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Abstract

Structural white matter connections are thought to facilitate integration of neural information 

across functionally segregated systems. Recent studies have demonstrated that changes in the 

balance between segregation and integration in brain networks can be tracked by time-resolved 

functional connectivity derived from resting-state functional magnetic resonance imaging (rs-

fMRI) data and that fluctuations between segregated and integrated network states are related to 

human behavior. However, how these network states relate to structural connectivity is largely 

unknown. To obtain a better understanding of structural substrates for these network states, we 

investigated how the relationship between structural connectivity, derived from diffusion 

tractography, and functional connectivity, as measured by rs-fMRI, changes with fluctuations 

between segregated and integrated states in the human brain. We found that the similarity of edge 

weights between structural and functional connectivity was greater in the integrated state, 

especially at edges connecting the default mode and the dorsal attention networks. We also 

demonstrated that the similarity of network partitions, evaluated between structural and functional 

connectivity, increased and the density of direct structural connections within modules in 

functional networks was elevated during the integrated state. These results suggest that, when 

functional connectivity exhibited an integrated network topology, structural connectivity and 

functional connectivity were more closely linked to each other and direct structural connections 

mediated a larger proportion of neural communication within functional modules. Our findings 
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point out the possibility of significant contributions of structural connections to integrative neural 

processes underlying human behavior.
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Introduction

The increasing availability of network data on the structure and function of neural systems 

motivates the growing interest in brain networks that consist of neurons, neuronal 

populations or brain regions as nodes, and structural or functional connections between them 

as edges (Sporns 2013b; Bassett and Sporns 2017). Structural connectivity refers to a pattern 

of direct anatomical links between neural elements (Bullmore and Sporns 2009; Sporns 

2011) and underlies the emergence of coherent neural activity, which gives rise to patterns of 

statistical dependence among remote neural elements, termed functional connectivity 

(Friston 1994; Fox et al. 2005). Structural networks promote segregation and integration of 

neural information through their network communities and hubs (Sporns 2013a), where 

segregation is indicated by strong and weak functional connectivity within and between 

network communities, respectively, and integration is indicated by globally strong functional 

connectivity mediated through network hubs. Maintaining the balance between segregation 

and integration is thought to be crucial for the operation of distributed networks 

underpinning cognitive function (Tononi et al. 1994; Fox and Friston 2012). There is an 

emerging focus on changes in the balance between segregation and integration over time, 

which manifest in continuously changing global patterns of brain functional connectivity 

(Sporns 2013a; Deco et al. 2015).

Recently, it has been reported that the balance between segregated and integrated network 

architecture of functional connectivity, as measured by resting-state functional magnetic 

resonance imaging (rs-fMRI), fluctuates on a time scale of tens of seconds (Shine et al. 

2016a). Shine and colleagues defined states of network segregation and integration in the 

human brain based on fluctuations in the patterns of within-module degree and participation 

coefficient (Guimerà and Nunes Amaral 2005), computed from short-timescale time-
resolved functional connectivity (Chang and Glover 2010; Hutchison et al. 2013; Zalesky et 

al. 2014). Fluctuations between these segregated and integrated network states have been 

associated with cognitive function and the activity of neuromodulatory systems; the 

participation coefficient averaged over nodes (a network attribute for integration) was 

correlated with measures for effective cognitive performance as well as with pupil dilation as 

a surrogate measure for arousal (Shine et al. 2016a). In addition, greater network integration 

has been shown to be related to heightened attention and less fatigue using longitudinal rs-

fMRI datasets (Shine et al. 2016b). Temporal changes in global connectivity patterns, which 

are similar to fluctuations between the segregated and integrated states, were also associated 

with spontaneous eyelid closures (Wang et al. 2016) and decoding accuracy of visual stimuli 

(Cocchi et al. 2017). These previous findings indicate that temporal changes in the balance 

Fukushima et al. Page 2

Brain Struct Funct. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between segregation and integration, as tracked by time-resolved functional connectivity, are 

linked to human cognition and behavior.

While segregated and integrated network states of functional connectivity have been shown 

to be associated with several functional aspects of the brain as mentioned above, it remains 

largely unexplored how these two network states are related to structural connectivity. There 

are a number of studies demonstrating that the strength of functional connectivity is partially 

predicted by the strength of structural connectivity (Hagmann et al. 2008; Skudlarski et al. 

2008; Honey et al. 2009; Shen et al. 2012; for a review, see Damoiseaux and Greicius 2009). 

Importantly, the goodness of this prediction, or the similarity between structural and 

functional connectivity, has been shown to change in different conditions. The similarity of 

connectivity has been reported to change depending on sleep stages in humans (Tagliazucchi 

et al. 2016; Haimovici et al. 2017) as well as states of consciousness (levels of sedation) in 

primates (Barttfeld et al. 2015) and rodents (Ma et al. 2017). Moreover, the similarity 

between human structural and functional connectivity has also been shown to continuously 

change during rest (Liégeois et al. 2016). These previous findings naturally raise the 

question of how the relationship between structural and functional connectivity changes with 

fluctuations between segregated and integrated states of functional connectivity.

In this study we investigated how structure-function relationships in brain connectivity 

change with fluctuations between the segregated and integrated network states in the resting 

human brain. Drawing on structural connectivity derived from diffusion MRI tractography 

and functional connectivity as measured by rs-fMRI, we examined between-state differences 

in structure-function relationships, both in terms of network edge weights and network 

partitions into communities (modules). We first compared the similarity of structural and 

functional edge weights between the segregated and integrated states and demonstrated that 

functional connectivity is more closely related to structural connectivity during the 

integrated state. The edge weight similarity was evaluated over the whole cortex as well as at 

each pair of intrinsic connectivity networks (Yeo et al. 2011) to determine which functional 

network components exhibit greater between-state differences. We then compared the 

similarity of structural and functional network partitions between the segregated and 

integrated states to establish the consistency of between-state differences over the edge 

weight similarity and the partition similarity. An intuitive understanding of between-state 

differences in network partitions was obtained by further comparing the density of structural 

connections within modules in functional networks, which has not been examined in 

previous studies on structure-function relationships. This comparison suggests that a larger 

amount of neural communication within functional modules is supported by and mediated 

through direct structural connections in the integrated as compared to the segregated state.

Materials and methods

Dataset

The primary data source for this study was the Washington University-University of 

Minnesota consortium of the Human Connectome Project (HCP; http://

www.humanconnectome.org). Reproducibility of results was assessed using an independent 

set of data from the enhanced Nathan Kline Institute (NKI)-Rockland Sample (http://
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fcon_1000.projects.nitrc.org/indi/enhanced), which we used in a previous study (Betzel et al. 

2016). We describe details of the HCP dataset in the following, while the NKI dataset is 

described in the Supplementary methods.

Subject cohort—The HCP consortium recruited participants and they provided written 

informed consent (Van Essen et al. 2013). Since the detection of communities in time-

resolved functional network is computationally demanding, we focused on the data coming 

from the sample labeled 100 Unrelated Subjects in ConnectomeDB (https://

db.humanconnectome.org). This sample set has been used in a previous study investigating 

segregated and integrated states of time-resolved functional connectivity (Shine et al. 

2016a). We eliminated 15 participants from this sample due to large head movements during 

rs-fMRI scans. These participants were excluded because their motion estimates in at least 

one of the rs-fMRI runs met either 1) maximum translation > 3 mm, 2) maximum rotation > 

3° or 3) mean framewise displacement (FD) > 0.2 mm (Xu et al. 2015), where the FD was 

derived from the l2 norm of the six translation and rotation parameter differences in the 

motion estimates. We further discarded one participant aged ≥ 36 years and obtained a 

quality-controlled sample of healthy young adults aged ≥ 22 years and < 36 years, consisting 

of 84 subjects (40 males and 44 females).

Image acquisition—Multimodal MRI data were acquired using a 32-channel head coil on 

a modified 3T Siemens Skyra scanner. Scanning parameters of rs-fMRI data were: repetition 

time (TR) = 720 ms, echo time (TE) = 33.1 ms, flip angle = 52°, field of view (FOV) = 208 

× 180 mm2, 72 slices and voxel size = 2 mm isotropic. The resting data were collected in 

four runs of around 14 min (1,200 time samples) each with an eyes open condition. Two 

runs were included in a session on day 1 and the other two runs were included in a session 

on day 2, where the data in each session were recorded with the left-to-right (LR) phase 

encoding direction in one run and the right-to-left (RL) direction in the other run. In this 

study, each of the four runs (1LR, 1RL, 2LR and 2RL) was analyzed independently. 

Diffusion-weighted images (DWI) were acquired with 270 gradient directions, three shells 

(b-value = 1,000, 2,000, 3,000 s/mm2), two repeats, and in a total of 36 b0 scans (scanning 

parameters: TR = 5,520 ms, TE = 89.5 ms, flip angle = 78°, FOV = 210 × 180 mm2, 111 

slices and voxel size = 1.25 mm isotropic). A T1-weighted structural image was acquired 

with the following parameters: TR = 2,400 ms, TE = 2.14 ms, flip angle = 8°, FOV = 224 × 

224 mm2, 320 slices and voxel size = 0.7 mm isotropic.

Preprocessing

From the ConnectomeDB, we downloaded images preprocessed with the HCP minimal 

preprocessing pipelines (Glasser et al. 2013) as in a previous study (Shine et al. 2016a). The 

preprocessing pipelines for rs-fMRI data included gradient distortion correction, motion 

correction, bias field removal, spatial distortion correction, transformation to Montreal 

Neurological Institute (MNI) space and intensity normalization; and those for DWI data 

included intensity normalization, susceptibility distortion correction, eddy current distortion 

and motion correction, gradient nonlinearly correction, and transformation to MNI space.
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The minimally preprocessed rs-fMRI data were further processed by performing 1) 

exclusion of volumes during the first 10 s, 2) outlier volume removal and interpolation (the 

percentage of interpolated volumes was 3.6 ± 0.1% in runs 1LR, 1RL and 2LR, and 3.7 

± 0.2% in run 2RL [mean ± SD]), 3) nuisance regression using the Friston-24 motion time 

series (Friston et al. 1996) and global, white matter and cerebrospinal fluid (CSF) mean 

signals 4) band-pass filtering and 5) linear and quadratic detrending. The outlier removal in 

step 2) is essentially similar to the motion scrubbing (Power et al. 2012) and censoring 

(Power et al. 2014), but instead of eliminating affected time points, we replaced outlier 

volumes with interpolated ones to preserve the number of time points in a sliding window 

for estimation of time-resolved functional connectivity. We performed the outlier detection 

and interpolation using an AFNI function 3dDespike (Cox 2012) as in Allen et al. (2014). 

The cutoff frequencies of the band-pass filtering in step 4) were 1/(66 TRs) = 0.021 Hz (low) 

and 0.1 Hz (high), where the low-cut frequency was specified as the reciprocal of the width 

of the sliding window to exclude spurious connectivity fluctuations (Leonardi and Van De 

Ville 2015; Zalesky and Breakspear 2015).

From the minimally preprocessed DWI data, white matter fibers were reconstructed using 

generalized q-sampling imaging (Yeh et al. 2010), allowing for the reconstruction of 

complex fiber structures, and deterministic streamline tractography. Tractography 

procedures are detailed in de Reus and van den Heuvel (2014) and van den Heuvel et al. 

(2015, 2016).

Parcellation

Structural connectivity and time-resolved functional connectivity were assessed within the 

cerebral cortex in a region-wise manner. Nodes of structural and functional networks in the 

HCP dataset were specified as 114 distinct cortical regions produced by a subdivision of the 

Desikan-Killiany atlas (Cammoun et al. 2012) (see Fig. S1). This cortical parcellation was 

derived from the atlas files myatlas_60_lh.gcs and myatlas_60_rh.gcs in Connectome 

Mapper (https://github.com/LTS5/cmp). By evaluating the area of overlap, we associated 

every parcel with one of the 7 intrinsic connectivity networks defined based on functional 

connectivity profiles of 1,000 subjects (Yeo et al. 2011); namely, the control network (CON), 

the default mode network (DMN), the dorsal attention network (DAN), the limbic system 

(LIM), the saliency/ventral attention network (VAN), the somatomotor network (SMN) and 

the visual network (VIS).

Structural connectivity

Structural connectivity was quantified based on the number of streamlines between cortical 

regions. Since the size of regions has an effect on the number of streamlines (Hagmann et al. 

2008), we used the streamline count between regions divided by the geometric mean of the 

surface area of regions, as a measure of edge weight in structural networks.

In addition to individual-level structural connectivity, we also employed group-level 

structural connectivity robust to outliers (see Sensitivity analysis). The group-level 

structural connectivity matrix was constructed by averaging non-zero edge weights across 

subjects. When averaging non-zero edge weights, we set to zero all those edges for which no 
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streamlines were found in more than half of the subjects. The choice of this group threshold 

is based on a guideline to derive group-level connectivity from deterministic tractography in 

de Reus and van den Heuvel (2013).

Time-resolved functional connectivity

Time-resolved functional connectivity was estimated using a tapered sliding window 

approach (Hutchison et al. 2013; Preti et al. 2016), where the Fisher z-transformed Pearson 

correlation coefficient of regional rs-fMRI time courses was used as a metric of functional 

connectivity (for presentation of connectivity matrices in figures, the raw correlation 

coefficient was used instead). We determined the shape of tapered sliding window and the 

between-window duration in a similar manner as in Allen et al. (2014). Specifically, we 

made tapered sliding windows by convolving a rectangle (width, 66 TRs = 47.52 s) with a 

Gaussian kernel (kernel size, σ = 9 TRs = 6.48 s) and moved them in steps of 3 TRs = 2.16 

s, resulting in the total number of windows = 369.

Community detection

Communities (modules) in structural networks and in time-resolved functional networks 

were detected by maximization of a modularity quality function (Newman and Girvan 2004) 

using the Louvain algorithm (Blondel et al. 2008). Since functional networks may contain 

negative edge weights, we maximized a modularity quality function generalized for 

networks with positive and negative edge weights (Rubinov and Sporns 2011):

(1)

where  is equal to the edge weight wi,j between nodes i and j if wi,j is positive and  is 

equal to zero otherwise. Likewise,  is equal to −wi,j if wi,j is negative and  is equal to 

zero otherwise. The term , where  and , refers to the 

expected density of positive or negative weights given a random null model preserving the 

nodal strengths. The term δMi,Mj is equal to one when nodes i and j are within the same 

module and is equal to zero otherwise.

Both for structural networks and time-resolved functional networks, community detection 

was performed by maximizing Q using the function community_louvain.m in the Brain 

Connectivity Toolbox (http://www.brain-connectivity-toolbox.net) with the default 

resolution parameter, set to one. We ran this function 100 times per each adjacency matrix of 

structural and time-resolved functional networks and chose the community assignment with 

the maximum Q over the trials for later analysis of modules and network partitions.

Estimation of segregated and integrated states

In keeping with Shine et al. (2016a), we estimated segregated and integrated network states 

of functional connectivity based on the patterns of within-module degree z-score and 
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participation coefficient (Guimerà and Nunes Amaral 2005), computed from time-resolved 

functional networks and their communities detected by modularity maximization.

For each node in a time-resolved network at each time window, the within-module degree z-

score was computed using the BCT function module_degree_zscore.m. The within-module 

degree z-score in this study quantifies the extent to which a node is functionally coupled 

with the other nodes in its (functional) module, relative to the within-module strength of the 

other nodes in the module, and is given by

(2)

where κi,t is the strength of node i to the other nodes in its module si at time t, and  and 

 are the mean and SD of the strengths over all nodes in module si at time t. High 

(respectively, low) values of the within-module degree z-score indicate strong (respectively, 

weak) intramodular connectivity of a node.

The participation coefficient for each node within each time window was computed using 

the BCT function participation_coef_sign.m. The participation coefficient in this study 

expresses the level at which a node is diversely coupled with other nodes across all modules 

and is described as

(3)

where κis,t is the strength of the positive edge weights of node i to nodes in module s at time 

t, ki,t is the strength of the positive edge weights of node i to all the other nodes at time t, and 

NM is the number of modules. High values of the participation coefficient indicate that a 

node is coupled with other nodes in a large proportion of modules in a network, and low 

values of the participation coefficient indicate that a node is coupled only with other nodes 

in a single or a small number of modules. High mean participation coefficients over nodes 

can therefore be associated with the existence of highly integrative processes across the 

whole network.

It should be mentioned that a node with a high (low) value of the participation coefficient 

does not necessarily have a low (high) value of the within-module degree z-score. For 

example, if a node functionally coupled with many other nodes both within and between 

modules, such a node has high values of these two measures. The within-module degree z-

score and the participation coefficient capture complementary characteristics of the role of 

nodes in networks; the former measure can be used for determining whether a node is a hub 

or not and the latter measure for whether a node is a connector or not (Guimerà and Nunes 

Amaral 2005).
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Fluctuations between segregated and integrated network topology were tracked with a joint 

histogram of the within-module degree z-score zt and the participation coefficient Pt across 

nodes in each time window (Shine et al. 2016a) (see Fig. 1a). The states of network 

segregation and integration were estimated by classifying the joint histogram of each time 

window using the k-means clustering algorithm (k = 2) (Shine et al. 2016a). Each time 

window was assigned to one of two clusters (Fig. 1a) and the cluster with higher 

participation coefficients on average was regarded as the cluster of the integrated state. The 

k-means clustering was performed individually and repeated with 500 random initial 

conditions per subject (Shine et al. 2016a).

We chose two clusters for the k-means analysis because the work by Shine et al. (2016a) 

previously suggested that this choice was reflective of the broader patterns in the data 

compared across multiple values of k. To ensure that this was also the case in our data, we 

compared the clusters (joint histograms) obtained from k = 2 to those acquired with k = 3 

and 4.

Assessment of structure-function relationships

We investigated structure-function relationships during the segregated and integrated states 

using structural connectivity and the median of individual time-resolved functional 

connectivity over time windows of each state (i.e., the centroid of a cluster in, e.g., Allen et 

al. 2014 and Barttfeld et al. 2015). The relationship between structural and functional 

networks was examined both in terms of edge weights and partitions (community detection 

was also applied to the individual centroids), and was compared between the segregated and 

integrated states as follows.

Edge weights—Edge-level structure-function relationships were evaluated using the 

similarity of edge weights between structural and functional networks (see Fig. 1b top). The 

edge weight similarity was quantified by the Pearson correlation coefficient, computed 

between structural and functional edge weights at only pairs of nodes with non-zero 

structural edge weights. Between-state differences in the edge weight similarity were 

assessed over the whole cortex as well as at each pair of the 7 intrinsic connectivity networks 

in Yeo et al. (2011) to find out which network components exhibit a greater between-state 

difference in the edge weight similarity. The Pearson correlation coefficient between 

structural and functional edge weights was z-transformed prior to statistical analysis.

Partitions—Based on the communities detected by modularity maximization, structure-

function relationships at the level of network partitions were investigated in two ways. First, 

we evaluated partition-level structure-function relationships using the similarity of partitions 

between structural and functional networks (see Fig. 1b middle), to confirm the consistency 

of between-state differences over the edge weight similarity and the partition similarity. The 

similarity of partitions was quantified by the normalized mutual information using the BCT 

function partition_distance.m and was compared between the segregated and integrated 

states over all subjects. Between-state differences in the partition similarity were also 

assessed on a subset of subjects, whose numbers of detected functional modules in both 

states equaled the number of modules most frequently observed across the two states.
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Second, to gain insight into the structural underpinnings of between-state differences in 

network partitions, we further compared the density of direct structural connections within 

functional connectivity modules (see Fig. 1b bottom) between the segregated and integrated 

states. Through this analysis, we aimed to discover how neural communication within 

functional modules was differentially supported by direct structural connections in the two 

different network states. In addition to the direct structural connections, we also examined 

the density of indirect structural connections within functional modules. The density was 

separately computed for indirect connections with respective shortest path lengths L = 2 and 

3 (indirect connections with L ≥ 4 were not assessed because their proportion over the entire 

network was very small [0.042 in group-level structural connectivity]).

Sensitivity analysis

To confirm the robustness of between-state differences in the structure-function 

relationships, we also examined between-state differences in the relationship between 

structural and functional networks for both edge weights and partitions under the following 

alternative conditions:

• Use of group-level structural connectivity. Instead of individual-level structural 

connectivity, group-level structural connectivity was used for the assessment of 

structure-function relationships.

• Same number of time windows in the network states. The numbers of time 

windows in the segregated and integrated states were equalized in each 

individual when computing the centroid of a state from time-resolved functional 

connectivity. The numbers of time windows were matched by randomly 

removing time windows in the integrated state (the number of time windows was 

larger in the integrated state in all subjects). We examined the robustness of 

results using 100 sets of time window data with random removal.

When between-state differences in the structure-function relationships were examined for 

edge weights, we also assessed the relationships with the following other conditions of 

structural and functional edge weights:

• Resampled edge weights in structural networks. The structural edge weights 

were set to values resampled from a Gaussian distribution with a mean of 0.5 and 

an SD of 0.1 to correct its skewed distribution (Honey et al. 2009), maintaining 

the rank order of edge weights across the raw and resampled values.

• Removal of negative edge weights in functional networks. To exclude effects 

derived from negative functional connectivity, all of the negative functional edge 

weights were regarded as zero when the similarity score was computed.

Effects of equalizing the number of time windows across the states and removing negative 

functional connectivity were also examined when differences in centroid edge weights were 

explored between the segregated and integrated states.
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Results

The results presented in Figs. 2–5 in this section are from run 2LR of rs-fMRI data in the 

HCP dataset. Reproducibility of results across runs and datasets was examined using the 

other three runs of the HCP dataset as well as a single run of the NKI dataset in 

Supplementary results. We selected Run 2LR because a measure of network integration in 

this run was least affected by the head movement artifacts. The correlation coefficient across 

individuals between the mean participation coefficient and the FD, both of which were 

averaged over time, was 0.20 in run 1LR, 0.057 in run 1RL, −0.015 in run 2LR and 0.21 in 

run 2RL (all p > 0.05). This correlation was also found to be small in the single run of the 

NKI dataset (r = 0.13; p > 0.05). The relationship between the mean participation coefficient 

and the FD is investigated in more detail in Supplementary results.

Properties of segregated and integrated states

We first investigated basic characteristics of the segregated and integrated states of 

functional connectivity to confirm previous findings reported in Shine et al. (2016a). Figure 

2a shows the time series of the mean participation coefficient and a sequence of state 

transitions in a representative subject. As seen in Shine et al. (2016a), transitions between 

segregated and integrated states were well represented by fluctuations in the mean 

participation coefficient. Joint distributions of the within-module degree z-score and the 

participation coefficient shown in Fig. 2b exhibited patterns similar to those observed in 

Shine et al. (2016a), with the peaks of distributions in the segregated and integrated states 

located near 0 and 0.5, respectively, along the axis of the participation coefficient. 

Distributions of the within-module degree z-score overlapped across the states, while the 

peaks in the 2D space were separated along its axis (segregated, 1.25; integrated, −0.65).

Similar patterns in the joint histograms were also observed at higher values of k (Fig. S2). 

Patterns in the joint histogram of the segregated state (k = 2) were similar to those observed 

in a cluster with the lowest mean participation coefficient (k = 3 and 4); and patterns in the 

integrated state (k = 2) were similar to those of the other clusters (k = 3 and 4). This result 

indicates that the clustering into the segregated or the integrated state is maintained across 

larger numbers of clusters.

Figure 3a shows the centroid of each network state within individuals in representative 

subjects. Although there were some variations in spatial connectivity patterns across 

individuals, connectivity patterns associated with the segregated state can be characterized 

by a pronounced segregation of the task-negative DMN from the task-positive attention 

(DAN/VAN) and sensory (SMN/VIS) networks, while this modular organization was 

weakened in connectivity patterns in the integrated state. Consistent with Shine et al. 

(2016a), time windows associated with the segregated state had greater modularity Q 
compared to the integrated state (QSS = 0.55 ± 0.04 [mean ± SD]; QIS = 0.50 ± 0.04; 

Cohen’s d = 1.4). During the integrated state, edge weights within the DMN and within the 

task-positive networks (DAN, VAN, SMN and VIS) decreased on average (Fig. 3b; a 

pronounced decrease within/between the SMN and VIS was less noticeable in the NKI 

dataset than in the HCP dataset [see Supplementary results for details]) while edge weights 

between the DMN and the task-positive networks increased. Similar patterns of edge-weight 
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differences between the states were also found with the same number of time windows 

across the states (see Fig. S3 left for one representative random sample of time-window 

removal; the minimum correlation coefficient of the edge-weight differences among all 100 

random samples > 0.988). When negative functional connectivity weights were removed by 

setting them to zero, between-state differences in centroid edge weights were localized 

within either task-negative or task-positive systems (see Fig. S3 right), indicating that 

increased functional connectivity between these two systems during the integrated state was 

associated with decreased strength of negative correlation between their regional activities.

Between-state differences in structure-function relationships

Next, we examined differences in structure-function relationships between the segregated 

and integrated states. We evaluated the between-state differences both in terms of edge 

weights and partitions of structural and functional networks, using individual-level or group-

level structural connectivity (Fig. 3c) and the centroid of each state within individuals (Fig. 

3a).

Edge weights—We found that the similarity between structural and functional edge 

weights over the whole cortex was greater in the integrated state than in the segregated state 

(see Fig. 4a). Elevated edge weight similarity in the integrated state was also observed when 

the similarity was evaluated at the level of network components. The edge weight similarity 

was greater in the integrated state at a large proportion of network component pairs in which 

significant between-state differences were found (see Fig. 4b, left). In particular, greater 

similarity in the integrated state was consistently found in edges connected to the DMN as 

presented in Fig. 4b, showing a predominance of the DMN in shaping the between-state 

differences in the similarity of structural and functional edge weights. Figure 4c shows 

network component pairs in which between-state differences in the edge weight similarity 

were greater than those evaluated over the whole cortex. While between-state differences in 

several pairs of components were greater than the global between-state differences in the run 

that we focused on in this section (run 2LR of the HCP dataset), the DMN–DAN was the 

only pair of components for which greater differences were consistently observed across all 

runs and datasets (see Supplementary results).

We confirmed that these between-state differences in the edge weight similarity were highly 

robust against the use of alternative conditions for connectivity data setup (see Sensitivity 
analysis for descriptions of these conditions). Elevated similarity in the integrated state (Fig. 

4a), a predominance of the DMN in the pair-wise between-state differences (Fig. 4b) and 

greater between-state differences in the DMN–DAN than those evaluated over the whole 

cortex (Fig. 4c) were also observed when the structure-function relationships were assessed 

with group-level structural connectivity, the same number of time windows across the states 

(in all 100 realizations of random time window removal), the resampled structural 

connectivity and the removal of negative functional connectivity (see Fig. S4; results for the 

same number of time windows were shown for one representative random sample).

Partitions—Consistent with the edge weight similarity, the partition similarity between 

structural and functional networks was greater in the integrated state than in the segregated 
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state (Fig. 5a). Here the median and mode of the number of detected modules in structural 

networks were seven, and those in individual functional networks (centroids) were three in 

both of the states. Greater similarity in the integrated state was not merely a result of 

between-state differences in the number of functional modules in individuals, because this 

greater similarity was confirmed even when the partition similarity was assessed with a 

subset of subjects, exhibiting exactly three functional modules in both of the states (n = 39; t 
= 4.2; p = 1.6 × 10−4).

Between-state differences in network partitions were further examined by comparing the 

density of structural connections within functional modules between the segregated and 

integrated states. Our comparison of the density demonstrated that direct structural 

connections within functional modules were denser in the integrated state than in the 

segregated state (Fig. 5b top), suggesting that within-module functional couplings were 

more strongly shaped by the underlying structural connectivity during network integration. 

In contrast to the case with direct structural connections, indirect structural connections 

within functional modules were denser in the segregated state than in the integrated state 

(Fig. 5b middle and bottom; significant between-state differences were found for the shortest 

path length L = 3 across all runs and datasets, see Supplementary results).

The observed between-state differences in the partition similarity and the within-functional-

module density of structural connections are illustrated by a schematic shown in Fig. 5c. 

While the segregated state was associated with greater modularity of functional connectivity 

QSS as mentioned before, its functional modules (shown in blue in Fig. 5c) were less similar 

to structural modules and direct structural connections were less dense within its functional 

modules. On the other hand, in the integrated state, functional modularity QIS was weaker 

than QSS but its functional modules (shown in red in Fig. 5c) shifted toward structural 

modules and the density of direct structural connections was elevated within its functional 

modules. These findings suggest that, when functional connectivity exhibited a greater level 

of integrative network topology, activity of nodes within functional modules was less 

coherent while functional interactions among such nodes were more strongly supported by 

direct structural connections.

Greater similarity of network partitions in the integrated state was confirmed with group-

level structural connectivity and with the same number of time windows across the states (in 

all 100 realizations of random time window removal) (see Fig. S5a; results for the same 

number of time windows were shown for one representative random sample). Elevated 

within-functional-module density of direct and indirect structural connections in the 

integrated and segregated states, respectively, was also found with these alternative 

conditions for connectivity data setup (Fig. S5b).

Discussion

While recent studies have demonstrated that fluctuations between segregated and integrated 

network architecture of functional connectivity are related to human behavior, how such 

fluctuations are linked to the underlying structural connectivity has remained poorly 

understood. To reveal the changes in the relation to structural connectivity associated with 
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these state fluctuations, we investigated between-state differences in the relationship 

between structural connectivity and the segregated and integrated states of functional 

connectivity, both in terms of edge weights and partitions of connectivity networks. We 

showed that the similarity of structural and functional edge weights, assessed over the whole 

cortex, was greater in the integrated state. Analysis of similarity at the level of network 

components demonstrated that greater similarity in the integrated state was mainly observed 

on edges linking the DMN with other network components, especially the DAN. Moreover, 

we found that the similarity of partitions between structural and functional networks 

increased during the integrated state and so did the density of direct structural connections 

within modules in functional networks. The observed between-state differences in structure-

function relationships of network partitions suggest that neural communication within 

functional modules was more strongly supported by direct structural connections during the 

integrated state.

The between-state differences in structure-function relationships were robust against the use 

of multiple conditions for connectivity data setup and were also reproducible across multiple 

runs of rs-fMRI data and imaging datasets. Our findings were observed with either 

individual-level or group-level structural connectivity, and either with or without a correction 

of the skewed distribution of structural edge weights by a resampling method (Honey et al. 

2009). Increased similarity in the integrated state was observed even when negative 

functional edge weights were removed by setting them to zero, which suggests that the 

between-state differences are not mainly attributable to negative functional connectivity that 

could emerge as an artifact of global signal regression (Murphy et al. 2009; but see also Fox 

et al. 2009). Greater similarity in the integrated state was also observed when the centroid of 

a state was computed from the equalized numbers of time samples across segregated and 

integrated states, demonstrating that the between-state differences are not due to the 

dependency of the similarity of structural and functional connectivity on the timescale of 

functional connectivity (Honey et al. 2007; Shen et al. 2015). Results were reproducible 

across all runs of rs-fMRI data in the HCP dataset, as well as in another independent dataset 

(the NKI dataset) that we used in a previous study (Betzel et al. 2016).

Our finding of a closer link to structural connectivity during the integrated state supports 

recent findings on the association between integrated network topology of functional 

connectivity and integrative neural processes underlying human behavior and cognition 

(Shine et al. 2016a, b). Reconfiguration of functional connectivity in the integrated state, 

where its edge weights and partitions become closer to those in structural networks with 

decreasing modularity of functional connectivity and increasing density of direct structural 

connections within functional modules, can be thought to reflect integrative neural 

communication across the whole brain. During the segregated state, by contrast, the density 

of indirect structural connections increases within functional modules, suggesting that direct 

communication between nodes within functional modules is less evident in this state despite 

the higher modularity of functional connectivity. Instead, this may indicate coherent but 

parallel neural processing at the level of subsets of nodes in a functional module. Results of 

parallel processing may be globally broadcast during the integrated state by changing the 

pattern of functional coupling, which enables global communication between nodes through 

direct structural connections within loosen functional modules. The transition from parallel 
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processing to broadcasting is reminiscent of the ’connective core hypothesis’ (Shanahan 

2012), where it is hypothesized that interconnected hub regions that are topologically central 

to the whole network support a distinctive blend of parallel and serial processing that 

promotes the availability of the full repertoire of process combinations in the brain. This 

raises a question: how is the connective core, or the structural rich club (van den Heuvel and 

Sporns 2011, 2013), associated with the segregated and integrated states of functional 

connectivity? Future studies are needed to clarify the relationship of such topological 

features between structural connectivity and time-resolved functional connectivity.

A predominance of between-state differences in the similarity of structure and function at 

edges connecting the DMN with other network components, particularly the DAN, suggests 

characteristic changes in the pattern of functional interaction on structural connections that 

link task-negative and task-positive systems. It is known that the variance of time-resolved 

functional connectivity is greater at connections associated with heteromodal association 

regions (Allen et al. 2014; Gonzalez-Castillo et al. 2014), which partially include the DMN 

and the DAN. Regions in the DMN have also been shown to most significantly change their 

community co-assignments with other regions, especially those in task-positive networks, 

when global functional connectivity changes occur (Betzel et al. 2016). Similarly, a recent 

study has demonstrated that changes in functional interaction between task-negative and 

task-positive systems are a major contributing factor in fluctuations in functional 

connectivity (Fukushima et al. 2017). The finding in this study that between-state 

differences in the similarity of structure and function are strongly expressed at connections 

linking the DMN and the DAN is in line with these previous results demonstrating large 

variance of fluctuations in the interaction between task-negative and task-positive systems. 

Our current finding provides a potential structural explanation, by raising the possibility that 

the phenomenon originates from large fluctuations in the frequency of neural 

communication along the structural connections between these two functional systems.

In contrast, between-state differences in the similarity of structural and functional edge 

weights were small within task-positive networks, in which functional edge weights 

(especially within/between the SMN and VIS in the HCP dataset) were stronger during the 

segregated than the integrated state. This result suggests that between-state differences in the 

relationship of structural and functional connectivity were not simply accounted for by 

changes in the overall magnitude of functional connectivity, but rather derived from 

fluctuations in specific functional connectivity patterns.

We showed that the centroid of the integrated state, which exhibited greater similarity to 

structural connectivity, was characterized by weaker segregation of the DMN from the task-

positive networks. This observation supports previous findings of fluctuations in the 

relationship between structural and functional connectivity. Liégeois et al. (2016) tracked 

temporal changes in the similarity between structural connectivity and time-resolved 

functional connectivity in the resting state. Consistent with our observation, they 

demonstrated that a segregation of the DMN from primary sensory networks is less clear in 

time-resolved functional connectivity when it exhibits a greater similarity to structure 

connectivity and that the level of segregation increased when the similarity to the structure 

becomes low. However, they associated durations of greater segregation of the DMN from 

Fukushima et al. Page 14

Brain Struct Funct. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



primary sensory networks with low modularity whereas Shine et al. (2016a) and the present 

study associated the segregated state with high modularity—this inconsistency likely results 

from the use of absolute functional connectivity for computing the modularity Q in Liégeois 

et al. (2016), which underestimates modularity when two large network components are 

strongly anti-correlated. Barttfeld et al. (2015) investigated how the similarity of resting-

state functional connectivity to structural connectivity changes depending on vigilance 

conditions in awake and anesthetized monkeys. They demonstrated that a functional 

connectivity pattern appearing most frequently during deep sedation exhibited the greatest 

similarity to structural connectivity and that modules in the centroid of this state were most 

unclear, which are also in line with our finding that segregation of functional networks 

becomes weak during the state of high similarity to structural connectivity.

While fluctuations between segregated and integrated network architecture in functional 

connectivity have been shown to be associated with arousal and attention necessary for 

effective cognitive processing (Shine et al. 2016a), several studies reported that similar 

changes in global functional connectivity patterns were related to changes in sleep stages 

(Tagliazucchi et al. 2016; Haimovici et al. 2017) and sedation (Barttfeld et al. 2015; Ma et 

al. 2017). Future research is needed to clarify whether fluctuations between segregated and 

integrated network states and their relationship to structural connectivity are more reflective 

of changes in wakefulness and sleep, or in arousal and attention, by examining their relations 

to other neural or physiological signals simultaneously measured with rs-fMRI acquisition. 

Potential relations to wakefulness and sleep can be assessed using electroencephalography 

(EEG) which is well suited for determining sleep stages (Berry et al. 2015). While EEG was 

not measured in the datasets employed in this study, a respiratory signal, which is also 

related to sleep (Snyder et al. 1964), was simultaneously measured with rs-fMRI in the HCP 

dataset. We confirmed that this signal did not have any consistent relationship to fluctuations 

between segregated and integrated states of functional connectivity (see Supplementary 

Results). For examination of relations to arousal and attention, pupil diameter can be used 

because it is known to be correlated with neuromodulatory activity reflecting neural gain 

(Aston-Jones and Cohen 2005). Pupil dilation has been shown to be associated with arousal 

and task engagement (McGinley et al. 2015) as well as a greater level of network integration 

(Shine et al. 2016a). The relationship of pupil dilation to fluctuations in the similarity 

between structural and functional connectivity remains to be explored.

Methodological considerations

The results from the present study are subject to several methodological limitations. First, 

although computational tractography based on DWI is the leading technique for 

reconstructing human structural connectivity, it has also been shown to be prone to 

inaccuracies (Jones et al. 2013; Thomas et al. 2014), especially when estimating 

interhemispheric structural connections (Messé et al. 2014). However, we confirmed that the 

similarity between structural and functional edge weights was also greater in the integrated 

state even when the similarity was assessed only within each hemisphere (left, t = 14, p = 1.9 

× 10−23; right, t = 12, p = 2.8 × 10−20). This observation indicates that at least between-state 

differences in structure-function relationships, which we focused on in this study, were not a 

consequence of an underestimation of inter-hemispheric structural connections.
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Second, there is an ongoing debate on the detectability of fluctuations in neural 

synchronization across brain areas from rs-fMRI data (Laumann et al. 2016; Liégeois et al. 

2017; Miller et al. 2017; Abrol et al. 2017). Fluctuations in functional connectivity with rs-

fMRI have been shown to be induced by potential confounds, especially head movements 

during image acquisition (Laumann et al. 2016). Therefore, employing appropriate methods 

to remove movement-related artifacts and confirming the absence of clear relationships to 

head movements are essential for all studies focusing on fluctuations in functional 

connectivity. In this study we applied extensive artifact reduction methods to the datasets by 

excluding high motion subjects, censoring and interpolating artifactual time points in the rs-

fMRI data, and regressing out motion estimates and the global, white matter and CSF mean 

signals, to minimize the influence of motion on the estimates of fluctuations between 

segregated and integrated network architecture. We confirmed that the influence of head 

movements on the mean participation coefficient (a measure of integration) was weak in all 

rs-fMRI runs of the HCP and NKI datasets. Moreover, our findings presented in Results 
were all derived from the run least affected by head movements and in this run no consistent 

relationship was found between the mean participation coefficient and the framewise 

displacement (a measure of head movements) both at the single-subject level and the group 

level (see Supplementary results). These observations suggest that the reliability of our 

findings should not be compromised by head motion.

Related to the above issue, potential relationships among head movements, respiration and 

the spatial mean of rs-fMRI signals across the whole brain (the global rs-fMRI signal) have 

been recently pointed out (Power et al. 2017). In Supplementary results, we demonstrated 

that the mean participation coefficient and state transitions in our data were not related to 

respiratory belt traces or the strength or variance of the global rs-fMRI signal. These results 

indicate that neither changes in respiratory patterns nor changes in the overall signal to noise 

ratio of rs-fMRI data can explain the fluctuations in network integration reported in this 

study.

Third, different data processing pipelines were applied to the HCP and NKI datasets 

independently (see Supplementary methods) and one cannot specify which factor was most 

responsible for several minor differences found in the results between the datasets. Multiple 

ways of data processing must be equally applied to both of the datasets if the effect of the 

choice of datasets and data processing steps on the results needs to be precisely examined. 

Nevertheless, the main results from which our conclusions were drawn were also 

reproducible across the HCP and NKI datasets (see Supplementary results) reinforcing the 

reliability of our findings.

Future directions

While the present study has focused on describing the relationship between structural 

connectivity and the segregated and integrated states of functional connectivity, future 

research is needed to clarify how the underlying structural connectivity contributes to the 

emergence of fluctuations between segregated and integrated states. A promising approach 

to accomplish this goal is to reproduce the fluctuations of functional connectivity using 

dynamic models of neural populations linked by structural white matter pathways (Hansen et 
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al. 2015; Ponce-Alvarez et al. 2015). Such computational models can be used to uncover 

structural determinants of fluctuations between network segregation and integration through 

manipulation of local and global properties of structural connectivity and examination of its 

effects on the simulated network dynamics. Contributions of structural connectivity to 

fluctuating patterns of functional connectivity have only begun to be explored in modeling 

studies (Messé et al. 2014; Gollo et al. 2015). We believe that modeling approaches will 

reveal a precise role of structural connectivity on fluctuations in the balance between 

network segregation and integration, and we plan to pursue this avenue in future work.

Supplementary material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
a Workflow diagram describing the procedure for estimating the segregated and integrated 

network states. The joint histogram of each time window was created by summing the 

instances of each value of zt and Pt within 100 equally defined bins along each axis (Shine et 

al. 2016b). b Illustrations for the assessment of the relationship between structural 

connectivity (SC) and functional connectivity (FC). Top: computing the similarity of edge 

weights between structural and functional networks. Middle: computing the similarity of 

partitions between structural and functional networks. Bottom: computing the density of 

structural connections within functional connectivity modules. The similarities (top and 

middle) and the density (bottom) were compared between the segregated and integrated 

states
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Fig. 2. 
a Time series of the mean participation coefficient and state transitions in a representative 

subject. b Joint distributions of the within-module degree z-score and the participation 

coefficient over time across all subjects (upper, the segregated state; lower, the integrated 

state)
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Fig. 3. 
a The centroids of the segregated (upper) and the integrated (lower) states in four 

representative subjects. Cortical nodes in each connectivity matrix are associated with the 7 

network components in Yeo et al. (2011). b Between-state differences in centroid edge 

weights (integrated − segregated), averaged over subjects. The differences in edge weights 

were shown only for edges with significant between-state differences (p < 0.05, FDR 

corrected). c Group-level structural connectivity
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Fig. 4. 
a Similarity of edge weights between structural connectivity and the centroid of the 

segregated (left) or the integrated (right) state. b Left: between-state differences in the edge 

weight similarity (integrated − segregated), evaluated at each pair of the 7 network 

components in Yeo et al. (2011). The between-state differences were shown as t-scores and 

were presented only for pairs of network components with significant differences (p < 0.05, 

FDR corrected). Right: the mean of the t-scores in each network component, overlaid on the 

cortical surfaces. c Pairs of network components in which between-state differences in the 

edge weight similarity were greater than those evaluated over the whole cortex (p < 0.05, 

FDR corrected). The t-score of the DMN–DAN in this comparison is highlighted since it 

was significant across all runs and datasets (see Supplementary results)
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Fig. 5. 
a Similarity of network partitions between structural connectivity and the centroid of the 

segregated (left) or the integrated (right) state. b Density of structural connections within 

functional modules. The density is shown for direct structural connections (top) and for 

indirect structural connections with the shortest path lengths L = 2 (middle) and L = 3 

(bottom). c A schematic view of the relationship among a single structural module and an 

overlapping functional module captured during segregated and integrated states. Nodes 

represent brain regions, and the thickness of the blue or red line indicting boundaries of the 

functional module represents the strength of within-module functional connectivity. In the 

segregated state, the functional module is more coherent than in the integrated state, while 

also deviating more strongly from the underlying structural module
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