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Abstract

Pre-mRNA splicing factors recognize consensus signals within preliminary transcripts, and as 

cogs of the spliceosome machine, orchestrate the excision and rejoining of pre-mRNA regions for 

gene expression. Large-scale sequencing has demonstrated that mutations in key genes encoding 

pre-mRNA splicing factors are common among myeloid neoplasms and also occur in a variety of 

other cancers. This revelation offers new therapeutic opportunities to target pre-mRNA splicing 

vulnerabilities in hematologic and other malignancies. The mutated residues typically alter 3′ 
splice site choice for a subset of transcripts. In this review, we highlight mechanistic insights from 

recent 3D structures that reveal the affected residues poised for pre-mRNA recognition.
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Defects of pre-mRNA splicing and splicing factors in cancers

Aberrant pre-mRNA splicing is known to affect each of the widely accepted hallmarks of 

cancer [1]. Indeed, spliceoform changes, cryptic splice sites, and intron retention (e.g. [2,3]), 

could be designated an emerging hallmark. The splice sites are chosen through integrated 

cis- signals encoded in the pre-mRNA sequences and trans-acting protein and RNA factors 

(reviewed in [4]). Mutations of pre-mRNA splice sites have long been associated with at 

least 15% of inherited human diseases [5] and also occur as somatic mutations in cancer [6]. 

Altered expression of pre-mRNA splicing factors is common among cancers (reviewed in 

[7]). For example, SRSF1 is frequently overexpressed in solid tumors, and its overexpression 

increases cell proliferation [8]. On the flip side, copy number loss of the SF3B1 gene, such 

as observed in kidney, bladder, and breast cancers, renders a cancer cell line highly sensitive 

to drug-induced degradation of this splicing protein [9]. Moreover, overexpression of the 

MYC oncogene overloads the splicing machinery, making the MYC-driven cancer cells 

more vulnerable to pharmacological inhibition of the spliceosome [10,11]. Indeed, the pre-
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mRNA splicing changes of cancers offers many new therapeutic opportunities, ranging from 

chemical splicing inhibitors to anti-sense oligonucleotides [12].

Large-scale sequencing established recurrent somatic mutations of four splicing factor genes 

(SRSF2, SF3B1, U2AF1, and ZRSR2) in the genomic landscape of myeloid neoplasms [13–

16]. Missense mutations of SRSF2, SF3B1, U2AF1 recur at specific hotspots, whereas 

mutations of ZRSR2, which plays an auxiliary role for the minor class of spliceosomes, are 

broadly distributed throughout the protein and often null. The splicing factor mutations are 

heterozygous and typically mutually exclusive. The splicing factor genes appear to be 

mutated early in the evolution of MDS [15] and SF3B1 mutations confer a favorable 

prognosis for MDS compared to mutations of SRSF2 or U2AF1 [17]. Although splicing 

factor mutations are generally less common among solid tumors, SF3B1 mutations recur 

among a variety of malignancies, including uveal melanomas [18–20], luminal breast tumors 

[6,21–25], pancreatic cancers [26,27], bladder urothelial carcinomas [28], mucosal 

melanomas [29], and hepatocellular carcinomas [30] as well as at high frequencies in 

refractory anemias with ring sideroblasts (RARS) [13,17,31] and chronic lymphocytic 

leukemias (CLL) [32,33]. The U2AF1 gene is mutated in pancreatic cancers [27], and lung 

adenocarcinomas [34,35], as well as myeloid neoplasms including MDS, hairy cell 

leukemia, CMML and AML [13,36,37]. Acquired mutations of other splicing factors are 

relatively rare among most non-hematologic malignancies.

The details of the splicing factor mutations and the field’s efforts to relate these mutations to 

downstream hematologic consequences have been the subject of several distinguished 

reviews (e.g. [38–40]). Here we focus on molecular insights derived from the emerging 

structures of MDS-relevant splicing factors and their hotspot mutations.

Molecular-level functions of cancer-relevant pre-mRNA splicing factors

SRSF2, SF3B1, U2AF1, and ZRSR2 recognize pre-mRNA splice site signals at an early 

stage of the splicing process (Figure 1). The pre-mRNA splicing “machine” comprising U1, 

U2, U4/U5/U6 small nuclear ribonucleoproteins (snRNPs) and numerous associated factors 

[4] assembles through a series of discrete, ATP-dependent conformational rearrangements. 

SRSF2 (also called SC35) is a member of an SR protein family that recognizes “exonic 

splicing enhancers” (ESE) with an RNA recognition motif (RRM), and directs U1 and U2 

snRNPs to the splice site via RS domain-mediated protein-protein interactions and RNA-

RNA annealing (reviewed in [41]). U2AF1 (also called U2AF35) recognizes a consensus 

“AG” dinucleotide at the 3′ splice site as a heterodimer with a second, essential pre-mRNA 

splicing factor U2AF2 (also called U2AF65) that is less frequently mutated in cancers. The 

U2AF1–U2AF2 heterodimer first forms a ternary complex with Splicing Factor-1 (SF1) and 

altogether recognizes the respective AG, polypyrimidine (Py), and AG-dinucleotide 

consensus elements preceding the 3′ splice site. Next, RNP unwindases such as Prp5 (also 

called DDX46) catalyze the ATP-dependent exchange of SF1 for the SF3b1 subunit (also 

called SF3b155), which in turn stabilizes U2 snRNP association with the pre-mRNA. The 

ZRSR2 protein (also called URP) shares a similar domain structure as U2AF1, but promotes 

splicing by a minor, U12-type of spliceosome [42,43] that recognizes a distinct subset of 

splice sites.
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The downstream, transcriptome-wide changes in splicing have been extensively 

characterized for each of the major MDS-associated splicing factor mutations, and differ 

from the splicing changes induced by loss-of-function knockdowns. RNAseq analyses of 

cell lines, mouse models and patient samples show that the hotspot mutations of SRSF2 
[44,45] or U2AF1 [46–50] alter splicing of a small fraction of transcripts in a sequence-

specific manner, most often promoting exon skipping/inclusion or alternative 3′ splice sites. 

The hotspot mutations of SF3B1 likewise alter the 3′ splice sites of a subset of transcripts 

analyzed by RNAseq of pancreatic cancer cell lines, chronic lymphocytic leukemias (CLL), 

breast cancers, or uveal melanomas [51–53]. However, unlike the altered splice site 

preferences of SRSF2 and U2AF1, the SF3B1 mutations promote cryptic 3′ splice sites 

located 10–30 bp upstream of the normal sites. Recent 3D structures and biochemical 

analyses of SRSF1, SF3B1, and U2AF1 and their cancer-relevant mutations suggest 

potential mechanisms for the emerging theme of altered 3′ splice site recognition, as we 

discuss below.

Structural interfaces with cancer-relevant “hotspots” of pre-mRNA splicing 

factors

Ground-breaking spliceosome structures have been determined through recent technical 

advances of cryo-electron microscopy (cryo-EM), including B- [54,55], BACT- [56,57], C- 

[58,59], C*- [60–63] and IL-complexes [64–66]. The B- and BACT-structures reveal the 

SF3B1 subunit bound to the U2 snRNA– pre-mRNA duplex. Although the dynamic, early-

stage splicing factors SRSF2 and U2AF1 are lacking from current cryo-EM structures, the 

mutated U2AF1 domains now can be modeled based on structural homology with core 

spliceosome subunits [67]. Moreover, traditional NMR and X-ray methods have determined 

the piecewise structures of SRSF2 and U2AF1 subunits [68–70]. Below we summarize the 

current structural understanding of the field for each of the major cancer-relevant splicing 

factors.

SRSF2

SRSF2 was the first frequently mutated splicing factor among myeloid malignancies for 

which a high resolution structure became available [68]. The SRSF2 mutations are 

particularly prevalent in CMML [71,72] and high-risk MDS patient samples [73–75] (~40% 

or 15%, respectively). All documented CMML or MDS-associated mutations change a P95 

residue located between an RNA recognition motif (RRM) and arginine serine (RS)-rich 

domain (Figure 2A), most commonly to histidine or leucine. RNAseq analyses of knock-in 

mice, cell lines, and patient samples expressing the P95 mutation preferentially enrich exons 

bearing a CCNG motif and decreased inclusion of those with a GGNG motif [44,45]. 

Electrophoretic mobility shift assays and quantitative isothermal titration calorimetry of 

recombinant SRSF2 proteins demonstrated that the P95 mutations increased its binding to 

(C/G)CNG- containing RNAs and decreased binding to (C/G)GNG-containing RNAs 

[44,45]. In contrast, WT SRSF2 binds either CCNG or GGNG motifs equally well [68].

The high resolution solution structure of SRSF2 bound to CCNG compared to GGNG 

RNAs revealed that the second guanosine base adapts to the WT protein by flipping to the 
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syn- rather than anti-conformer [68]. The WT P95 residue makes extensive base stacking 

contacts with the second nucleotide of the affected RNA site (Figure 2B). Following P95 

mutation, large chemical shift perturbations indicate that the entire P95-containing region of 

mutant SRSF2 relocates [44]. In contrast with the reproducible changes in RNA binding, no 

differences in protein-protein interactions with U2AF1, U1-70K, or SF3B1 were detected in 

co-immunoprecipitations of WT vs. mutant SRSF2 [45]. Nevertheless, for a few model 

substrates and ~15% of the transcriptome, P95-dependent splicing outcomes did not strictly 

correlate with detailed variation of CCNG/GGNG motifs. For these cases, combinatorial 

effects may converge to determine the final consequences of the SRSF2 P95 mutation for 

splicing.

Structures of SF3B1

The most common amino acid substitutions of SF3B1 include K700E, which recurs among 

hematologic malignancies (up to 80% of RARS), pancreatic, and breast cancers, or R625 

substitutions among uveal melanomas, among others (Figure 3A). As mentioned above, in 

cell lines expressing the common SF3B1 mutations (K700, R625, or K666), the cryptic 

upstream 3′ splice sites are associated with new BPS′ that are up to ten nucleotides closer 

than the normal BPS-to-3′ splice site separation [52,53]. Based on the crystal structure of 

human SF3B1 in the SF3b protein particle [76], coupled with recent cryoEM structures of 

Saccharomyces cerevisiae SF3B1 in the context of the B- and BACT-spliceosomes [54–57], 

the affected SF3B1 residues map to the fourth to seventh repeats of an α-helical “HEAT” 

repeat (HR) domain (fifth to eighth repeats of the primary protein sequence) (Figure 3A).

In both B- and BACT- structures, the SF3B1 subunit adopts a nearly-circular C-shape, in 

which the 5′ terminus of the pre-mRNA binds near the C-terminal HR of the protein, where 

it engages in the U2 snRNA–BPS duplex (Figure 3B). Due to the extreme curvature of the 

SF3B1 structure, the U2 snRNA–BPS duplex is sandwiched on one side by the N-terminal 

HR1 of SF3B1. On the opposite side, the branch point nucleotide inserts near K1071, 

R1074, and V1078 residues in SF3B1 HR15, for which mutations confers resistance to 

pladienolide and related splicing inhibitors [77,78]. A globular PHF5a subunit provides the 

jelly filling of the SF3B1 donut. Specifically, the PHF5A protein contacts the branchpoint-

containing portion of the U2 snRNA–BPS duplex and downstream pre-mRNA nucleotides, a 

binding site that explains the resistance of a PHF5A Y36C mutation to herboxidiene and 

pladienolide [78]. Together with prior findings that pladienolide and the related compound 

spliceostatin interfere with U2 snRNA – BPS base pairing [79,80], the locations of the 

K1071, R1074, V1078, and Y36 resistance mutations suggest that the pladienolide family of 

splicing inhibitors competes for branch site binding to a pocket comprising these residues in 

the SF3B1 – PHF5A complex.

The BACT-spliceosome coordinates include approximately 25 nucleotides of pre-mRNA 

traversing the interior of the C-shaped SF3B1 subunit [56], whereas the pre-mRNA model of 

the lower resolution B-spliceosome structure terminates at PH5A [54]. The SF3B1 

mutational hotspots cluster surrounding the ordered 3′ nucleotides of the BACT-pre-mRNA 

(Figure 3B). It is conceivable that the cancer-relevant mutations shorten the BPS′-to-3′ 
splice site distance by disrupting SF3B1 binding to this region of the pre-mRNA. Although 
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the K700E mutation of SF3B1 remains capable of binding a consensus splice site RNA at 

saturating protein concentrations [76], quantitative titrations and RNAs with distinct BPS-

to-3′ splice site separations have yet to be tested for differences in binding to the mutant vs. 
WT SF3B1 protein.

No direct protein contacts with the affected HR regions are apparent among available 

SF3B1-containing structures. Nevertheless, cancer-relevant mutations of the S. cerevisiae 
SF3B1 homologue (HSH155) alter its physical and genetic interactions with the RNP 

unwindase Prp5 (yeast homologue of human DDX46) [81,82], which is required for stable 

U2 snRNP association with the pre-mRNA [83]. Other early-stage splicing factors also 

associate with SF3B1 and regulate spliceosome assembly (e.g. RBM15, U2AF2, Tat-SF1, 

CAPERα, SPF45) ([84,85]), and the K700E mutation alters co-immunoprecipitation of 

SF3B1 with RBM15 [86]. The interplay of SF3B1 hotspots and its protein partners remains 

an important area for future biochemical, genetic and structural research.

Structures of U2AF1

Mutations of an S34 residue to phenylalanine, or in a minority of cases, the related residue 

tyrosine, account for the vast majority of U2AF1 mutations in MDS (approximately 80% of 

mutations) [13,36] and all documented U2AF1 mutations in other cancers [27,34,35,37] 

(Figure 4A). Less frequently, a Q157 residue is mutated to arginine or proline in MDS 

[13,36]. The S34 vs. Q157 mutations of U2AF1 show distinct sequence trends among 

altered 3′ splice sites: the S34 mutants are more likely to skip splice junctions preceded by a 

-3U and include those preceded by -3C/A [46–50], whereas Q157 mutants are more likely to 

skip splice junctions followed by a +1A and include those followed by +1G [50] (numbered 

relative to the intron-exon junction). Quantitative assays of recombinant S34F vs. WT 

U2AF1 proteins (as a ternary complexes with U2AF2 and SF1) demonstrate that their RNA 

binding preferences match the sequence trends for splicing [48,49]. Similar RNA binding 

preferences are obtained from isothermal titration calorimetry (ITC) of 

Schizosaccharomyces pombe (Sp) U2AF1 in complex with the minimal (“MIN”) interacting 

region of SpU2AF2 [87], an apparent lack of binding by the mutant proteins is likely due to 

the limits of the ITC experiment [88].

A key structure of the SpU2AF1–U2AF2MIN heterodimer revealed the 3D locations of the 

S34 and Q157 hotspots on two CCCH-type zinc knuckles (ZnK1 and ZnK2) (Figure 4b). 

Although a tantalizing snapshot, the SpU2AF1–U2AF2MIN structure lacks bound RNA. 

Prior models of U2AF1– RNA complexes [50,70] have been unreliable due to discrepancies 

between the only available ZnK– RNA structures at the time: TIS11d and MBNL1 [89,90] 

(Figure 4c–d). Namely, the bound RNA strands run in opposite 5′-to-3′ directions relative 

to the ZnK folds of the TIS11d vs. MBNL1 structures. The residues corresponding to 

U2AF1 S34 interact with RNA in either orientation, but the Q157 paralogue only contacts 

RNA in the MBNL1 structure. The recent spliceosome structures bring to light new CCCH-

type ZnK–RNA structures, including CWC24 bound to the 5′ exon of the BACT complex 

[56] and CWC2 bound to the U6 snRNA of the BACT, C, C*, and ILS complexes [56–

59,64,65,91,92] (Figure 4e–f). The CWC24 and CWC2 ZnK bind RNA in similar 5′-to-3′ 
orientations as MBNL1, although the exact RNA path differs slightly for CWC2. By 

Kielkopf Page 5

Curr Opin Genet Dev. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



comparison, the well-characterized RRM class of RNA binding domain also binds RNAs in 

a typical 5′-to-3′ orientation relative to the core protein folds (reviewed in [93]). 

Considering these emerging themes of ZnK–RNA recognition, as well as the high sequence 

identity between U2AF1 and CWC24 or MBNL1 ZnK (45% identity between human 

U2AF1 ZnK1 and yeast CWC24 ZnK; 40% identity between human U2AF1 ZnK2 and the 

N-terminal ZnK1 of human MBNL1), it is likely that the S34 and Q157 hotpots of U2AF1 

contact the bound pre-mRNA site. Moreover, the spacing of the S34 and Q157 residues in 

the intact SpU2AF1 structure are consistent with respective contacts at the −3 and +1 

nucleotides surrounding the 3′ splice site junction [67], which would explain the sequence 

trends among affected splice sites [46–50].

Conclusions and Outlook

Altogether, recent structural and biochemical results establish pre-mRNA interactions as a 

common theme shared among MDS-relevant hotspots of the SRSF2, SF3B1, and U2AF1 
splicing factors. Less commonly, cancer-associated mutations are documented in other 

splicing factor genes, including ZRSR2, the U2AF1 paralogue of the minor spliceosome 

discussed above. The gene encoding PRPF8, a central subunit of the spliceosome, often is 

mutated in inherited autosomal dominant retinitis pigmentosa and has acquired mutations in 

approximately 3% of patients with myeloid neoplasms [94]. However, as for ZRSR2, the 

PRPF8 mutations are scattered throughout the protein and are in some cases null, rather than 

missense mutations at discrete hotspots.

For both cases in which the RNA binding affinities of the mutant vs. WT proteins (SRSF2 

and U2AF1) have been quantified, the effects of the mutations have been subtle but specific 

(2–4-fold increase or decrease depending on the RNA sequence). This raises the question of 

whether the RNA binding differences are sufficient to explain the changes in splicing, or 

more globally, to drive the progression to disease. Indeed, the enrichments of the splice site 

logos correlate with the magnitudes of the mutation-dependent RNA binding changes. 

Nevertheless, only a few misspliced transcripts have been flagged as potential contributors to 

the development of myeloid neoplasms (e.g. EZH2 for SRSF2 [44], iron regulators [95,96]/

erythropoiesis transcription factors for SF3B1 [86]). Already for U2AF1, the S34F mutation 

has been shown to alter polyadenylation with similar frequencies as pre-mRNA splicing, and 

the consequent decreases in an ATG7 transcript pre-disposes cells to transformation [97]. 

The SRSF2 and SF3B1 proteins also wear multiple hats for gene expression: SRSF2 is a 

component of the 7SK RNP and stimulates transcription elongation [98]; SF3B1 associates 

with chromatin [83] and also with polycomb group protein repressors of Hox genes [99]. 

Whether the hotspot mutations of SRSF2 and SF3B1 trigger epigenetic changes that 

contribute to disease pathogenesis remains an outstanding question.

Altogether, defective pre-mRNA splicing has emerged as a recurring vulnerability of 

myeloid neoplasms and cancers. The field’s increasing knowledge will guide ongoing efforts 

to develop new chemotherapies that exploit recurrent, cancer-associated defects in pre-

mRNA splicing.
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Figure 1. 
Diagram of the major pre-mRNA splicing pathway. Subunits with recurrent acquired 

mutations in cancers are colored cyan. BPS, branchpoint sequence; ESE, exonic splicing 

enhancer; ILC, intron-lariat complex.
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Figure 2. 
SRSF2 (cyan) has recurrent acquired mutations in CMML and MDS. The hotspot P95 

residue (yellow) is here shown mapped on the protein (a) domains and (b) structure (PDB 

ID 2LEB), which includes residues 1–101 and is bound to RNA sequence 5′-UCCAGU-3′ 
(magenta).

Kielkopf Page 14

Curr Opin Genet Dev. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
SF3B1 (cyan) has recurrent acquired mutations (yellow) in myeloid neoplasms and cancers, 

here mapped on the (a) domains and (b) structure of the Baker’s yeast homologue in the 

BACT complex (PDB ID 5GM6). Residues matching human SF3B1 were identified by 

superposition with the SF3B particle (PDB ID 5IFE). Mutational hotspots (yellow), residues 

for which mutations confer resistance to splicing modulators (green), and branchpoint (BP) 

are labeled. The bound pre-mRNA is magenta, the U2 snRNA strand is black, and the 

surface of the PHF5A subunit is colored light gray.
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Figure 4. 
U2AF1 (cyan) has recurrent acquired mutations (yellow) in MDS and cancers, here mapped 

on the (a) domains of the human protein and (b) structure of the fission yeast homologue 

(PDB ID 4YH8). Four structures contain zinc knuckles (ZnK) bound to RNA: (c) MBNL1 

(PDB ID 3D2S), (d) TIS11d (PDB ID 1RGO), (e) CWC24 (PDB ID 5GM6), (f) CWC2 

(PDB ID 5GMK). The ZnK orientations are identical among panels (c)–(f). For MBNL1 and 

TIS11d, both of the two ZnK in each structure are shown following superposition of 

matching Cα-atoms. The residues corresponding to Q157 (left) and S34 (right) are yellow 
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spheres. Gray spheres represent zinc ions. The 5′ termini of the bound RNAs (magenta) are 

labeled to indicate the different orientation of TIS11d-bound RNA.
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