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Abstract
Artemisinin and its analogues are naturally occurring most effective antimalarial secondary metabolites. These compounds 
also possess activity against various types of cancer cells, schistosomiasis, and some viral diseases. Artemisinin and its 
derivatives (A&D) are found in very low amounts in the only natural source i.e. Artemisia plant. To meet the global needs, 
plant sources have been exploited for the enhanced production of these natural products because their chemical synthesis is 
not profitable. The generally adopted approaches include non-transgenic (tissue and cell cultures) and transgenic together 
with the cell, tissue, and whole transgenic plant cultures. The genes targeted for the overproduction of A&D include the 
biosynthetic pathway genes, trichome development genes and rol genes, etc. Artemisinin is naturally produced in trichomes 
of leaves. At the same time, transgenic hairy roots are considered a good source to harvest artemisinin. However, the absence 
of trichomes in hairy roots suggests that artemisinin biosynthesis is not limited to trichomes. Moreover, the expression of the 
gene involved in trichome development and sesquiterpenoid biosynthesis (TFAR1) in transgenic and non-transgenic roots 
provokes researchers to look for new insight of artemisinin biosynthesis. Here we discuss and review precisely the various 
biotechnological approaches for the enhanced biosynthesis of A&D.
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AaHDR	� Artemisia annua 1-hydroxy-2-methyl-
2-(E)-butenyl 4-diphosphate reductase

AA	� Artemisinic acid
A&D	� Artemisinin and its derivatives
ACTs	� Artemisinin based combination therapies
AN production	� Artemisinin production
COS	� Chitosan oligosaccharide
CO	� CONSTANS
CYP	� Cytochrome
DXPR	� Deoxy-d-xylulose-5-phosphate synthase
DHAA	� Dihydroartemisinic acid
DMSO	� Dimethyl sulfoxide
DMADP	� Dimethylallyl diphosphate
DBR2	� Double bond reductase-2
DW	� Dry weight
FPS	� Farnesyl diphosphate synthase
FDP	� Farnesyl diphosphate
fpf1	� Flowering promoting factor 1 gene
GA3	� Gibberellic acid
GSTs	� Glandular secretory trichomes
GLTs	� Glandular trichomes
HMGR	� Hydroxymethyl glutaryl coenzyme A 

reductase
IPP	� Isopentenyl diphosphate
ipt	� Isopentenyl transferase gene
MeJ	� Methyl jasmonate
MEP	� Mevalonate independent pathway
MVA	� Mevalonate pathway
MA	� Mevalonic acid
TSTs	� Non-glandular T-shaped trichomes
ROS	� Reactive oxygen species
rol genes	� Root locus genes
SA	� Salicylic acid
SQS	� Squalene synthase
TDZ	� Thidiazuron
TAR1	� TRICHOME AND ARTEMISININ 

REGULATOR 1
TFAR1	� Trichome-specific fatty acyl-CoA reduc-

tase 1
WHO	� World Health Organization

Introduction

Artemisinin is an antimalarial pro-drug which has been con-
sidered the last line of defence against malaria for many 
decades (Bryant et al. 2015). Whereas, the other older gen-
eration antimalarial drugs are now found less effective due 
to the acquired resistance against them (Fidock 2010). Arte-
misinin, a sesquiterpene lactone is the core component of 
artemisinin-based combination therapies (ACTs) especially 
for the treatment of multidrug-resistant malaria (Eckstein-
Ludwig et al. 2003). With the passage of time, there is a 

significant rise in the demand for ACTs, as can be estimated 
from the fact that the number of ACT treatments rose to 36 
fold during 2005 to 2013 in endemic countries, reaching 
a total of 392 million in 2013 (WHO 2017). But the real-
ity seems to be far more challenging when it comes to the 
reliable supply of artemisinin as the precursor compound 
for the active ingredient of ACTs. This fact is no doubt of 
crucial importance in the fight against malaria, which is the 
fifth most prevalent disease in underdeveloped countries and 
tenth overall cause of death. This scenario is projected to 
stay at the same level till 2030 (Nahlen et al. 2005). Accord-
ing to WHO, 216 million cases of malaria occurred globally 
in 2016 and it led to 445,000 deaths (WHO 2017).

Artemisinin is naturally found in the aerial parts of the 
plant, i.e. flowers, leaves, stems, buds and seeds (Ferreira 
et al. 1995a) in amounts ranging from 0.1 to 0.8% of the dry 
weight of the plant (Abdin et al. 2003), maximally reaching 
1.5% in some cases (Kumar et al. 2004; Weathers and Towler 
2012). Ontogeny and phenology play important role in the 
production of secondary metabolites in plants. Its synthesis 
is basically carried out in the glandular trichomes (GLTs), 
present on flowers, floral buds, and leaves and sequestered 
in the subcuticular sac at the apex of the GLTs. Trichome-
specific fatty acyl-CoA reductase 1 (TAFR1) is thought to be 
involved in GLT development and sesquiterpenoid biosyn-
thesis; both are important for artemisinin production (Fer-
reira et al. 1995a; Olsson et al. 2009).

Artemisinin biosynthesis is almost completely known 
(Nguyen et al. 2011) (Fig. 1). It originates from a com-
mon biosynthetic precursor for the synthesis of terpenoids 
that is isopentenyl diphosphate (IPP), formed via either 
the cytosolic mevalonate pathway (MVA) or the plastidic 
mevalonate-independent pathway (MEP); both pathways 
supply the IPP for artemisinin (Croteau et al. 2000). Con-
densation of three molecules of IPP to farnesyl diphosphate 
(FDP) is catalyzed by farnesyl diphosphate synthase (FPS). 
Amorphadiene synthase (ADS) a sesquiterpene cyclase 
then catalyzes the formation of amorpha-4,11-diene by 
the cyclization of FDP. The next two steps are catalyzed 
by a cytochrome P450, CYP71AV1 (CYP). Amorpha-
4,11-diene is oxidized to the artemisinic aldehyde and also 
to artemisinic acid (AA) (Teoh et al. 2006), which is then 
converted by a double-bond reductase (DBR2) to dihydroar-
temisinic aldehyde, the precursor to dihydroartemisinic acid 
(DHAA) (Zhang et al. 2008). Conversion of DHAA to AN is 
a non-enzymatic photo-oxidative reaction involving reactive 
oxygen species (ROS), which by adding three oxygen atoms 
leads to the formation of the endoperoxide pharmacophore 
of AN (Brown and Sy 2007; Wallaart et al. 2001).

The production of artemisinin is compromised because 
particularly in third world countries the only reliant source 
of its production is Artemisia plant with several limita-
tions. First of all, being a competitor against food for the 
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use of land it will cause a rise in food prices thus giving 
less incentive to farmers for its cultivation. Additionally, 
the plan for A. annua cultivation has to be designed some-
how 14 months before the drugs can be produced. In this 
regard, natural disasters like flood may be the limiting 
factor making the artemisinin production unpredictable 
(Noorden 2010). As far as the chemical synthesis of arte-
misinin is concerned that has been found to be complex 
and expensive and thus have not been supplanted as the 
favored method. Although the chemical synthesis of arte-
misinin is reported (Zhu and Cook 2012), to date the plant 
remains the only source of this drug. On the account of all 
these factors, different setups are being developed for the 
inexpensive production of artemisinin, which is not reliant 

on the cultivation of A. annua and should have the capabil-
ity to get scaled up when required (Table 1).

So far, three different approaches have been practiced for 
increased production of A&D, including non-transgenic, 
transgenic and heterologous transgenic systems (Arsenault 
et al. 2008). Non-transgenic approaches include the selective 
breeding of high artemisinin-containing elite varieties of A. 
annua, manipulation of growth condition, use of in vitro cul-
tures, and elicitation to use plant’s natural defence system. 
In transgenic approach, transgenics of different Artemisia 
species with a variety of genes have been produced. While, 
in the heterologous systems, key genes of artemisinin bio-
synthetic pathway are inserted into organisms other than A. 
annua. Here we discuss the so far progress made on the 

Fig. 1   A schematic diagram 
showing isopentenyl diphos-
phate and artemisinin biosyn-
thetic pathway (Arsenault et al. 
2010a)
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biotechnological approaches (transgenic and heterologous 
transgenic systems) for enhanced artemisinin production.

Non‑transgenic approaches

Highly exploited medicinal compounds, artemisinin, and 
their derivatives are vastly studied for their antimalarial 
and anticancer effects. So far, precursor molecules of a 
pathway, intermediate compounds of a pathway or chemi-
cals like methyl jasmonate (MeJ), chitosan and salicylic 
acid (SA) have been used in a majority of the elicitation 
studies to enhance a number of secondary metabolites. 
Non-transgenic approaches are considered easy to prac-
tice with low-level ethical constraints. Wild aerial part, 
in vitro raised plants and greenhouse acclimatized plants 
of A. amygdalina revealed the presence of artemisinin 

(Rasool et al. 2013). But, wild inflorescences and calli 
did not show the presence of artemisinin. Lualon et al. 
(2008) regenerated untransformed plants of A. annua using 
0.1 mg/l thidiazuron (TDZ) and found artemisinin content 
of 3.36 µg/mg dry weight which is two-fold higher than 
that of in vitro grown plants of the same age. However, 
when ex vitro grown untransformed plants of A. annua 
were elicited with chitosan oligosaccharide (COS) and sal-
icylic acid (SA), COS up-regulated the transcriptional lev-
els of the genes ADS and TTG1 2.5 fold and 1.8 fold after 
48 h individually, whereas SA only up-regulated ADS 2.0 
fold after 48 h (Yin et al. 2012). Additionally, the supple-
mentation of dimethyl sulfoxide (DMSO) to the untrans-
formed seedlings increased artemisinin in the shoots of A. 
annua (Mannan et al. 2010b). Rooting of untransformed 
A. annua shoots (SAM clone) by the supplementation of 
a-naphthaleneacetic acid increases trichome size on leaves 

Table 1   Review articles describing biosynthesis of A&D and their uses

S. No. Titles References

01 Sesquiterpene lactones from Artemisia genus: biological activities and methods of analysis Ivanescu et al. (2015)
02 Secondary metabolism of hairy root cultures in bioreactors Kim et al. (2002)
03 Artemisinin: current state and perspectives for biotechnological production of an antimalarial 

drug
Liu et al. (2006)

04 Medicinal Importance of Artemisia absinthium Linn (Afsanteen) in Unani Medicine: A Review Ahmad et al. (2010)
05 Metabolic engineering of artemisinin biosynthesis in Artemisia annua L. Liu et al. (2011)
06 The molecular mechanism of action of artemisinin-the debate continues O’Neill et al. (2010)
07 The Artemisia L. Genus: a review of bioactive essential oils Abad et al. (2012)
08 Artemisia dracunculus L. (Tarragon): a critical review of its traditional use, chemical composi-

tion, pharmacology, and safety
Obolskiy et al. (2011)

09 Dried-leaf Artemisia annua: A practical malaria therapeutic for developing countries? Weathers et al. (2014)
10 Artemisinin production in Artemisia annua: studies in planta and results of a novel delivery 

method for treating malaria and other neglected diseases
Weathers et al. (2011)

11 Recent advances in artemisinin production through heterologous expression Arsenault et al. (2008)
12 Trichomes + roots + ROS = artemisinin: regulating artemisinin biosynthesis in Artemisia annua L Nguyen et al. (2011)
13 Transgenic approach to increase artemisinin content in Artemisia annua L. Tang et al. (2014)
14 Secondary metabolites of Artemisia annua and their biological activity Bhakuni et al. (2001)
15 Artemisinin, a novel antimalarial drug: biochemical and molecular approaches for enhanced 

production
Abdin et al. (2003)

16 Artemisinin production in Artemisia annua: studies in planta and results of a novel delivery 
method for treating malaria and other neglected diseases

Weathers et al. (2011)

17 Artemisinin: the biosynthetic pathway and its regulation in Artemisia annua, a terpenoid-rich 
species

Weathers et al. (2006)

19 Use of whole plant Artemisia annua L. as an antimalarial therapy Mostafa et al. (2012)
20 Oxidative stress in malaria and artemisinin combination therapy: Pros and Cons Kavishe et al. (2017)
21 A review of biotechnological artemisinin production in plants Ikram and Simonsen (2017)
22 Malaria and artemisinin derivatives: an updated review Tayyab Ansari et al. (2013)
23 New insights into artemisinin regulation Lv et al. (2017)
24 Anticancer Activity of Artemisinin and its Derivatives Slezakova and Ruda-Kucerova (2017)
25 Plasmodium falciparum Resistance to Artemisinin Derivatives and Piperaquine: A Major Chal-

lenge for Malaria Elimination in Cambodia
Valentine et al. (2016)

26 Antimalarial qinghaosu/artemisinin: The therapy worthy of a Nobel Prize Krungkrai and Krungkrai (2016)
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and helps drive the final steps of the biosynthesis of arte-
misinin (Nguyen et al. 2013).

Baldi and Dixit (2008) reported that elicitation of cell 
cultures of A. annua (untransformed) with mevalonic acid 
(MA) (50 mg/L) resulted maximally an increase of twofold 
of artemisinin content in comparison to control, while a 
maximum increase of 3.47 fold in artemisinin was attained 
when MeJ (5 mg/L) was added. Combined supplementation 
of MA and MeJ resulted in maximum artemisinin produc-
tion of 96.8 mg/L which was 4.79 times higher than control 
callus cultures (20.2 mg/L). However, some researchers sug-
gest that elicitation might not be a good method to enhance 
artemisinin because it triggered biosynthesis after a long 
time (48 h). Another study conducted on A. annua suggests 
roots (which neither produce significant artemisinin nor its 
precursor compounds) to regulate artemisinin production 
in the leaves. Researchers grafted roots of lines with high 
artemisinin-producing leaves to the low artemisinin pro-
ducing shoots and observed an increased leaf production of 
artemisinin in those low artemisinin-producing plants (Wang 
et al. 2016). A wide range of various reports describing the 
A&D production and its uses is given below.

Transgenic approaches

Transformation with genes involved in artemisinin 
biosynthetic pathway (ABP)

Transgenic Artemisia

Modifications have been made in plants by improving the 
expression of endogenous pathways or by introducing novel 
genes to modify its pathways (Ikram and Simonsen 2017). 
Researchers from numerous groups have almost resolved the 
difficult task of biosynthesis of artemisinin. Now, noticeable 
progress has been observed in the regulation of biosynthesis 
of artemisinin and underlying mechanisms (Bouwmeester 
et al. 1999). Key enzymes and their genes which are main 
precursors and are necessary for biosynthesis of artemisinin 
i.e. [farnesyl diphosphate synthase (FPS), amorpha-4,11-di-
ene synthase (AMS)], and the genes of the enzymes linked 
with the molecular basis of biosynthesis of artemisinin 
including squalene synthase (SQS), have been cloned from 
A. annua (Matsushita et al. 1996; Mercke et al. 2000; Wal-
laart et al. 2001; Yan et al. 2003). Dhingra and Narasu 
(2001) isolated the main enzyme used in the biochemical 
conversion of arteannuin B to artemisinin. The genes of arte-
misinin biosynthesis including ADS, CYP71AV1, DBR2, 
and ALDH1 are all preferably articulated in the glandular 
trichomes (Covello et al. 2007; Olsson et al. 2009).

Several groups have shown that transformation with arte-
misinin biosynthetic pathway genes can increase artemisinin 

production through modification of its biosynthetic pathway 
(Ikram and Simonsen 2017). Overexpression of FPS in A. 
annua leads to the accumulation of the increased amount 
of artemisinin through conversion of IPP and DMADP into 
FDP (Maes et al. 2011). Biosynthesis of artemisinin can be 
improved significantly by an enhanced expression of both 
HMGR and ADS instantaneously through a co-transforma-
tion experiment in A. annua (Alam and Abdin 2011); fur-
thermore, production of artemisinin can also be improved by 
overexpressing both HMGR and FPS together in A. annua 
(Wang et al. 2011). In the MEP pathway, DXR has been 
considered as an important rate-limiting enzyme effectively 
used to increase the production of monoterpenoids such as 
peppermint essential oils (Hasunuma et al. 2008). Genetic 
map of A. annua further proved that DXR was strongly 
interconnected with the production of artemisinin (Gra-
ham et al. 2010). Chen et al. (1999) raised hairy roots of A. 
annua plants after the infection of engineered A. rhizogenes 
containing fds gene. The transgenic hairy roots showed an 
overexpression of FPS and an improved production of arte-
misinin content i.e. 3 to fourfold higher than control. Fur-
ther, Chen et al. (2000) reported 2 to threefold increase in 
artemisinin production in A. annua plants transformed with 
same FPS gene through A. tumefaciens mediated genetic 
transformation method.

The cloning and characterization of AaHDR involved in 
the increased production of artemisinin through enhanced 
production of artemisinin biosynthesis precursors via MEP 
pathway in A. annua has been reported (Peng et al. 2011). 
It will be helpful to understand more about the function of 
HDR at the level of molecular genetics and unveil the bio-
synthetic mechanism of artemisinin. Genetic engineering 
can be used for enhanced artemisinin production through an 
increase in expression of the key genes of the enzymes used 
for the artemisinin biosynthesis, such as FPS and AMS, in 
the transgenic high-yield A. annua.

As chemical synthesis of A&D is not economically 
feasible (Delabays et al. 2001), wild plants contain scarce 
amount of these secondary metabolites (Mannan et  al. 
2010a) and ~ 40% of the global population is threatened by 
malaria (Dhingra et al. 1999), there is a high demand for 
these compounds in the international market. To satisfy the 
vast need for medicine, various transgenic biotechnological 
approaches are discussed here (Fig. 2).

Heterologous systems

Progressive achievements in molecular biology enabled sci-
entists to explore new expression systems for artemisinin 
biosynthesis beyond its only source on the planet earth i.e. 
A. annua. Genetic engineering of the molecular pathway(s) 
leading to the synthesis of artemisinin has been attempted 
in several organisms including plants, yeast, and bacteria to 
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improve its production. Arsenault et al. (2008) has explained 
in detail different approaches using heterologous expression 
systems for the enhanced production of artemisinin and 
focused on newer methodologies of genetic engineering of 
artemisinin biosynthetic pathway genes to meet the demands 
for the treatment of different diseases especially malaria.

Heterologous expression system especially Escheri-
chia coli and Saccharomyces cerevisiae have been stud-
ied so far for this purpose (Arsenault et al. 2008). It is 
a promising technology for the production of important 
compounds; however, monomeric proteins can be easily 
produced in microbes while the production of complex 
secondary metabolites needs the reconstruction of the 
metabolic pathway. Various approaches have been devel-
oped to express the sesquiterpene lactones in microbial 
systems including fungi (Asadollahi et al. 2008) and bac-
teria (Picaud et al. 2007). However, there are few reports 
describing the cloning of genes into microbial hosts spe-
cifically for the biosynthesis of artemisinin and its deriva-
tives. Majority of these reports reveal the expression of 
amorpha-4,11-diene which is a volatile precursor of arte-
misinin. In a report, a 9-genes biosynthetic pathway of 
amorpha-4,11-diene was introduced in E. coli. Keeping 
in mind the loss of gaseous phase, microbes were cul-
tured in a two-phase partitioning bioreactor and 89% pure 
amorpha-4,11-diene was procured in ~ 0.5 g/L concentra-
tion of the culture medium (Newman et al. 2006). A semi-
synthetic approach of artemisinin by using strains of S. 
cerevisiae for biological production of artemisinic acid 

and its chemical conversion to artemisinin is also reported 
(Paddon et al. 2013). Ro et al. (2006) engineered S. cer-
evisiae mevalonate pathway with amorphadiene synthase 
(ADS) and cytochrome P450 monooxygenase (CYP71AV1) 
to produce artemisinic acid. They found higher levels of 
artemisinic acid (up to 100 mg/L) in reconstructed yeast 
than A. annua. Further, a cDNA clone was generated 
from the mRNA of trichomes encoding cytochrome P450 
(CYP71AV1) and expressed in S. cerevisiae which cata-
lyzed the oxidation of various intermediates of artemisinin 
biosynthetic pathway including amorpha-4,11-diene (Teoh 
et al. 2006). Although there are some successful reports 
for the production of various secondary metabolites in 
reconstructed microbes, the expression of complex path-
way limits the heterologous expressions of the non-native 
molecule (Newman et al. 2006).

Transformation with genes not involved 
in artemisinin biosynthetic pathway (ABP)

An efficient methodology to genetically target the desired 
plant metabolites is the metabolic engineering, which is 
also a hot spot for genetic engineering of different medici-
nal plants. Different attempts have been taken to increase 
artemisinin production in Artemisia species through the 
insertion of different genes affecting flowering (Wang 
et al. 2007), phytohormone levels (Sa et al. 2001) and 
farnesyl diphosphate synthesis (Chen et al. 2000).

Fig. 2   Transgenic approaches in 
the biotechnological production 
of artemisinin
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Transformation with flowering genes

Artemisia species were transformed with different flower-
ing stimulating genes because it has been established that 
artemisinin production is higher during the flowering season. 
Wang et al. (2007) has transformed A. annua with an early 
flowering gene CONSTANS (CO) and the flowering promot-
ing factor 1 gene (fpf1), both from Arabidopsis, using A. 
tumefaciens. Though fpf1 transformed plants showed flower-
ing 20 days earlier than non-transgenic plants, yet no major 
difference in artemisinin production was observed. CO 
transformed plants also showed the similar results with early 
flowering in transformed plants but no significant increase in 
artemisinin concentration depicting direct relation between 
flowering and production of artemisinin.

Transformation with genes of phytohormones

Genes encoding phytohormone or phytohormone were also 
found triggering enhanced production of A&D. Transfor-
mation of A. annua plants through A. tumefaciens contain-
ing the Isopentenyl transferase gene (ipt) resulted in 70% 
increase of artemisinin concentration than control with an 
increase in chlorophyll content as well (Sa et al. 2001). Like-
wise, Singh et al. (2016) studied the effect of expression of 
β-glucosidase gene (bgl1) in A. annua and found that bgl1 
induced trichome density (up to 20% in leaves and 66% in 
flowers) and artemisinin content (up to 1.4% in leaf and 

2.56%/g dry weight in flowers) of transgenic plants than the 
control plants.

Transformation with the genes of trichome development

Artemisinin is produced in glandular trichomes, which are 
about 10-cells in size located on leaves, floral buds, and 
flowers (Ferreira et al. 1995b; Olsson et al. 2009; Tan et al. 
2015; Tellez et al. 1999) and sequestered in the epicuticular 
sac which is present at the apex of the trichome (Olsson et al. 
2009). Presence of trichomes in aerial parts of Artemisia 
species and their absence in roots supports the higher accu-
mulation of artemisinin in the aerial parts of Artemisia spe-
cies (Fig. 3). For example, the leaves which are younger and 
later in growth level have the higher amount of artemisinin 
as compared to the mature leaves formed during the early 
stages of plant’s development; this difference was accounted 
for higher trichome density and a higher capacity per tri-
chome in the upper leaves (Lommen et al. 2006). Trichome-
specific fatty acyl-CoA reductase 1 (TFAR1) is known to 
stimulate trichome development and to catalyze sesquiterpe-
noid biosynthesis (Maes et al. 2011). Dilshad et al. (2015b) 
supported the idea of overexpression of TFAR1 genes and 
hence artemisinin production. Another report by Dilshad 
et al. (2015a) explained the effect of a higher expression 
of TFAR1 gene in A. carvifolia is directly linked to the 
enhanced production of artemisinin. There are several other 
reports on overexpression of trichome genes and enhanced 

Fig. 3   Trichomes present on 
leaf surfaces of Artemisia 
species (a–c), while trans-
genic hairy roots are devoid of 
trichomes (d). a Fluorescent 
microscopy of leaf of transgenic 
A. annua containing rol genes, 
b environmental scanning elec-
tron microscopy of the leaf of 
transgenic A. annua harboring 
rol genes, c confocal micros-
copy of leaf of transgenic A. 
annua containing rol genes, d 
environmental scanning election 
microscopy of leaf of untrans-
formed in vitro grown A. annua 
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production of artemisinin. Tan et al. (2015) transformed A. 
annua with TRICHOME AND ARTEMISININ REGULA-
TOR 1 (TAR1) gene and observed a significant increase in 
artemisinin production and also suggested that this gene is 
directly linked to artemisinin pathway genes at some stages 
of development. Besides TFAR1 and TAR1 transformations, 
Liu et al. (2009) reported that amount of glandular trichomes 
can be improved by overexpressing putative TTG1 gene 
related to significant increase in artemisinin production in 
A. annua leaves. Overexpression of an important trichome-
specific transcription factor (AaORA) in A. annua both 
glandular secretory trichomes and nonglandular T-shaped 
trichomes (TSTs) is highly expressed in transformed lines 
and acts as a positive regulator in the biosynthesis of arte-
misinin (Lu et al. 2013).

rol genes

Hairy roots raised through the infection of Agrobacterium 
rhizogenes

Hairy roots syndrome appears after the infection of Agro-
bacterium rhizogenes, which induces the plagiotropic roots 
having increased growth rate and multiple ramifications. 
Transgenic hairy roots are somewhat similar in morphology 
to the normal untransformed roots and they have been raised 
for the commercial-scale production of secondary metabo-
lites (Sharma et al. 2013). In early studies, Weathers et al. 
(1994) obtained several transgenic root cultures of A. annua 
from the infection of A. rhizogenes strain ATCC 15834 and 
found the biosynthesis of artemisinin up to 0.42% of dry 
weight (DW). They also detected artemistene, artemisinic 
acid and arteannuin B and suggested that the commercial 
production of these compounds using transformed roots is 
feasible. A rapidly growing clone (YUT16) of these hairy 
roots (diploid) was used to produce four stable tetraploid 
clones of A. annua. These tetraploid clones revealed a better 
growth rate and produced up to six times more artemisinin 
than the diploid parent suggesting the importance of ploidy 
level in artemisinin biosynthesis (De Jesus-Gonzalez and 
Weathers 2003). Further, the diploid clones of YUT16 were 
grown in nutrient mist reactors and resulted in an increase 
of ~ 3 times as much artemisinin (2.64 µg/g DW) as roots 
grown in bubble column reactors (0.98 µg/g DW) (Kim et al. 
2001). When cultures of this hairy root line were grown 
in continuous light, they showed a substantial increase in 
deoxy-d-xylulose-5-phosphate synthase (DXPR) transcript 
levels compared to dark-grown cultures suggesting plastid-
localized artemisinin biosynthetic pathway for its higher 
biosynthesis (Souret et al. 2002). Growth kinetics study of 
these roots (Weathers et al. 1994) showed that the use of gib-
berellic acid (GA3) at 0.01 mg/L (~ 28.9 µM) increased the 
growth rate of hairy roots of A. annua by 24.9% (Smith et al. 

1997). This genetically stable roots clone (YUT16) reveals 
that there are many factors like the ploidy level, reactors 
type, position of the roots, presence or absence of light and 
elicitors which effect artemisinin production.

Hairy roots of in vitro generated A. annua plants were 
also obtained by Ahlawat et al. (2012) with the infection of 
A. rhizogenes strain LBA-9402 and revealed maximum arte-
misinin volumetric biosynthesis of 390 µg/L/d. In another 
report, transformed root cultures of A. annua established 
by the infection of A. rhizogenes strain LBA 9402 revealed 
production of artemisinin up to 0.004% dry weight (DW). 
However, supplementation of GA3 in medium provoked 
artemisinin biosynthesis up to 400% of the control value 
(Paniego and Giulietti 1996).

Besides artemisinin, its other derivatives have also been 
studied in transgenic hairy root cultures of Artemisia spe-
cies. Banerjee et al. (1997) infected the leaves of A. annua 
with A. rhizogenes strain LBA 9402 and the leaf developed 
hairy roots which have the ability to produce artemisinic 
acid and arteannuin B. Interestingly, they found that regen-
erants of transgenic hairy roots represented a higher growth 
rate and produced more of these secondary metabolites than 
the respective mother hairy root clone. In another attempt, 
transgenic hairy roots of A. annua were obtained from NCIB 
8196 or MAFF 03-01724 strain of A. rhizogenes. Among 
them, some of the clones were grown in dark, produced 
undetectable level while some clones cultured in light and 
in liquid medium produced signals of artemisinin in GC-MS 
analysis (Jazir et al. 1995). Similarly, Shaneeja et al. (2014) 
has reported an improved amount of artemisinin in hairy 
roots of A. annua obtained after the infection of two different 
A. rhizogenes species.

Being the intrinsic property of Artemisia species to pro-
duce artemisinin, other species of Artemisia have also been 
exploited to harvest artemisinin. Mannan et al. (2008) raised 
transgenic hairy roots by infecting the plants of A. dubia 
and A. indica with A. rhizogenes strains LBA 9402 and 
8196. Hairy roots induction was found higher in infected 
with LBA9402 as compared to 8196. However, roots of 
A. dubia infected either with LBA9402 or 8196 produced 
maximum artemisinin (0.603% and 0.753% of DW, respec-
tively). Contrary to it, relatively lower amount of arte-
misinin was harvested in in vitro regeneration of A. indica 
hairy roots obtained by the infection of strain 8196 in the 
liquid medium. Those in vitro raised hairy roots resulted 
in highest root fresh weight as well as artemisinin content 
(3.9 g and 0.042%, respectively). However, transgenic hairy 
roots obtained from A. dubia explants with the infection 
of A. rhizogenes strain 9402 revealed a higher growth rate 
(twofold) and a higher production of artemisinin content 
(36.581 µg/g DW) as compared to control untransformed 
roots which did not show any artemisinin content (Kiani 
et al. 2012).
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Elicitation of the hairy roots

Elicitors or signal molecules are usually the chemicals that 
modify cell metabolism in order to enhance the biosynthesis 
of secondary metabolites in a plant cell or tissue cultures. 
They enable plants in better adaptation to the stress condi-
tions. Certain elicitors have been employed to the cell or 
hairy root culture of Artemisia species for enhanced produc-
tion of artemisinin and its derivatives. Weathers et al. (1997) 
studied the effect of four different factors to optimize condi-
tions to harvest maximum root biomass and terpenoid pro-
duction in transgenic A. annua hairy root clones (YUT16). 
They found that 15 mM nitrate, 1.0 mM phosphate, 5% 
sucrose content (wt/vol) and 8 days old cultured roots are 
the best conditions to harvest maximum biomass as well as 
terpenoid content.

Besides the above-optimized factors, other elicitors/signal 
molecules have been used to raise the A&D amount in trans-
genic hairy roots of Artemisia species. Hairy roots induced 
by the leaf disc method of A. annua showed an enhanced 
production of artemisinin (550 mg/L) when elicited with 
a homogenate of Aspergillus oryzae (Liu et al. 1997). In 
another report, diploid clones of highly exploited YUT16 
hairy roots obtained from A. annua (Weathers et al. 1994) 
when subjected to measure the effect of a broad range of 
phytohormones on growth of A. annua hairy roots and their 
artemisinin content which revealed that GA3 (0.029 µM) 
produced the highest values of growth while 2-isopente-
nyladenine triggered artemisinin biosynthesis more than 
twice that of the B5 controls, and more than any other 
hormone studied (Weathers et al. 2005). Hairy roots of A. 
annua obtained from the seeds of YU strain represented 
sustained and rapid growth when conditioned medium was 
fed to the roots and the presence of 1% CO2 in the carrier 
gas did not enhance the growth kinetics but it did prevent 
necrosis of the tissue at the highest mist cycle (Wang and 
Weathers 2007). GA3 also affected the A&D production in 
other species of Artemisia. Hairy root culture of A. dubia 
obtained by the infection of A. rhizogenes strain LBA9402 
represented highest artemisinin accumulation of 80 ± 3 µg/g 
of DW (91% increase) when cultured on media containing 
GA3 (0.001 mg/L) while 79 ± 3 µg/g of DW was found at 
0.138 mg/L of salicylic acid separately as compared to con-
trol (Ali et al. 2012).

Supplementation of growth medium with different car-
bon sources was also found affecting A&D production. It is 
found that glucose-stimulated artemisinin production maxi-
mally in diploid and tetraploid clones of YUT16 hairy root 
strain while growth in sucrose and fructose was significantly 
better than in glucose (Weathers et al. 2004). A. annua seed-
lings obtained from the seeds of YU strain produced a 200% 
increase in artemisinin content by glucose as a carbon source 
in the medium as compared to sucrose and suggested that 

these sugars also act as signals to affect the downstream 
production of artemisinin (Wang and Weathers 2007). 
The biosynthesis of artemisinin is increased in response 
to exogenous glucose supplementation in A. annua seed-
lings obtained from the seeds of YU cultivar of A. annua 
by upregulating FPS, DXS, DXR, ADS and CYP transcript 
levels (Arsenault et al. 2010b). Weathers et al. (2012) found 
that monosaccharides i.e. glucose increased artemisinin 
biosynthesis in both the seedlings and hairy root cultures 
of A. annua plants by increasing the expression of some of 
the genes in the artemisinin biosynthetic pathway. However, 
disaccharides were found inhibiting the artemisinin biosyn-
thesis which suggests that monosaccharides play a dual role; 
not only fulfill the carbon requirement for plants but also 
as a signal switching on signal transduction of artemisinin 
biosynthetic pathway.

Hairy roots in different bioreactors

Different bioreactors have been used to grow plant cells 
(transformed and untransformed) and this technology has 
been adopted on a wide scale for the production of A&D. 
The hairy root cultures obtained from leaf discs (Liu et al. 
1997) of A. annua were cultivated in a flask, a bubble col-
umn, a modified bubble column and a modified inner-loop 
airlift bioreactor and artemisinin contents in the latter two 
culture conditions were found higher among the four i.e. 
536 mg/L after 20 days (Liu et al. 1998). Highly studied 
hairy root clone YUT16 obtained by Weathers et al. (1994) 
was grown at 1 L in disposable culture bag mist reactor 
showed growth rates higher than that of shake flasks (Siva-
kumar et al. 2010). Although expression in reactors was 
equivalent to or greater than that of root cultures of YUT16 
grown in shake flasks, surprisingly, transcriptional regula-
tion of HMGR, DXS, DXR, and FPS was greatly affected by 
the position of the roots in each reactor (Souret et al. 2003).

rol genes carrying transgenic plants

Over the past decade, rolA, rolB and rolC genes have shown 
to possess the property of overproduction of secondary 
metabolites in transformed plant cells. Plants growth and 
metabolism appeared to be associated with the rolA protein, 
which acts as a stimulator of secondary metabolism (Altvorst 
et al. 1992; Schmülling et al. 1993). The rolB protein plays 
an important role in the pathway of signal transduction of 
auxin due to its tyrosine phosphatase activity (Filippini et al. 
1996). Estruch et al. (1991) described that rolC has cyto-
kinin glucosidase activity and it can be associated with the 
release of active cytokinins from their inactive glucosides. 
RolC has also been shown to be involved in the produc-
tion of tropane alkaloids (Bonhomme et al. 2000), pyridine 
alkaloids (Palazón et al. 1998b), indole alkaloids (Palazón 
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et al. 1998a), ginsenosides (Bulgakov 2008) and anthraqui-
nones (Bulgakov et al. 2002, 2003; Shkryl et al. 2008) in 
transformed plants and plant cell cultures. Regarding the 
rolD gene, its main function is the conversion of ornithine to 
proline due to its ornithine cyclodeaminase enzyme activity 
(Trovato et al. 2001).

Numerous reports have shown that hairy roots cultures 
can produce a significant amount of secondary metabolites 
in different plant species transformed with Agrobacterium 
rol genes (Giri and Narasu 2000; Oksman-Caldentey and 
Sévon 2002). There are few reports about the transformation 
of Artemisia with rol genes for production of artemisinin. 
Our group is working in this direction for several years, and 
we are successfully producing artemisinin through rol genes 
transformation of different Artemisia species using A. tume-
faciens and A. rhizogenes.

Using Agrobacterium tumefaciens mediated genetic trans-
formation technology, A. carvifolia was transformed with 
GV3101 strain harboring rolB and rolC genes for enhanced 
production of artemisinin and its derivatives. Artemisinin 
content was increased from 3 to sevenfold in transgenics 
transformed with the rol B gene, and 2.3 to sixfold in those 
transformed with the rolC gene (Dilshad et al. 2015a). We 
have also shown a 2 to ninefold increase in artemisinin con-
tent of A. annua plants transformed with rolB genes and 
about fourfold increase in artemisinin amount in rolC genes 
transformed plants (Dilshad et al. 2015b). Besides this, an 
increase in artemisinin content of A. dubia transformed 
with rolABC genes using A. tumefaciens has been reported 
(Kiani et al. 2012). The rol genes were found to overex-
press intermediate pathway genes of artemisinin biosyn-
thetic pathway. This idea can be supported by Kiani et al. 
(2016) who transformed Artemisia annua and A. dubia with 
rolABC genes and the leaves of transgenic plants revealed 
an increase in artemisinin content up to ninefold when 
compared to untransformed plants. Interestingly, transgenic 
plants expressed CYP71AV1 and ALDH1 levels higher than 
that of ADS. Moreover, the level of the TFAR1 expression 
and trichome density was also significantly increased in all 
transgenic lines.

We transformed different Artemisia plants with rol genes 
which are responsible for enhancing production of second-
ary metabolites in plants. The exact mechanisms for the 
action of the rol genes are not yet clear (Bulgakov 2008) 
but it has been suggested that they act through the stimula-
tion of the plant’s defense response which includes induction 
of many of the hormonal pathways. This may explain why 
the transformation with Agrobacterium rol genes has such 
a significant effect on the amount of artemisinin produced 
by the transformed plants. Stimulation of the synthesis of 
artemisinin within these plants has also allowed us to alter 
our perception of how and where artemisinin is produced 
within the plants. This report might help to develop better 

strategies to increase the production of this valuable thera-
peutic drug, which will, in turn, allow greater use of it in the 
chemotherapy of malaria and other diseases.

Conclusions and perspectives

Artemisinin, nowadays, seems to be the only reliable treat-
ment for multidrug-resistant malaria. Millions of deaths of 
malarial patients demand a reliable supply of artemisinin, 
which is intrinsically biosynthesized in Artemisia species 
especially in the trichomes present on the leaves. Due to the 
limitations of the chemical synthesis of artemisinin, different 
approaches have been practiced for enhanced production of 
artemisinin including generation of high artemisinin-con-
taining elite varieties of A. annua, manipulation of growth 
condition for the plant tissues, use of in vitro cultures and 
elicitation to use plant’s natural defence system. How-
ever, various transgenic approaches were also developed 
to enhance artemisinin production including generation 
of hairy root cultures. Hairy roots revealed better growth 
rate and artemisinin production and unveiled many factors 
affecting A&D production like the ploidy level, reactors 
type, position of the roots, presence or absence of light, dif-
ferent strains of A. rhizogenes and elicitors. Elicitors have 
also been used to increase the artemisinin biosynthesis 
either alone or in combinations. Various elicitors have been 
tried to enhance A&D biosynthesis including GA3, COS, 
DMSO, nitrates, phosphates, sucrose, TDZ, MeJ, chitosan, 
SA, and MA and found maximally increasing ~ twofold of 
artemisinin by the transcriptional upregulation of ADS and 
TTG1. Interestingly, glucose rather than sucrose was found 
not only fulfilling the carbon requirement but also driving 
the signal transduction of artemisinin biosynthetic pathway 
via upregulation of FPS, DXS, DXR, ADS and CYP genes. 
Transgenic roots clones, either elicited or unelicited, differed 
in A&D production in the different bioreactors e.g. flask, 
a bubble column, a modified bubble column and a modi-
fied inner-loop airlift bioreactor, nutrient mist reactors and 
bubble column reactors. The difference in bioreactors also 
affected transcriptional regulation of HMGR, DXS, DXR, 
and FPS differently.

Artemisia species have been transformed with a variety of 
artemisinin biosynthetic pathway genes (FPS, HMGR, ADS, 
FDS, AMS, SQS, and AaHDR), trichomes development 
genes (TTG1, AaORA and TAR1) and their overexpression 
were found increasing A&D production. Majority of these 
genes either help in conversion of IPP and DMADP into 
FDP or regulate MEP pathway. However, ADS, CYP71AV1, 
DBR2, and ALDH1 are preferably expressed in the glandu-
lar trichomes. Various Artemisia clones were transformed 
with the genes other than artemisinin biosynthetic pathway 
including early flowering gene CO, Ipt and fpf1. However, 
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early flowering did not increase artemisinin concentration 
but ipt resulted in an increase in 70% of artemisinin con-
centration. rol genes, on the other hand, holds the property 
of overproduction of secondary metabolites in transformed 
cells. They are playing role in signal transduction of auxin 
and reported for the enhancement of a vast variety of sec-
ondary metabolites. There are few reports regarding the 
transformation of Artemisia with rol genes for enhanced 
production of artemisinin. Our group is working in this 
direction for several years and we are successfully produc-
ing artemisinin through rol genes transformation of different 
Artemisia species using A. tumefaciens and A. rhizogenes. 
rol genes induced an overexpression of TFAR1 in A. annua 
and A. carvifolia and resulted in enhanced production of 
artemisinin. rolB gene is reported as the most powerful 
inducer of secondary metabolism and artemisinin content 
was found increased up to 7–9 fold in rolB transgenics as 
compared to rolC transgenic plants. Interestingly, transgenic 
plants expressed higher transcript levels of CYP71AV1, 
ADS, and ALDH1 which can be compared to higher TFAR1 
expression and trichome density. However, heterologous 
expression systems for A&D biosynthesis have been studied 
in E. coli and S. cerevisiae. Majority of these reports reveals 
the expression of amorpha-4,11-diene, a volatile precursor 
of artemisinin. In another semi-synthetic approach, S. cer-
evisiae is used for the production of artemisinic acid and its 
chemical conversion to artemisinin. Expression of complex 
pathway declines the heterologous expressions of the non-
native molecule. Stimulation of the synthesis of artemisinin 
within Artemisia plants has also allowed us to alter our per-
ception of how and where artemisinin is produced within the 
plants. This report might help to develop better strategies to 
increase the production of this valuable therapeutic drug, 
which will, in turn, allow greater use of it in the chemo-
therapy of malaria and other diseases.
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