes structural alerts, we focused on 

several motifs known to commonly form quinones. The exact patterns used are listed in the 

Supporting Information (Table S2). We included both motifs that form quinones in one step, 

such as hydroquinones and catechols, and motifs that form quinones in two steps, such as an 

oxygen or nitrogen ortho or para to a hydrogen. For each motif, we extracted all atom pairs 
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from the training data set that matched the structure and recorded whether this pair formed a 

quinone. Next, we assigned each pair its cross-validated pair-level score and calculated the 

AUC across all pairs of that substructure, the pair AUC (Figure 8 and Table 1). For each 

structural alert, the model predicted quinone formation with performances significantly 

higher than random.

For example, the catechol motif commonly forms an ortho-quinone in a single step (Figure 

9).18,56,57 Catechols might be considered a motif that “obviously” forms quinones. However, 

of the 75 catechols in our data set, only 43 actually are known to form quinones.

The quinone formation model’s pair-level scores separated quinone-forming and 

nonquinone-forming catechols with a pair AUC of 69.3%. This was the lowest performance 

of all the structural alerts we tested, and there is certainly room for improvement. 

Nevertheless, as indicated by the 95% confidence intervals58 in Figure 9, we separated 

catechols with a performance significantly higher than baseline (AUC 50%). We find this an 

encouraging result because the method helps identify which catechols might not actually 

form quinones, unlike the structural alert approach that considers all catechols a 

bioactivation risk without evaluating specific molecular context.

We also found that pair-level scores are informative for two-step quinone formation 

structural alerts. For example, for the motif of a nitrogen para to a hydrogen to form a 

quinone, hydroxylation must first occur at the unsubstituted carbon, followed by quinone 

formation. The nitrogen-para-to-hydrogen motif can be found in some anilines or anilides, 

which are well-known structural alerts.18,56,59 The entire training data set contains 174 total 

nitrogen-para-to-hydrogen atom pairs, of which 34 are actually known to form quinones. 

Encouragingly, the quinone formation model’s pair-level scores accurately separated 

quinone-forming and nonquinone-forming nitrogen-para-to-hydrogen groups with a pair 

AUC of 84.1% (Figure 10).

The phenol motif is a broad structural alert found in a wide variety of drugs.18,56 In contrast 

to catechols (which require one step to form a quinone) and nitrogen-para-to-hydrogen 

(which require two steps), phenols can form quinones in one or two steps, depending on ring 

substituents. For example, phenols can form a quinone-methide in a single step if there is a 

para carbon or form a quinone in two steps via intermediate aromatic hydroxylation at the 

para position. Across our training data set, there are 433 carbons para to a phenol. For each 

atom, we extracted the atom-pair-level score of the carbon and the ipso-carbon of the 

corresponding phenol. Of these atom pairs, 108 form a para quinone.

The model accurately distinguished whether a quinone will form para to a phenol, with a 

pair AUC of 94.6% (Figure 11). Both one- and two-step quinone formation at the para 
position to a phenol were accurately predicted. For example, both oxymetazoline and an 

analogue of androstenedione contain a phenol-para-to-carbon motif, but only in 

oxymetazoline does the phenol-para-to-carbon motif form a quinone-methide.60,61 The 

model’s pair-level scores cleanly distinguished the phenol-para-to-carbon in both molecules. 

Similarly, both propofol and doxycycline contain a phenol-para-to-hydrogen, which can 

form a quinone in two steps with an intermediate hydroxylation. Propofol’s phenol-para-to-
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hydrogen received a much higher pair-level score than doxycycline, consistent with only 

propofol being known to form a quinone.62,63

These results demonstrate that the model has better specificity than structural alerts. Specific 

substructures can determine the parts of molecules that have the capacity to form quinones, 

but they do not assess the likelihood of the quinone actually forming. The quinone formation 

model, however, can stratify molecules by their propensity of forming quinones, identifying 

which alerts are bioactivated and which are not.

Structural alerts are retrospective in nature. Consequently, they cannot detect quinone 

formation for motifs that have not previously been observed to form quinones. As a result, 

molecules that form quinones at atypical sites will likely be missed by structural alerts. In 

contrast, our model can potentially detect these unusual cases because it is built on a diverse 

data set that includes a wide variety of typical and atypical sites of quinone formation. To 

test this, we investigated the accuracy of the model at predicting quinone formation at sites 

that do not match structural alerts. After filtering out all atom pairs that matched any of the 

quinone structural alerts used (Table 1), we calculated the pair AUC over all remaining atom 

pairs. The model accurately predicted quinone formation at these nonobvious sites with a 

pair AUC of 97.7% (Figure 12). This indicates that the model is able to accurately predict 

quinone formation even for atom pairs that would not generally be considered to be at risk.

Case Studies

We considered several case studies to investigate the model’s utility. One potential 

application is to screen for molecules that are likely to form quinones but that are currently 

not known to do so. To explore this application, we predicted the quinone formation of drugs 

that were not reported to form quinones in the AMD. After downloading a database of FDA-

approved and withdrawn drugs, the molecules present in the training data set were removed.
64 Next, each drug was submitted to the trained quinone formation model, thereby assigning 

a molecule quinone formation score to each drug.

To define a cutoff above which a drug was considered predicted to form a quinone, we used 

the optimal point on the cross-validated molecule ROC curve from the training data (Figure 

S4). This optimal point, corresponding to a molecule score of 0.515, is the cutoff that offers 

the best trade-off between sensitivity and specificity. We selected all drugs that were 

assigned a higher score than the optimal cutoff. This revealed 288 drugs that are predicted to 

form quinones but that are currently thought to be nonquinone-forming across all the 

relevant literature in the AMD. All 288 drugs and their molecule quinone formation scores 

are available in the Supporting Information. Here, we highlight three example drugs (Figure 

13). Each drug carries a risk of idiosyncratic toxicity, the causes of which are currently 

obscure.

First, the antiarrhythmic flecainide is associated with idiosyncratic hepatotoxicity, the origin 

of which is currently unknown.18,59,65 There are no known reactive metabolites of 

flecainide, and previous studies have suggested that flecainide is harmlessly metabolized to a 

phenol via oxygen-dealkylation, followed by glucuronidation.18,59,66 However, our model 

suggests that the phenol metabolite may actually form a quinone.
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Second, the antihistamine thenalidine is associated with idiosyncratic cases of 

agranulocytosis, a potentially deadly condition that entails a severely lowered blood white 

cell count that leaves a patient vulnerable to critical infection.67–70 Indeed, three years after 

thenalidine was introduced to the U.S. market, it was withdrawn in 1958 due to fatal cases of 

agranulocytosis.71–74 The mechanism of thenalidine’s idiosyncratic toxicity was never 

uncovered, and it is has no known reactive metabolites. An obvious hypothesis is that 

thenalidine’s thiophene ring, a well-known structural alert, could undergo bioactivation 

through epoxidation or sulfur-oxidation.18,75 However, the quinone model’s predictions 

yield a second, more surprising hypothesis: thenalidine may undergo hydroxylation at the 

para position on its aniline ring, followed by formation of a potentially highly reactive 

quinone-imine.

Third, bunamiodyl carries a risk of severe nephropathy.71,76 It was introduced in 1958 as a 

cholecystographic contrast medium but was withdrawn in 1964 after around 100 patients 

died due to renal failure.71,74,76,77 While bunamiodyl is not known to produce reactive 

metabolites, our model predicts that it undergoes dehalogenation followed by formation of 

an ortho or para quinone-imine.

As seen for flecainide, thenalidine, and bunamiodyl, the model can yield an explicit, testable 

hypothesis about the mechanisms of a molecule’s toxicity. Experimentally validating these 

quinone formation predictions is beyond the scope of this study but is planned for future 

work.

In another application, we see that the model’s scores accurately reflect the impact of 

rational drug modifications. Often, small modification to a molecule can prevent reactive 

metabolite formation while retaining drug efficacy. For example, the antimalarial drug 

amodiaquine forms a reactive quinone-imine metabolite that causes the hepatotoxicity and 

agranulocytosis sometimes associated with amodiaquine treatment, severely limiting its use.
18,78–80 Amodiaquine has an analogue that retains pharmacological efficacy while 

preventing reactive metabolite formation.18,81,82 The quinone formation model detects the 

effect of this subtle change, cleanly distinguishing amodiaquine from its safe analogue 

(Figure 14). The quinone formation model also correctly predicts amodiaquine’s QP, 

demonstrating how the model could help guide rational drug modifications that require 

specific knowledge about where on a molecule a reactive metabolite forms.

MODEL LIMITATIONS

Quinone formation is only one piece of the toxicity puzzle, and this model is only one step 

toward effective toxicity management. For example, while the model predicts quinone 

formation, it does not predict the reactivity of those quinones. Subtle changes in ring 

substituents can have a large impact on quinone reactivity and toxicity.83 Consequently, in 

future work we plan to incorporate the quinone formation model with already-developed 

reactivity models.44,45

Moreover, the quinone formation model does not correct for alternate metabolic pathways 

that may detoxify molecules before they can form quinones. Because of these metabolic 
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alternatives, quinone formation is sometimes observed in vitro but does not occur in vivo.18 

Furthermore, after quinones form, they can be further metabolized by reduction, which, for 

example, can produce hydroquinones that can then be conjugated and eliminated.84 In the 

long run, integration of the quinone formation model with models of reduction and 

detoxification, such as uridine 5′-diphospho-glucuronosyltransferase conjugation,85 could 

offer more nuanced predictions by weighing quinone formation against other metabolic 

routes.

Likewise, quinone formation that occurs in several metabolic steps may not be detected by 

the current model, which focused on one- and two-step quinone formation. As we continue 

to develop more complex systems of metabolite structure prediction, we plan to expand the 

quinone formation model by explicitly modeling intermediate structures, potentially 

extending its utility beyond two metabolic steps. Additionally, the current method only uses 

topological descriptors. As evidenced by the quinone formation model’s accuracy, these 

descriptors are tightly correlated with electronic structure, but performance on rare 

subclasses or new molecules could be affected by not explicitly including quantum chemical 

descriptors. In the future, we will consider expanding our method to include quantum 

chemistry, such as descriptors relating to the half-reactions between the substrate and 

Compound I within cytochromes P450.

Finally, there is no guarantee that the model’s applicability domain extends beyond its 

training domain of metabolically studied drug-like molecules. New areas of chemical space, 

possibly only currently explored in proprietary data within pharmaceutical companies, may 

not be well suited to the current topological-descriptor-based model trained on literature-

derived data. However, this study’s methodology could be easily applied to new data, 

thereby expanding the utility of the model.

CONCLUSIONS

This study constructed a novel method that forecasts the formation of reactive quinone 

metabolites. The QP-trained quinone formation model predicted with 97.6% AUC the QPs 

within quinone-forming molecules. These pair-level predictions suggest where drug 

candidates could be modified to make them safer. The model also separated quinone-

forming and non-quinone-forming molecules with 88.2% AUC. Furthermore, the model 

distinguished molecules containing the same quinone-formation structural alert and detected 

the impact of rational drug modification to prevent quinone formation. Molecule-level 

quinone formation predictions can be used to flag problematic molecules in the early stages 

of drug development. However, eventually both reactivity and metabolism must be modeled 

to accurately predict reactive metabolite formation. While we have recently made progress 

on modeling the reactivity of diverse chemicals,44,45 previous studies of metabolism have 

primarily focused on predicting sites of metabolism, rather than actual metabolite structures.
32,37,43,47,85–88 This study explicitly predicted the formation of quinones, one of the most 

common types of reactive metabolites, thereby supplying an essential piece of a unified 

model of reactivity and metabolism.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Examples of one- and two-step quinone formation: the formation of a quinone by metabolic 

oxidation. The quinone (indicated by red ovals) metabolites of acetaminophen and 

lumiracoxib cause hepatotoxicity due to the formation of a hapten complex with off-target 

proteins that triggers toxic immune responses.18,27,28 Acetaminophen’s conversion to the 

reactive quinone N-acetyl-p-benzoquinone imine (NAPQI) illustrates one-step quinone 

formation, and lumiracoxib’s conversion to lumiracoxib quinone-imine via the intermediate 

4′-hydroxylumiracoxib demonstrates two-step quinone formation.18,27,28 The quinone 

formation model encompasses both one- and two-step quinone formation.
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Figure 2. 
Both quinone-forming and nonquinone-forming molecules can undergo comparable initial 

metabolic events. Nefazodone first undergoes aromatic hydroxylation to form hydroxy-

nefazodone, which is then oxidized to form the reactive nefazodone quinone, thereby 

causing hepatotoxicity in some patients.30,31 In contrast, the analogue buspirone does not 

form a quinone, despite undergoing a comparable initial hydroxylation event.31 A key goal 

of our model was to accurately identify molecules that form quinones.
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Figure 3. 
Structure of the quinone formation model. The network on the left depicts how information 

propagated through the model, which contained one molecule layer, one input layer, three 

hidden layers, and three output layers. From the structure of an input molecule, several 

molecule-level, atom-level, and pair-level descriptors were calculated at the input layer. The 

molecule- and atom-level descriptors flowed into the first hidden layer, which outputted an 

atom quinone formation score (AQS) for each atom in the input molecule. In this study, we 

defined a quinone-forming pair (QP) as the exact pair of ring carbons that forms a quinone. 

To predict QP, the atom-level scores of both atoms and the pair-level descriptors were 

presented to the second hidden layer, which computed a pair-level quinone formation score 

(PQS). Finally, the top three atom-level scores, the top three pair-level scores, and all 

molecule-level descriptors were submitted to the third hidden layer, which calculated a 

molecule quinone formation score (MQS). On the right, atom-level data are illustrated on 

the bottom (with atoms of quinone formation circled), pair-level data are illustrated in the 

middle (with a pair of atoms circled), and molecule-level data are illustrated on top (with the 

quinone-forming molecule circled). The molecule input node is a chemical structure, and all 

other circles are predictions ranging from 0 to 1. Blocks are vectors of real numbers. Right, a 

flowchart visualizes the overall experimental method. First, quinone formation data were 

extracted from a literature-derived database. Next, chemical descriptors were generated from 

the structures of these molecules. The data were then split into a training set and a test set. 

The training data were modeled by three steps of sequential training, on the atom-, pair-, and 

molecule-levels. Finally, the trained model was evaluated on the test data. Ten-fold cross-

validation was used, a standard procedure in machine learning for estimating generalization 

accuracy. For each cross-validation fold, one-tenth of the data was set aside as the test set 

and the remaining data used as the training set.
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Figure 4. 
Pair-level model, computing pair quinone formation scores (PQS), accurately predicted 

quinone-forming pairs (QP). Top left, average pair area under the curve (AUC) was 

calculated for 359 molecules extracted from the Accelrys Metabolite Database and labeled 

with their QPs. Within these quinone-forming molecules, the average pair AUC metric 

quantifies how frequently QP were ranked higher than other atom pairs.41,44,45 Bottom left, 

the top-two metric was calculated, which counts a molecule correctly predicted if any of its 

QP received the first- or second-highest prediction.32,34,41,52,53 By both metrics, the cross-

validated pair-level scores outperformed atom quinone formation scores (AQS), computed 

by a control model that did not include training on the pair-level, instead mapping the atom-

level to the pair-level by multiplying the scores of both atoms together. The pair-level model 

performance also exceeded that of quantum chemical descriptors, the five best of which are 

included in each panel. The baseline of each metric, indicated by the random model, was 

computed by calculating performance over randomized predictions. For each metric, 

asterisks indicate results significantly worse than the best-performing method, as determined 

by a paired t-test.54 Examples from the data set are visualized with their scores (ranging 

from 0 to 0.98) indicated by the colored shading, assigning each atom the probabilistic OR 

of all pair-level quinone formation scores including the atom. Top center, nevirapine;89,90 

top right, mefenamic acid;91 bottom center, pyronaridine;92 and bottom right, mitoxantrone.
93 The atoms of experimentally observed QPs are circled.

Hughes and Swamidass Page 23

Chem Res Toxicol. Author manuscript; available in PMC 2018 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Pair-level neural network computes the best scaled prediction of quinone-forming pairs and 

corresponds closely with a probability. Across 78341 atom pairs within 718 quinone-

forming and nonquinone-forming molecules, the bar graphs plot the normalized distributions 

of the pair-level logistic regressor, the pair-level neural network, the atom-level logistic 

regressor, and the atom-level neural network. Using non-normalized frequencies, the solid 

lines in each bin plot the percentage of atom pairs that form quinones. Atom-level scores 

were mapped to the pair-level by multiplying the scores of both atoms together. On the pair-

level, the logistic regressor and the neural network used the outputs of the atom-level neural 

network as inputs, along with pair-level descriptors. Each diagonal dashed line indicates a 

hypothetical perfectly scaled prediction. Of the four methods, the pair-level neural network 

provided the best scaled prediction, with the lowest root-mean-square error of a perfectly 

scaled prediction, and the highest correlation to the best-fit line. Therefore, the pair-level 

neural network most accurately reflected the probability that an atom pair will form a 

quinone.
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Figure 6. 
Molecule quinone formation scores (MQS) accurately identified quinone-forming 

molecules. Left, the ability of several methods to identify molecules that form quinones was 

computed, including taking each molecule’s maximum pair quinone formation score (PQS), 

training a logistic regressor or a neural network on the top three pair-level scores, the top 

three atom-level scores, and all molecule descriptors, and training a control model in the 

form of a neural network that only used as input molecule descriptors. The data set set 

included 359 quinone-forming molecules and 359 nonquinone-forming molecules. To 

quantify performance, the AUC was computed across quinone-forming and nonquinone-

forming molecules (Molecule AUC), using cross-validated predictions. Asterisks indicate 

results significantly worse than the best-performing method, as determined by a false 

positive rate paired t-test.54 Right, closely related example pairs of molecules that do and do 

not form quinones are visualized. Cross-validated scores (ranging from 0 to 0.78) are 

indicated by the colored shading, assigning each atom the probabilistic OR of all pair-level 

quinone formation scores including the atom. The number line denotes each molecule’s 

cross-validated score, computed by the neural network. From left to right, top to bottom: 

estradiol (MQS: 0.60),94 nefazodone (MQS: 0.83),30,31 buspirone (MQS: 0.09),30,31 and a 

2α-substituted androstenedione analogue (MQS: 0.42).95 The atoms of experimentally 

observed quinone-forming pairs are circled.
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Figure 7. 
Neural network produces a well-scaled probabilistic prediction of molecule quinone 

formation. Across 718 quinone-forming and nonquinone-forming molecules, the bar graphs 

plot the normalized distributions of the maximum pair-level score, the molecule-level 

logistic regressor, and the molecule-level neural network. Using non-normalized 

frequencies, the solid lines in each bin plot the percentage of molecules that form quinones. 

Each diagonal dashed line indicates a hypothetical perfectly scaled prediction. The neural 

network provided the best scaled prediction, with the lowest root-mean-square error (RMSE) 

of a perfectly scaled prediction, and the highest correlation to the best-fit line. Therefore, the 

neural network most accurately reflected the probability that a molecule will form a 

quinone.
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Figure 8. 
Pair-level scores predicted whether several structural alerts form quinones. We tested several 

motifs that are structural alerts for both one-and two-step quinone formation. For each motif, 

across the 718 training molecules, the cross-validated scores of all atom pairs matching that 

motif were extracted. Left, the receiver operating characteristic (ROC) curve is displayed 

across all the atom pairs of three example motifs (visualized in the center). The graph 

displays example ROC curves for the second best, typical, and worst performing alerts. The 

diagonal dashed line indicates baseline performance. The ROC curves of all the motifs are 

available in the Supporting Information (Figure S1). In the depiction of the ortho to phenol 

motif, the “R” represents any atom, including hydrogens. Right, the area under the ROC 

curve (AUC) was calculated across all the atom pairs of each motif. The error bars represent 

95% two-sided confidence intervals.58

Hughes and Swamidass Page 27

Chem Res Toxicol. Author manuscript; available in PMC 2018 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Pair-level scores predicted whether catechols form quinones. Of all structural alerts tested, 

the model performed the worst on catechols (Figure 8). Nevertheless, the model 

distinguished catechols with a statistically significant performance. This motif (indicated by 

the red circles) requires a single step to form a quinone. Across the 718 training molecules, 

the cross-validated scores of all atom pairs matching this motif were extracted. Left, the 

receiver operating characteristic (ROC) curve is displayed across all these atom pairs. The 

diagonal dashed line indicates baseline performance: 50% area under the ROC curve (AUC). 

Four example molecules are visualized. Scores (ranging from 0 to 0.97) are indicated by the 

colored shading, assigning each atom the probabilistic OR of all pair-level quinone 

formation scores including the atom. The atoms of experimentally observed quinone-

forming pairs are circled. Top center, a noscapine metabolite96 and top right, a raloxifene 

metabolite,97 both of which are correctly predicted to form quinones at the catechol. Bottom 

center, aspalathin98 and bottom right, a methylenedioxypyrovalerone metabolite99 neither of 

which forms quinones at the catechol-para-to-hydrogen motifs, which are correctly assigned 

low scores.
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Figure 10. 
Pair-level scores predicted whether nitrogen-bound carbons para to a carbon with a hydrogen 

form quinones. This motif (indicated by the red circles) requires aromatic hydroxylation to 

form a quinone. Across the 718 training molecules, the cross-validated scores of all atoms 

pairs matching this motif were extracted. Left, the receiver operating characteristic (ROC) 

curve is displayed across all of these atom pairs. The diagonal dashed line indicates baseline 

performance: 50% area under the ROC curve (AUC). Four example molecules are 

visualized. Scores (ranging from 0 to 0.96) are indicated by the colored shading, assigning 

each atom the probabilistic OR of all pair-level quinone formation scores including that 

atom. The atoms of experimentally observed quinone-forming pairs are circled. Top center, a 

dasatinib analogue100 and top right, chlorpromazine,101 both of which are correctly 

predicted to form quinones at the nitrogen-para-to-hydrogen motif. Bottom center, 

saracatinib100 and bottom right, a thioridazine metabolite,102 neither of which forms 

quinones at the nitrogen-para-to-hydrogen motifs, are correctly assigned low scores.
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Figure 11. 
Pair-level scores predicted whether a quinone will form para to a phenol. This motif 

(indicated by the red circles) may require one or two metabolic steps to form a quinone. In 

the depiction of the phenol motif on the left, the “R” represents any atom, including 

hydrogens. Across the 718 training molecules, the cross-validated scores of all atom pairs 

matching this motif were extracted. Left, the receiver operating characteristic (ROC) curve is 

displayed across all these atom pairs. The diagonal dashed line indicates baseline 

performance: 50% area under the ROC curve (AUC). Four example molecules are 

visualized. Scores (ranging from 0 to 0.77) are indicated by the colored shading, assigning 

each atom the probabilistic OR of all pair-level quinone formation scores including that 

atom. The atoms of experimentally observed quinone-forming pairs are circled. Top center, 

oxymetazoline60 and top right, propofol,62 both of which are correctly predicted to form 

quinones at the para-to-phenol motif. Bottom center, an androstenedione analogue61 and 

bottom right, doxycycline,63 neither of which forms quinones at their para-to-phenol motifs, 

are correctly assigned low scores.
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Figure 12. 
Pair-level scores predicted whether quinones form at motifs that do not match structural 

alerts. Across the 718 training molecules, the cross-validated scores of all atom pairs that did 

not match any structural alert were extracted. Left, the ROC curve is displayed across all 

these atom pairs. The diagonal dashed line indicates baseline performance: 50% area under 

the ROC curve (AUC). Four example molecules are visualized. Top center, an antimalarial 

drug candidate.103 Top right, a voltage-gated sodium channel inhibitor drug candidate.104 

Bottom center, an imiloxan metabolite.105 Bottom right, a brimonidine metabolite.106 The 

atoms of experimentally observed quinone forming pairs are circled. Scores (ranging from 0 

to 0.92) are indicated by the colored shading, assigning each atom the probabilistic OR of all 

pair-level quinone formation scores including the atom.
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Figure 13. 
Examples of drugs associated with idiosyncratic toxicity that received high molecule 

quinone formation scores (MQS) but are not known to form quinones in our data set. Each 

drug predicted to form a quinone is visualized above its most similar quinone-forming 

molecule from the training data. Similarity was quantified using path based fingerprints and 

MinMax similarity, a modification of Tanimoto appropriate for count fingerprints.107 Top, 

flecainide (MQS: 0.81), thenalidine (MQS: 0.79), and bunamiodyl (MQS: 0.96). Bottom, a 

remoxipride metabolite (MQS: 0.58),108 thioridazine (MQS 0.36),101 and a flutamide 

metabolite (MQS 0.88).109 The atoms of experimentally observed quinone forming pairs are 

circled. Scores (ranging from 0 to 0.99) are indicated by colored shading, assigning each 

atom the probabilistic OR of all pair-level quinone formation scores including the atom. For 

the training examples, cross-validated scores are reported.
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Figure 14. 
Model reflects the impact of structural modification to prevent quinone formation. The 

hepatotoxicity and agranulocytosis that have significantly curtailed the use of the 

antimalarial drug amodiaquine (left) have been traced to the formation of a reactive quinone-

imine metabolite.18,78–80 An amodiaquine analogue (right) has been identified that retains 

pharmacological efficacy while preventing reactive metabolite formation.18,81,82 Molecule 

quinone formation scores (MQS) cleanly distinguished amodiaquine (MQS: 0.93) from this 

safe analogue (MQS: 0.18). Additionally, pair-level quinone formation scores (PQS) 

correctly predicted amodiaquine’s quinone formation pair, the atoms of which are circled. 

Scores (ranging from 0 to 0.98) are indicated by the colored shading, assigning each atom 

the probabilistic OR of all pair-level quinone formation scores including the atom. Cross-

validated scores are reported for amodiaquine.
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Table 1

Pair-Level Scores Predicted Whether Structural Alerts Form Quinones

motif category quinone-forming pairs nonquinone-forming pairs pair AUC (%)

nitrogen ortho to oxygen one step 3 31 100.0

oxygen para to hydrogen two step 8 276 98.9

nitrogen ortho to carbon one step 6 204 97.9

nitrogen para to nitrogen one step 15 24 96.4

oxygen ortho to hydrogen two step 57 981 95.2

oxygen ortho to carbon one step 6 338 95.2

para to phenol one and two step 108 325 94.6

oxygen para to carbon one step 33 312 94.1

nitrogen para to carbon one step 6 44 93.2

hydroquinone one step 24 3 93.1

ortho to phenol one and two step 79 813 92.8

nitrogen ortho to hydrogen two step 12 483 91.4

nitrogen para to oxygen one step 41 40 90.5

oxygen para to oxygen one step 33 24 88.1

oxygen ortho to oxygen one step 51 145 87.5

nitrogen ortho to nitrogen one step 1 23 87.0

nitrogen para to hydrogen two step 34 140 84.1

halogen para to carbon or nitrogen or oxygen two step 4 105 83.6

catechol one step 43 32 69.3

not matched 417 74398 97.7
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