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A licensing step links AID to transcription
elongation for mutagenesis in B cells
Stephen P. Methot 1,2,9, Ludivine C. Litzler1,3, Poorani Ganesh Subramani1,2, Anil K. Eranki1, Heather Fifield4,

Anne-Marie Patenaude1,10, Julian C. Gilmore1, Gabriel E. Santiago5, Halil Bagci1,6, Jean-François Côté1,6,7,

Mani Larijani4, Ramiro E. Verdun5,8 & Javier M. Di Noia 1,2,3,7

Activation-induced deaminase (AID) mutates the immunoglobulin (Ig) genes to initiate

somatic hypermutation (SHM) and class switch recombination (CSR) in B cells, thus

underpinning antibody responses. AID mutates a few hundred other loci, but most AID-

occupied genes are spared. The mechanisms underlying productive deamination versus non-

productive AID targeting are unclear. Here we show that three clustered arginine residues

define a functional AID domain required for SHM, CSR, and off-target activity in B cells

without affecting AID deaminase activity or Escherichia coli mutagenesis. Both wt AID and

mutants with single amino acid replacements in this domain broadly associate with Spt5 and

chromatin and occupy the promoter of AID target genes. However, mutant AID fails to

occupy the corresponding gene bodies and loses association with transcription elongation

factors. Thus AID mutagenic activity is determined not by locus occupancy but by a licensing

mechanism, which couples AID to transcription elongation.
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The enzyme activation-induced deaminase (AICDA, refer-
red to as AID, encoded by the Aicda gene) initiates genetic
modifications at the immunoglobulin (Ig) genes in acti-

vated B cells1,2. AID catalyses the deamination of deoxycytidine
to deoxyuridine on single-stranded DNA (ssDNA)2. This change
is mutagenic, but further processing of the deoxyuridines by DNA
repair enzymes underpins somatic hypermutation (SHM) and
class switch recombination (CSR), which are indispensable for
efficient antibody responses1–3. As deleterious side effects of SHM
and CSR, AID can mutate and induce DNA damage outside the
Ig loci, in many cases triggering chromosomal translocations4.

DNA repair pathways limit off-target mutations and DNA
damage by AID5–7. Nevertheless, several additional layers of
regulation are necessary to control AID oncogenic and cytotoxic
activity8. Regulation of AID protein levels and nuclear access
restrains both on- and off-target activities, but it is unclear
whether they contribute to target specificity1. The preferential
targeting of AID to the Ig genes and how AID mutates a small
number of additional genomic loci while sparing most others is
an area of active research4,9. The Ig loci possess an intrinsic ability
to attract AID activity10, conferred in part by specialized cis-
acting elements that combine transcriptional enhancers with
multiple transcription factor-binding sites and can ectopically
function to target SHM11,12. Similar elements have not been
identified in AID off-targets, but these loci share with the Ig the
characteristic of showing convergent transcription and being
associated with strong super-enhancers13–15. Nonetheless, many
highly transcribed genes have similar characteristics but are not
mutated, so an additional layer of regulation must exist. The
identity of the trans-acting factors targeting AID to the Ig loci is
also elusive, though non-coding RNA and transcription factors
likely have a function4. Genome-wide studies have identified a
few factors that correlate with AID occupancy and mutagenic
activity, such as RNA polymerase II (RNAPII), its associated
factor Spt5 (Supt5h) and the RNA processing exosome16–18.
Again, these factors function at a much larger number of loci
than are mutated by AID and fail to explain AID’s specificity on
their own.

Thus there is a three-tier system of AID targeting, with the Ig
loci being targeted much more frequently than any AID off-
targets but the latter restricted to a few hundred sites. Beyond
specific examples of loci occupied but not mutated by AID19, the
analysis of AID occupancy by chromatin immunoprecipitation
(ChIP)–sequencing has suggested its association with ~6000
genes in B cells, while AID-induced damage is limited to some
300 loci7,13,14,20,21. This begs the question of why most sites
bound by AID are spared from its activity.

Here we report a new functional domain of AID that is dis-
pensable for enzymatic activity but necessary for on- and off-
target biological activity in B cells. Systematic analysis of the
function and interactome of AID variants with mutations in this
arginine-rich (RR) domain reveals that they have a defect speci-
fically in their association with the gene body of physiological and
collateral target sites, explaining their failure to mutate. Our
results uncover a licensing mechanism that most likely couples
AID to transcription elongation, which can explain why occu-
pancy is not sufficient to predict AID activity and suggest a new
model for productive AID targeting. Our data also suggest that
limiting nuclear levels of AID are important to enforce this
licensing mechanism.

Results
Three arginines in AID α6 define a new functional domain. In
previous structure–function analyses, we used a set of chimeric
proteins in which contiguous regions of AID were replaced by

their homologous region from APOBEC2 (A2)22–24. Only one of
these, AID-A2#5, could mutate the Escherichia coli genome
(Supplementary Fig. 1a, b). AID-A2#5 replaces a large C-terminal
portion of AID, starting from the loop preceding alpha-helix 6
(α6) and eliminating the C-terminal E5 domain, which is
necessary for CSR25. However, not only did adding back E5 not
rescue CSR but this chimera also lacked IgV SHM activity when
used to complement Aicda−/− B cells (Supplementary Fig. 1c, d).
A smaller chimera, replacing only the α6 of AID with that of A2
(AID-A2 α6) had measurable activity in E. coli but not in B cells
(Supplementary Fig. 1a–d). The functional defect of AID-A2 α6
could not be explained by differences in protein abundance or
nuclear access (Supplementary Fig. 1b–e). These results suggested
that the AID α6 contained residues required for SHM and CSR
but dispensable to mutate E. coli.

We sought to identify single amino acid substitutions within
AID α6 that could separate its ability to mutate E. coli from its
biological activity in B cells. Comparing a three-dimensional
molecular model of AID26 to the A2 structure27 showed several
residue and charge differences in α6 between these paralogues
(Fig. 1a). To obtain AID variants with minimal structural
alterations that could recapitulate the phenotype of the chimeras,
we independently mutated several of these AID residues to the
corresponding A2 residue. Three of these recapitulated the results
obtained with the chimeras. AID R171Y, R174E and R178D
mutated E. coli with the same efficiency as AID but were inactive
for SHM and CSR (Fig. 1b–d). In contrast, adjacent mutations
AID R177A and S173E maintained all three activities (Fig. 1a–d).
Notably, Arg 171, 174 and 178 are conserved in AID from most
jawed vertebrates but not in the APOBECs (Supplementary
Fig. 1f) and form a contiguous AID surface (Fig. 1a)26,28,29. The
natural AID variant R174S found in some immunodeficient
HIGM2 patients30 conserves DNA binding and processivity but
has substantially reduced catalytic activity31. Furthermore,
protein arginine residues are common contact points with nucleic
acids32. Nonetheless, the R-mutants show similar DNA-binding
affinity and deaminate ssDNA within a bubble substrate in vitro
with similar specific activities to wild-type (wt) AID (Fig. 1e, f).

To test the role of the positive charge contributed by these Arg
residues, we substituted each of them for lysine (Supplementary
Fig. 2). AID R171K had reduced E. coli mutation activity and a
proportional decrease in SHM and CSR, indicating a structural
contribution to catalysis that Tyr can provide but Lys cannot.
AID R174K mutated E. coli with 50% efficiency compared to AID
and showed a proportional decrease in SHM but lacked CSR,
indicating not only a structural contribution for R174 but also a
specific role in CSR. AID R178K was indistinguishable from AID
for all activities, indicating that, in this case, the charge is
sufficient for biological function.

We conclude that AID arginines 171, 174 and 178 not only
contribute in charge but also structurally to creating a functional
domain necessary for SHM and CSR. Since the substitutions to
the corresponding A2 residues consistently retained enzymatic
activity, we used those mutants for dissecting the role of this
functional domain (hereafter, the RR domain).

AID R-mutants enter the nucleus but lack off-target activity.
Nuclear access of AID is restricted, with ~10% of AID being
nuclear in homeostasis as a consequence of several mechanisms
regulating AID nuclear residency and protein stability33. To
exclude that the functional defect of the R-mutants was due to
defective nuclear access, we analysed their subcellular localization.
We used AID-deficient CH12 B cells, in which wt AID recon-
stituted CSR activity but none of the R-mutants did, despite
similar expression levels (Supplementary Fig. 3a-c). Akin to wt
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AID, the R-mutants were cytoplasmic in steady state and accu-
mulated in the nucleus after inhibiting nuclear export with lep-
tomycin B (LMB) and/or AID cytoplasmic retention with
didemnin B (Did B) (Fig. 2a). Probing for AID by western blot

(WB) in cytoplasmic and nuclear extracts from untreated cells
showed that nuclear levels for all AID variants were similar to wt
AID, even for R174E that showed reduced cytoplasmic levels
compared to wt AID (Fig. 2b). AID can be trapped inside the
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Fig. 1 Identification of functionally inactive AID variants. a (Left) Comparison of our 3D model of AID to the experimental structure of APOBEC2 (PDB
2NYT) and an AID variant (PDB 5JJ4) in the same orientation. Selected residues within helix α6 are labelled. Side chains for basic (blue) and acidic (red)
residues are shown. (Right) Schemes of AID and APOBEC2. b Mutagenic activity in E. coli, measured by the relative frequency of rifampicin-resistant (Rif-
R) colony-forming units (cfu) arising from cultures expressing AID variants or empty vector (Ctrl). Means (bars) of median values (dots) obtained from 3
to 8 independent experiments (5 cultures/experiment) per construct are shown, normalized to AID. c Somatic hypermutation activity, assayed by the
relative IgM-loss accumulation in cultures of DT40 Aicda−/− ΔΨVλ B cells complemented with AID variants-ires-GFP or empty vector (Ctrl). Means
(bars) of the median values (dots) obtained from 2 to 5 independent experiments (12–24 cultures/experiment), each normalized to the median value of
AID. d Class switch recombination activity in Aicda−/− mouse primary B cells cultured with LPS and IL-4 and transduced with AID variants-ires-GFP or
empty vector (Ctrl). Means (bars) proportion of IgG1+ cells in the GFP+ population at 72 h after transduction for each mouse (dots) from 5 to 7
independent experiments are shown, normalized to AID. In b–d, WB of cell extracts probed with anti-AID antibody and loading control are shown at the
bottom. e Catalytic kinetics of purified recombinant wt AID and R-mutants assayed by the standard alkaline cleavage assay for deamination. (Top)
Representative assays used to measure specific activity of wt AID and R-mutants. (Bottom) Mean ± s.d. of four independent experiments were quantified. f
DNA-binding affinity of wt AID and the R-mutants assayed by EMSA. (Top) Representative EMSA gels are shown. (Bottom) Mean Kd was calculated from
four independent experiments for each AID variant. For gel source data, see supplementary Fig. 7
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nucleus upon reforming of the nuclear envelope after mitosis34.
This was maintained by the R-mutants (Fig. 2c and Supple-
mentary Fig. 3d). Thus the mechanisms regulating AID nuclear
access are functional in the R-mutants.

As the R-mutants still accessed the nucleus, we asked whether
their functional defect was upstream or downstream from
deamination. To do so, we measured AID-induced mutations at
the Sμ region, the major AID target at the Igh locus during CSR35.
In reconstituted Aicda−/− Ung−/− B cells, AID R171Y and
R178D had substantially lower mutation frequency than wt AID
(Fig. 3a), proportionally to the SHM and CSR defects observed
(Fig. 1c, d).

We next asked whether this apparent Ig-targeting defect of the
R-mutants extended to other loci. As a proxy assay for genome-
wide mutagenesis, we measured the decrease in fitness that is
associated with AID off-target DNA damage6,36. AID expression
was sufficient to compromise cell fitness in competitive cultures
of CH12 cells, and this effect was enhanced by using a low dose of
Did B, which increases the proportion of AID in the nucleus and
boosts off-target activity26 (Fig. 3b). Cells expressing the R-
mutants showed no cell fitness defect, just like AID-deficient cells
or those expressing catalytically inactive AID E58A (Fig. 3b). To
confirm these results, we introduced the R-mutants into the
hyperactive AID7.3 variant, which bears three point mutations
(outside α6) that increase enzymatic activity three-fold, leading to
proportionally higher SHM, CSR, chromosomal translocations
and DNA damage in B cells36,37. The AID7.3 R-mutants
maintained hyperactivity in E. coli (Fig. 3c), yet they were still
severely deficient for CSR, SHM and cytotoxicity in CH12 and
DT40 B cells (Fig. 3d–f). We conclude that the R-mutants enter
and accumulate in the nucleus similarly to wt AID but have
globally reduced mutagenic activity in B cells.

The AID RR domain is dispensable for chromatin association.
The nuclear fraction of AID is difficult to visualize in whole cells
because of the signal coming from cytoplasmic AID. To test
whether the chromatin association of the R-mutants was different
from wt AID, we combined a nuclear wash technique38 with
confocal microscopy. We first validated this in situ fractionation
method on endogenous AID using CH12 cells, where eliminating
the cytoplasmic signal allowed specific detection of AID in the
nucleus (Fig. 4a). We then compared the R-mutants to wt AID in
transduced AID-deficient CH12 cells (Fig. 4b). Washing away
cytoplasm and nucleoplasm, as shown by the loss of the cyto-
plasmic AID and cell-wide green fluorescent protein (GFP) sig-
nals, revealed that AID E58A and the R-mutants showed the
same chromatin association as wt AID (Fig. 4b).

To confirm the association of the R-mutants with chromatin,
we used a biochemical fractionation protocol that uses an
incomplete DNA digestion by micrococcal nuclease (MNase)
followed by sequential extractions with increasing salt concentra-
tions39 (Fig. 4c). As expected, the majority of AID was
cytoplasmic, and the lack of cytoplasmic contamination in the
isolated nuclei was confirmed by the glyceraldehyde 3-phosphate
dehydrogenase (Gapdh) partition (Fig. 4d). Nuclear fractionation
showed some Spt5 but no RNAPII in the MNase fraction. All
RNAPII and most Spt5 were found in the low and high salt
fractions, representing loosely and tightly held transcription
complexes, respectively39 (Fig. 4d). The latter fraction also
contained most of the chromatin, judging from nucleosome
content (Fig. 4d). Notably, ~60% of the nuclear AID was found in
the 600 mM NaCl extract (Fig. 4d, e), indicating tight chromatin
association, with little AID in the MNase or 150 mM NaCl
fractions. The rest of AID was present in a remaining pellet that
was largely devoid of RNAPII, Spt5 or chromatin but contained
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Lamin B, thus defining a second pool of nuclear AID that is either
part of non-soluble nuclear complexes not directly associated
with transcription factors or precipitates during extraction. In
either case, the data indicate at least two distinct pools of AID
associated with chromatin/nuclear matrix, independently of
catalytic activity and biological function. Importantly, the R-
mutants had similar distribution profile and proportions as wt
AID in all fractions (Fig. 4d, e), showing that they are normally
associated with the chromatin in homeostasis. We conclude that
the R-mutants dissociate the chromatin interaction from the
biological activity of AID, suggesting that these are mechan-
istically distinct steps.

AID–chromatin association needs Spt5 but not transcription.
We investigated further the association of AID and the R-mutants
to chromatin. Spt5 is important for AID activity in B cells and
correlates with AID occupancy genome wide17, but it is not
known whether it is necessary or sufficient for AID–chromatin
interaction. Spt5 knockdown in CH12 cells not only reduced CSR

but also overall chromatin association of both endogenous and
transduced AID (Supplementary Fig. 4a, b and Fig. 5a). Inter-
estingly, the R-mutants were similarly dependent on Spt5 for
chromatin association (Fig. 5a). We directly assessed whether an
accumulation of Spt5 at the chromatin was sufficient to induce
local AID recruitment by using U2OS cells that contain a geno-
mic Lac operon array (LacO), which is recognized by the Lac
repressor (LacR)40 (Fig. 5b). In this system, a mCherry-LacR-Spt5
fusion recruited AID-GFP, as well as the R-mutants, to the LacO
locus (Fig. 5b). As controls, the mCherry-LacR fusion alone did
not recruit AID-GFP, and APOBEC1-GFP was not recruited by
mCherry-LacR-Spt5.

The association of AID to RNAPII depends on Spt517, but
whether transcription or RNAPII itself are involved in retaining
AID at the chromatin is unknown. To test this, we treated CH12
cells with actinomycin D (Act D), a DNA intercalating compound
that disrupts transcription elongation41. The eukaryotic RNA
polymerases show unequal sensitivity to Act D, RNAPI>RNA-
PII>RNAPIII42. Act D at doses that inhibit RNAPI (0.04 μM) or
RNAPI and II (0.4 μM) slightly reduced chromatin-bound
RNAPII and caused some AID redistribution to distinct nuclear
sites but did not significantly change the amount of AID
associated with the chromatin (Fig. 5c). Interestingly, at 4 μM
Act D, both RNAPII and AID were depleted from the chromatin
(Fig. 5c). A time course at 2 μM Act D showed that RNAPII and
AID were concomitantly depleted from the chromatin (Fig. 5d),
suggesting that retention of AID at the chromatin might
be dependent on RNAPII. The chromatin association of the R-
mutants was similarly sensitive to Act D (Fig. 5e).

Surprisingly, AID was partially resistant to chromatin disrup-
tion by DNase treatment, which depletes nuclear Spt5 but leaves
the nuclear envelope (evidenced by Lamin B staining) intact
(Fig. 5f and Supplementary Fig. 4c). In contrast, nuclear AID was
largely depleted after RNase treatment, despite chromatin-
associated Spt5 being resistant (Fig. 5f).

We conclude that the broad association of AID to chromatin
requires RNA and the transcription machinery but not
transcriptional activity, with Spt5 accumulation sufficing to
promote the recruitment of AID to chromatin, although this
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effect could be indirect and likely requires additional factors, such
as RNA. The fact that chromatin-associated AID exists in at least
two distinct fractions, only one of which contains Spt5 and
RNAPII (Fig. 4d), implies that AID is dynamically associated with

these fractions. Constant cycling through Spt5 would explain why
Spt5 knockdown evicts AID from the chromatin. The RR domain
is dispensable for this dynamic interaction, yet necessary for
function, suggesting that it mediates productive targeting of AID.
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Modular nature of the RR domain. To obtain mechanistic
insight into the defect of the AID R-mutants, we asked whether a
wt AID RR domain could rescue their function by fusing either wt
AID or the R-mutants to the catalytically inactive AID E58A
mutant. The control AID-AID E58A fusion protein had reduced
mutagenic activity in E. coli, compared to the AID monomer, but
still produced substantial CSR (Fig. 6a). The analogous R-mutant

fusions had the same activity as AID-AID E58A not only in E. coli
but also for CSR (Fig. 6a). In this experiment, catalytic activity is
derived from the R-mutant AID, while AID E58A provides the
RR domain function. This was confirmed by further mutating the
RR domain of AID-E58A in these fusions, which did not affect
activity in E. coli but eliminated CSR activity (Fig. 6a). This
demonstrates that the two functions are modular and suggests
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that the R-mutants are still intrinsically capable of deaminating
the Ig locus.

AID R-mutants lose specific interactions in vivo. Our results
suggest that the RR domain may mediate an interaction necessary
for targeting AID activity. To identify proteins that associate with
AID in a manner that depends on the intact RR domain, we
compared the interactome of AID and two R-mutants in live B
cells. We used BioID, a proximity-based biotin labelling techni-
que in which a bait is fused to the promiscuous BirA* biotin ligase
that can label the protein environment of the bait in an ~10 nm
radius43. We generated an AID-BirA* fusion, which was active
for CSR in transduced Aicda−/− B cells, and its R171Y or R178D
derivatives (Fig. 6b). Addition of biotin to the cultures led to
biotinylation of proteins in cells expressing BirA* fusions
(Fig. 6c), proportionally to AID-BirA* expression levels (Sup-
plementary Fig. 5a, b). The vast majority of AID interactions were
conserved in the R-mutants, including many validated AID
interactors (Fig. 6d, e and Supplementary Fig. 5f), further con-
firming the structural integrity of the mutants. Using four dif-
ferent statistical methods, we identified 54 proteins that showed
reduced interaction with both R-mutants compared to AID, 29 of
these were identified by at least two methods (Fig. 6d, Supple-
mentary Fig. 5c–e, and Supplementary Table 1, see Methods).
Functional annotation of the BioID hits showed nine chromatin-
associated factors, including the histone chaperones Spt6
(Supt6h) and Nap1l4 as well as the P-TEFb component Cdk9,
which are functionally linked to transcription elongation44

(Fig. 6f). We also found seven factors linked to co-transcriptional
RNA processing: splicing and mRNA transport factors, as well as
Dicer which can bind to dsRNA resulting from convergent
transcription induced by R-loops45. Of these, only Spt6 has
been previously shown to interact with AID by co-
immunoprecipitation (co-IP). Interestingly, standard pull down
from cell extracts showed that GFP-tagged R-mutants still co-IP
Spt6 (Fig. 6g). However, streptavidin pull down of proteins bio-
tinylated in live CH12 B cells expressing AID- or R-mutants-
BirA* confirmed the lack of interaction with the R-mutants in live
cells (Fig. 6h). These data together strongly suggest that the BioID
result reflects the loss of the functional interaction between the R-
mutants and Spt6, rather than their physical inability to form a
complex with Spt6. We conclude that the defect in the R-mutants
lies after chromatin association but prior to the transcriptional
step in which Spt6 is recruited.

AID R-mutants fail to occupy the target genes body. The R-
mutants were able to interact with RNAPII (Fig. 6e, g), yet did not
mutate B cells. As Spt5 is recruited to promoter-proximal paused
RNAPII, and Spt6 only to active transcription46, we hypothesized
that the R-mutants might fail to progress from paused to elon-
gating RNAPII. We therefore compared the occupancy of wt AID
and the R-mutants near the transcription start site (TSS) versus
the gene body at the physiological and one prominent off-targets
of AID. We used an antibody against the E5 domain of AID to
perform ChIP from Aicda−/− mouse B cells complemented with
either wt AID or the R-mutants and stimulated for CSR to IgG1.
We first analysed the Sμ-region, the major AID target at the Igh
locus during CSR35, comparing AID occupancy at the region
around the TSS where paused RNAPII is expected44, to the
downstream Sµ region (Fig. 7a). ChIP showed that wt AID was
present in all amplicons but was highest at the Sμ region (Fig. 7a),
where elongating RNAPII was previously shown to stall47. This
profile was not an artefact of AID overexpression, as endogenous
AID had a similar distribution (Fig. 7b). Spt6 was also present in
all amplicons (Fig. 7b), as expected for a highly transcribed

gene46. In contrast, the R-mutants were present at the TSS but
depleted from the Sμ gene body (Fig. 7a), and we obtained the
same result at the Sγ1 region (Fig. 7b). Moreover, we were able to
detect low but reproducible ChIP signals for AID at the IL4Ra
locus, a known AID off-target48, where the R-mutants were
specifically depleted within the gene body but showed normal
occupancy at the promotor, compared to wt AID (Fig. 7d). As a
control, no AID or R-mutants were detected at either the pro-
moter or the gene body of Gapdh (Fig. 7e), which is not occupied
by endogenous AID48. To test whether the same defect could
underlie the inability of the R-mutants to do SHM, we analysed
AID occupancy at the IgV region in complemented DT40 Aicda
−/− ΔΨVλ B cells. Again, the R-mutants were equally recruited to
the IgV promoter but substantially depleted from the gene body,
compared to wt AID (Fig. 7f). As an additional control in all
ChIPs, we used AID E58A, which showed similar occupancy as
wt AID at all at the regions tested, indicating that the simple lack
of deamination ability could not explain the observed occupancy
profile. All AID variants showed similar expression levels in B
cells (Fig. 7g).

We conclude that the R-mutants can occupy the promoter-
proximal regions of all physiological and at least one off- AID
targets, yet fail to occupy the corresponding gene bodies. Thus,
the lack of association between the R-mutants and Spt6 most
likely reflects the uncoupling of the AID R-mutants from
elongating and/or stalled RNAPII, which suggests the existence
of a licensing step for productive targeting of AID.

Constitutively nuclear AID bypasses licensing. The RR domain
was dispensable for mutagenesis in E. coli, which also depends on
transcription49, thus suggesting that the licensing step can be
bypassed. We therefore asked whether a constitutively nuclear
AID might rescue the defect of the R-mutants by mimicking the
E. coli situation, where proximity to the genome is not regulated.
We introduced the R-mutants into AIDΔE5, a nuclear AID
variant24,36 that results in >3-fold higher steady-state levels of
nuclear enzyme in CH12 cells (Fig. 8a). The AIDΔE5 R-mutants
were as active as AIDΔE5 in E. coli (Fig. 8b). In contrast to their
effect on full-length AID, mutations R174E and R178D did not
prevent the detrimental effect on cell fitness or ability to generate
γH2AX foci of AIDΔE5 in B cells (Fig. 8c, d). Moreover, when
expressed in Aicda−/− DT40 B cells, AIDΔE5 R174E and
AIDΔE5 R178D produced similar SHM levels than AIDΔE5 at
the IgV, as judged by the IgM-loss assay as well as by mutation
frequency and profile (Fig. 8e, f and Supplementary Fig. 6). While
AIDΔE5 is deficient for CSR, it can target and deaminate the
Sµ36. AIDΔE5 R174E deaminated the Sµ with the same frequency
and profile as AIDΔE5 in complemented Aicda−/− Ung−/− pri-
mary B cells, with R171Y and R178D producing less but still
substantial mutations (Fig. 8g). Interestingly, AIDΔE5 R171Y
consistently produced less SHM, DNA damage and Sµ mutations
than AIDΔE5 and the other two mutants, despite equal expres-
sion (Fig. 8h), suggesting an additional role of this residue for
mutagenesis in B cells. Nonetheless, the results with the other two
mutants indicate that at least R174 and R178 are dispensable for
deaminating the physiological AID targets when the proposed
licensing step is bypassed, which can be achieved when nuclear
AID levels are not limiting. We conclude that any possible dea-
mination defect in the specific R-mutants used here are insuffi-
cient to explain their biological defects and that limiting AID
nuclear levels helps enforcing licensing.

Discussion
The genes that are mutated by AID in B cells share a transcrip-
tional landscape associated with super-enhancers and convergent
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transcription13–15. This demonstrates that AID targeting is based
on the local chromatin architecture, rather than the fixed features
of the target genes. The mechanism underlying the productive
targeting of AID remains unclear, as it cannot be explained by
differential recruitment of AID given that AID occupancy is
insufficient for mutation4,19,20,48. Here we uncover an obligatory
licensing step for AID that provides insight into this fundamental
question.

We show that specific substitutions of either Arg residues 174
or 178, and to a lesser extent Arg 171, dissociate the ability of AID
to associate with chromatin and occupy promoter-proximal
regions from its ability to induce mutations in the downstream
genes in B cells. It was recently proposed that these Arg in AID α6
form part of an assistant patch required for deaminating struc-
tured DNA, especially G4 DNA that forms at the S-regions50.
Several lines of evidence indicate that the functional defect of our
R-mutants cannot be explained by a potential defect in deami-
nating structured DNA: (1) None of the R-mutants affect E. coli
genome mutagenesis or its ability to bind to and deaminate a
bubble substrate in vitro (Fig. 1b, e, f); (2) Catalytically inactive

AID E58A can occupy the target regions; (3) When licensing is
bypassed using the AIDΔE5 variant, R174E has no effect on, and
R178D and R171Y only reduce by 2–3-fold, the ability to mutate
the Sµ (Fig. 8g), a much less dramatic effect than these mutations
have on CSR activity. In fact, AID R174E, which has virtually no
CSR activity (Fig. 1d and ref. 50), retains at least 50% enzymatic
activity on G4 DNA50; (4) the IgV does not form G4 DNA51 and
AIDΔE5 R174E and AIDΔE5 R178D show normal SHM (Fig. 8f);
(5) These nuclear AID mutants also produce normal levels of off-
target DNA damage in B cells (Fig. 8d). On the other hand,
AIDΔE5 R171Y is less efficient in deaminating the Sµ and even
more impaired for SHM and DNA damage, indicating an addi-
tional defect compared to R174E and R178D. This defect could be
biochemical but remains to be studied. Thus our results do not
dispute the involvement of the α6 Arg residues in assisting dea-
mination of G4 DNA50 but provide good evidence that they have
an additional function, which we propose is AID licensing.

AID and the R-mutants broadly associate with chromatin. We
show that Spt5 accumulation can promote AID recruitment to
chromatin, fitting the observation that AID accumulates at
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genomic Spt5 peaks17,48, although this could be indirect and
other factors might share this capacity. Several factors seem to
contribute to the association of AID with chromatin. The physical
presence of RNAPII may be required, but transcription itself is
dispensable. Our data indicate that Spt5 is required to maintain
chromatin-wide association of AID, as Spt5 depletion evicts AID
from chromatin. On the other hand, RNase treatment also evicts
AID from the chromatin but does not evict Spt5. Moreover, a
large proportion of chromatin-associated AID is in a fraction
devoid of RNAPII or Spt5, as shown by salt fractionation. One

possible explanation for these observations is that the broad
distribution of AID at the chromatin reflects dynamic associa-
tions or shuttling between Spt5 complexes and at least another
distinct RNA-dependent complex. We propose that dynamic
association with chromatin and accumulation at Spt5-rich regions
allow AID to sample multiple loci. Similar diffusion and accu-
mulation behaviour has been described for transcription factors
searching for their target DNA sequences52. Unlike transcription
factors, AID does not recognize a specific DNA sequence2, and
the licensing step we report would provide the extra level of
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regulation to recognize deamination targets after associating with
Spt5-rich promoters.

The current model for AID targeting posits that AID mutates
when RNAPII stalls, but this does not explain how AID associates
with stalled polymerase, beyond invoking a role for Spt553. Like
wt AID, the R-mutants associate with Spt5 and are recruited to
the promoter-proximal region of various target sites (Fig. 7) but
fail to act, thereby uncovering an additional level of regulation.
Our results are consistent with AID being recruited to the TSS
and progressing with transcription elongation until the poly-
merase becomes stalled, rather than being directly recruited to
stalled polymerases. Abnormally high nuclear AID levels can
bypass this licensing step, possibly by direct recruitment to stalled
polymerases, resulting in a highly mutagenic enzyme. This would
provide a rationale for the abundance of mechanisms that restrict
AID nuclear access1, which would serve to enforce licensing.

In conclusion, our data are consistent with a model (Fig. 8i) in
which AID samples the genome by dynamic and broad chro-
matin association. The low concentration of AID in the nucleus
would favour its accumulation at promoter-proximally paused
RNAPII, probably via Spt517,48, but likely involving additional
factors. Only those loci within a permissive transcriptional
landscape would contain the factors that mediate the coupling of
AID to transcription elongation, licensing AID to deaminate the
downstream region, as shown for the IgV and Sµ regions. The R-
mutants fail to interact with Spt6 in live cells but have not lost
biochemical interaction ability with this factor, suggesting that
licensing takes place before their encounter during transcription,
rather than Spt6 being directly involved. Elucidating the mole-
cular mechanism of licensing will require considerable work but it
is likely that it takes place within super-enhancers13–15. Our result
at Il4ra suggests that licensing permits mutation of AID off-
targets (which will need to be confirmed genome wide) but is
probably more active at the Ig loci and absent from those loci that
are not mutated by AID. We speculate that the nuclear deaminase
APOBEC3B and other AID paralogues with antiviral activity54

have lost the RR domain and thereby licensing to prevent
mutating the self-genome during transcription.

Methods
Animals. Aicda−/− mice3 (a gift from Dr. T. Honjo, Kyoto University, Japan) and
Aicda−/− Ung−/− mice (Ung−/− mice55 were a gift of Dr H. Krokan, Norwegian
University of Science and Technology, Norway) in C57BL/6J background were
bred at the specific pathogen-free facility of the Institut de Recherches Cliniques de
Montreal. Male and female mice of 6 weeks to 8 months old were used as a source
of B cells. Animals were euthanized in CO2 chamber. All animal work was

approved by the IRCM animal protection committee (AUP 2015-10) in accordance
to the guidelines of the Canadian Council for Animal Care.

DNA constructs. Retroviral vector pMXs human AID-, AIDΔE5- and AID7.3-
ires-GFP, as well as mouse AID-GFP, have been described24,26,36. Human AID
fusions were assembled as BamHI-AID-EcoRI-Linker-HindIII-AID-E58A-XhoI
cassettes into pTrcHisA (ThermoFisher) or pMX-ires-GFP (Cell Biolabs). The
linker encoded a flexible (SGGGG)x3 peptide. Human SPT5 was PCR amplified
and cloned into a gateway-compatible mCherry-LacRep destination vector56 (a gift
from Dr. D. Durocher, University of Toronto, Canada). Mouse AID and Linker-
BirA* were PCR amplified using gateway-compatible primers and cloned into
appropriate donor vectors to generate AID-BirA* fusions into a homemade
gateway-compatible pMX-ires-GFP bearing a gateway cassette cloned BamHI-
EcoRI by using Multisite gateway technology (Invitrogen). AID variants were
generated by PCR amplification with ad hoc oligonucleotides or by quick-change
site-directed mutagenesis using KOD1 DNA polymerase (Toyobo Inc.). For oli-
gonucleotide sequences, see Supplementary Table 2.

Cell culture and transduction. CH12 cells3 (A kind gift from Dr T Honjo, Kyoto
University, Japan) and primary B lymphocytes were cultured in RPMI 1640 media
(Wisent) at 37 °C with 5% (vol vol−1) CO2. U2OS lacO cells40 (Obtained from Dr
A Orthwein, Lady Davis Institute, Montreal) were cultured in McCoy’s 5a media
(Wisent). Media were supplemented with 10% foetal bovine serum (Wisent), 1%
penicillin/streptomycin (Wisent) and 0.1 mM 2-mercaptoethanol (Bioshop). DT40
Aicda−/− ΔΨVλ cells57 (A kind gift from Dr H Arakawa, IFOM, Italy) were
cultured in RPMI 1640 supplemented as above plus 1% chicken serum (Wisent).
CH12 cells stably expressing short hairpin RNA against AID have been descri-
bed58. All cell lines were regularly tested for mycoplasma, and cell line identity was
inferred from relevant functional assays. Naive splenic B cells from Aicda−/− or
Aicda−/− Ung−/− mice were isolated from total splenocytes depleted with anti-
CD43 microbeads (Miltenyi Biotec, Cat.#130-049-801) in an autoMACS cell
separator (Miltenyi Biotec). For retroviral complementation of DT40 or CH12
cells, VSV-G, MLV gag-pol and pMXs vectors (1:1:4 ratio, 2.5 μg DNA total) were
transfected into HEK293 cells using Trans-IT LT-1 (Mirus Bio, Cat.# MIR 2305).
HEK293 were chosen because of their high transfection efficiency and virions'
production confirmed in test infection assays. Retrovirus for primary cell trans-
duction was produced using Plat-E ecotropic packaging cells (A kind gift of Dr. T
Kitamura, University of Tokyo, Japan)59 transfected with pMXs vectors. For
infections, 1 mL of HEK293 or 1.5 mL Plat-E supernatant at 48 h post-transfection
was used to infect 106 B cells in 24-well plates, in the presence of 8 μg mL−1

polybrene (Sigma, Hexadimethrine bromide Cat.# H9268), by spinning at 600 × g
for 90 min at 32 °C. Medium was replaced 4 h later.

Reagents and antibodies. Stock aliquots: 50 μg mL−1 LMB in ethanol (LC
Laboratories), 20 mM Didemnin B in dimethyl sulphoxide (NSC 325319; provided
by the Natural Products Branch, National Cancer Institute, Bethesda, MD) and 2
mM Actinomycin D in DMSO (Santa Cruz Biotechnology). Drugs were kept at
−20 °C in the dark and diluted fresh before each experiment. Antibodies used for
immunofluorescence (IF): for human AID; rat monoclonal antibody (mAb) anti-
AID (1:500, EK2 5G9, Cell Signaling), for mouse AID; rat mAb anti-AID (1:250,
mAID-2, eBioscience), rabbit mAb anti-SPT5 (1:500, EPR5145(2), Abcam), rabbit
anti-RNAPII (1:100, H-224, SC Biotechnology), goat anti-LaminB (1:500, M-20, SC
Biotechnology), Rabbit anti-γH2AX (1:800, #2577, Cell Signaling). With the
exception of anti-rat Dylight 550 (1:500, SA5-10027, ThermoFisher Scientific), all

Fig. 8 Nuclear exclusion is necessary to enforce AID licensing. a (Left) Representative confocal microscopic images of AID-GFP and AIDΔE5-GFP fusions
in CH12 B cells. (Right) Nuclear GFP signal was measured as the overall GFP signal overlapping with a nuclear mask, generated using Dapi signal. Cells
expressing each construct were fixed and imaged with identical settings in parallel. Individual cell values (dots) are plotted relative to the median of AID-
GFP, from one experiment. Control shows untransfected cells signals. Differences were evaluated by unpaired, two tailed t-test. b Relative mutagenic
activity of AIDΔE5 variants in E. coli, measured as the frequency of rifampicin-resistant (Rif-R) colony-forming units (cfu). Means (bars) of medians (dots)
from 2 independent experiments (5 cultures/experiment), normalized to AID. c Effect of AID or AIDΔE5 variants-ires-GFP on the competitive growth of
transduced AID-deficient CH12 B cells. Means GFP+/GFP− ratio ± s.e.m. over time from two independent experiments, each normalized to maximal value.
d (Left) Representative confocal microscopic images of GFP and γH2AX immunofluorescence with DNA staining (Dapi) in Aicda−/− mouse B cells
activated with LPS and IL-4 complemented with AID variants-ires-GFP vectors. (Right) The proportion of cells with ≥5 γH2AX foci per nucleus is plotted
from 1 experiment, with n cells counted. a, d Magnification 630×. Scale bar, 10 μm. e SHM capacity of AIDΔE5 variants-ires-GFP measured by IgM-loss
over time in complemented DT40 Aicda−/− ΔΨVλ B cells. One of the two independent experiments is shown. f Number and frequency (mutations per
base pair) of mutations scored at the IgV of DT40 Aicda−/− ΔΨVλ B cells expressing AIDΔE5 variants obtained from GFP+ cells sorted at day 3 post-
transduction (see e) from one experiment. Mutation load pie charts, with slices representing proportion of sequences with the indicated number of
mutations and total sequences analysed indicated in the centre. g (Left) Mutation profiles and (right) mutation load, as in f scored at the Sμ region of Aicda
−/−Ung−/− mouse B cells transduced with AIDΔE5 variants. h WB of cell extracts from reconstituted mouse B cells probed with antibodies recognizing
GFP and the N-terminus of AID. For gel source data, see supplementary Fig. 7. i Model for AID targeting (see Discussion)
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other IF secondary Abs were AlexaFluor conjugates (1:500, invitrogen): anti-rat-
680, anti-rabbit-546, anti-rabbit-680, and anti-goat-680. Antibodies use for WB: rat
mAb anti-AID (for human AID; 1:1000, EK2 5G9), a 1:1 mixture of mouse mAb
anti-AID 52–1 and 39–1 (1:5000) specific against unmapped epitopes within
human AID N-terminal half (a gift from Dr. M. Neuberger, Cambridge, UK;
validated in ref. 36), rat mAb anti-AID (for mouse AID; 1:500, mAID-2
eBioscience), rabbit anti-Actin (1:3,000, A2066, Sigma), rabbit anti-GFP (1:2000,
11122, Invitrogen), rabbit anti-GFP-HRP (horseradish peroidase) (1:5000, 130-
091-833, Miltenyi Biotec), mouse mAb anti-GAPDH (1:3000, H-12, SC Bio-
technology), goat anti-LaminB (1:2000, M-20), rabbit anti-SPT5 (1:500, H-300, SC
Biotechnology), rabbit anti-RNAPII (1:500, H-224), rabbit anti-SPT6 (1:2000,
A300-801A, Bethyl Laboratories), Streptavidin-HRP (1:10,000, N100, Thermo
Scientific). Secondary antibodies were anti-mouse-, anti-rat-, anti-goat- or anti-
rabbit-AlexaFluor680 (1:10,000; Invitrogen), read using an Odyssey CLx apparatus
(Li-COR), or the ChemiDoc XRS+ Imaging system (Biorad) for HRP conjugates
developed by chemiluminescence (34080, Thermo Scientific).

Monitoring SHM and CSR. SHM was measured by fluctuation analysis of IgM-
loss in DT40 Aicda−/− ΔΨVλ cells57 complemented by retroviral transduction with
AID or mutants thereof, as described36. Briefly, cells were transduced with pMX
AID variant-ires-GFP vectors, 200 GFP+ cells were sorted and expanded in 24-well
plates for 3 weeks before measuring the proportion of IgM-loss by flow cytometry
using anti-IgM conjugated with R-phycoerythrin (clone M-1, SouthernBiotech).
Gating strategy is shown in Supplementary Fig. 8a. For AID7.3 and AIDΔE5, IgM-
loss was measured in bulk every 2 days for 8 days to determine SHM kinetics. CSR
to IgG1 in complemented mouse Aicda−/− splenic B cells was induced by adding 5
μg mL−1 lipopolysaccharide (LPS) before and after the infection and 20 ng mL−1

mrIL-4 (PeproTech) 4 h postinfection. CSR efficiency in the infected (GFP+)
subpopulations was measured by flow cytometry using biotinylated anti-IgG1 (BD)
followed by anti-biotin-allophycocyanin (Miltenyi Biotec) and propidium iodide to
exclude dead cells. CSR in CH12 B cells was induced with CIT [1 μg mL−1 rat-anti-
CD40 (clone 1C10, eBioscience), 10 ng mL−1 interleukin (IL)-4 and 1 ng mL−1

transforming growth factor-β1 (R&D Systems)]. The proportion of IgA+ cells was
measured 3 days later by flow cytometry using anti-IgA conjugated with R-
phycoerythrin (SouthernBiotech). Gating strategies for CSR are shown in Sup-
plementary Fig. 8b, c. SHM at Sµ was analysed in Aicda−/− Ung−/− mouse B cells
transduced twice with pMX-AID variant-ires-GFP in order to get nearly 100%
infection efficiency. Infected cells were cultured for 4 days with 10 μg mL−1 LPS
and 25 ng mL−1 IL-4 before enriching for live cells using OptiPrep (Sigma) and
purifying genomic DNA with DirectPCR lysis reagent (Viagen Biotech). To analyse
mutations at the Sµ region, we amplified a 1749 bp fragment starting at the TSS in
experiments using full-length AID or 607 bp fragment overlapping the S-region in
experiments with AIDΔE5, using KOD1 DNA polymerase. SHM at the IgV in
DT40 cells was analysed in cells complemented with AIDΔE5 variants and cultured
for 3 days (when IgM-loss levels were not saturated, see Fig. 8e). GFP+ cells were
sorted but no phenotypic selection for IgM was used to be able to calculate actual
mutation frequencies. Genomic DNA was immediately purified using DirectPCR
and the IgV region was amplified36. Oligonucleotide sequences are in Supple-
mentary Table 2. Amplicons were cloned into pGEMT-easy (Promega), and
individual clones were sequenced at Macrogen (Seoul, Korea). The distribution and
frequency of mutations were computed as described36. Briefly, sequences were
aligned using Sequencher (Gene Codes Corp.) and trimmed to remove vector and
primer sequences, and electropherograms were manually inspected to confirm
bona fide mutations before compiling the total and per sequence mutation
numbers.

Competitive growth assays. The effect on cell fitness was analysed by using AID-
deficient CH12 B cells complemented with AID variants-ires-GFP or empty vector
(GFP) by retroviral transduction. Depending on the transduction efficiency, the
population of infected cells was sometimes kept as is or mixed with untransduced
(GFP−) cell. Cells were maintained in culture with normal medium monitoring the
GFP+ to GFP− cell ratio over time by flow cytometry immediately after trans-
duction. Gating strategy is shown in Supplementary Fig. 8d. In some experiments,
cells 1 nM DMSO or Did B were added to the medium. The GFP+ to GFP− cell
ratio over time was monitored by flow cytometry. Gating strategy is shown in
Supplementary Fig. 8d.

Deaminase activity and DNA-binding assays. E. coli mutation assays were
performed using the Δung BW310 strain transformed with AID variants subcloned
as BamHI-XhoI fragments into pTrcHisA (Invitrogen). His-AID fusions were
expressed by 1 mM Isopropyl β-D-1-thiogalactopyranoside induction for 16 h at
37 °C and plated on rifampicin or ampicillin LB plates. Mutation frequencies were
calculated as the median number of colony-forming units that survived rifampicin
selection per 109 ampicillin-resistant cells from 2 to 5 experiments with 5 inde-
pendent cultures per construct. For biochemical assays, EcoRI fragments encoding
the open reading frame of each AID were cloned into pGEX-5×-3 (GE Healthcare)
to generate and purify GST-AID as described28. For each mutant and wt AID, 2–4
independent preparations were purified and tested. An end-labelled bubble sub-
strate containing a 7-nt-long single-stranded region with the motif TGC, previously

described to be an optimal AID substrate, was used in activity assays and elec-
trophoretic mobility shift assays (EMSAs)60. For alkaline cleavage, 0.03–4 nM
substrate was incubated with 0.1 μg AID, followed by addition of UDG, NaOH and
heat, and electrophoresis on denaturing urea gels, as described28,60. For EMSA,
0.015–5 nM substrate was incubated with 0.1 μg of GST-AID in binding buffer (50
mM Tris, pH 7.5, 2 μM MgCl, 50 mM NaCl and 1 mM DTT) in a final volume of
10 μl for 60 min at 37 °C, followed by UV cross-linking as previously described60.
Samples were electrophoresed at 4 °C on an 8% acrylamide native gel. Alkaline
cleavage and EMSA gels were visualized using a PhosphorImager (Bio-Rad).
Densitometry was performed using the Quantity One 1-D Analysis Software (Bio-
Rad). Data were graphed using GraphPad Prism to derive initial deamination
velocity and Kd values.

AID shuttling and nuclear wash protocol. Retrovirally complemented AID-
deficient CH12 cells were treated for 2 h with DMSO, 10 ngmL−1 LMB (a CRM1
inhibitor), 100 nM Did B (an EEF1A inhibitor) or both drugs combined before
harvesting. Cells were washed with phosphate-buffered saline (PBS), then plated on
poly-L-lysine-coated coverslips and fixed in 3.7% (w vol−1) formaldehyde for 10
min and then washed 3× in PBS. The nuclear wash protocol was adapted from ref.
38. Briefly, CH12 cells were plated on poly-L lysine coverslips and washed 1× with
CSK buffer (10mM PIPES, 300mM sucrose, 200mM NaCl, 3 mM MgCl2, 1 mM
EDTA and 1 × fresh complete protease inhibitor (CPI, Roche)). Cells were then
either fixed directly in formaldehyde (whole cell) or washed to remove cytoplasm
and loosely held nuclear proteins. Washing was done by sequentially incubating the
coverslips on ice in: CSK buffer for 1 min, CSK+ 0.1% triton X-100 for 1 min, CSK
+0.5 % triton X-100 for 20min. For nuclease treatments, the last wash was 10min
on ice, then 10min at 37 °C in CSK buffer containing 10 mgmL−1 RNase or 10mg
mL−1 DNase. After washes, cells were fixed in formaldehyde. For all IF, cells were
permeabilized and blocked for 1 h in blocking solution (PBS, 0.5% (v/v) Triton-
X100, 1 mgmL−1 bovine serum albumin (BSA), 5% (v/v) goat serum). For anti-
LaminB IF, blocking buffer was 5% BSA to avoid cross-reactivity of anti-goat sec-
ondary. Cells were then incubated overnight at 4 °C with primary antibodies in
blocking solution, followed by 3× washes with PBS+0.01% Triton X-100 (PBS-T),
then a 1 h incubation with secondary antibodies in blocking solution and 3× PBS-T
washes. After nuclear staining with 4,6-diamidino-2-phenylindole (Dapi; 300 nM in
PBS), coverslips were washed with ddH2O and mounted on slides using Lerner
Aqua-Mount (Thermo Scientific).

LacR-LacO recruitment. U2OS cells with a 256 copy lacO array40 (a gift from Dr.
A. Orthwein, McGill University) were plated on coverslips and co-transfected with
mCherry-LacR-NLS or mCherry-LacR-NLS-SPT5 along with GFP-tagged AID
variants or APOBEC1 using TransIT-LT1 transfection reagent (Mirus). Thirty-to-
40 h post-transfection, cells were fixed in 3.7% (w/v) formaldehyde for 10 min, then
washed 3×, stained with Dapi, washed and mounted as above.

Microscopy. Images were acquired at room temperature using ZEN 2010 on a
Zeiss LSM 700 confocal microscope with excitation lasers at 405 nM (Dapi), 488
nM (GFP), 543 nM (Alexa546 and DyLight550) and 633 nM (Alexa680), using
either 40×/1.3 or 63×/1.4 oil immersion objectives, and collected with a Hama-
matsu PMT. Settings for nuclear wash: endogenous AID, whole cell (laser power 5,
gain 550), nuclear wash (laser power 20, gain 650); overexpressed AID, whole cell
(laser power 5, gain 475), nuclear wash (laser power 5, gain 625). Subcellular
localization was scored in Volocity (Perkin Elmer). Masks were made for each
individual cell for both nuclear and total IF signal. The proportion of nuclear signal
was calculated as the ratio of nuclear signal/total signal×100. For nuclear washes,
whole-cell IF signal was measured from a mask generated by GFP signal, whereas
nuclear signal was measured from a mask generated by Dapi signal. For γH2AX
foci quantification, foci were counted in each transduced, GFP+ cell, using
Volocity spot counting within a nuclear mask generated by Dapi signal. For each
experiment, multiple fields were analysed, excluding cells showing saturated signal,
abnormal DNA structure or mitotic figures. For making figures, images were
transferred to Photoshop for cropping and adjusting contrast throughout the whole
image when necessary to enhance visibility.

Chromatin fractionation. Chromatin fractionation was adapted from ref. 39.
Briefly, ~50 × 106 CH12 cells were collected and washed 1× with ice-cold PBS prior
to re-suspension in 1 mL of Lysis buffer (10 mM HEPES pH 7.9, 10 mM KCl, 1.5
mM MgCl2, 0.34 M Sucrose, 10 % glycerol, 0.1 % Triton X-100, 1 mM DTT, 1 ×
CPI). Cells were lysed for 8 min on ice and then centrifuged at 1300 × g for 4 min.
The supernatant was kept as the cytoplasm fraction. The pellet was resuspended in
200 μL nuclear resuspension buffer (10 mM Tris pH 8, 3 mM CaCl2, 1 mM Mg
Acetate, 0.34 M Sucrose, 0.5% NP-40, 1 mM DTT, 1× CPI). Nuclei were then
layered onto a sucrose cushion (10 mM Tris pH 8, 2M Sucrose, 5 mM Mg Acetate,
0.1 mM EDTA, 1 mM DTT), and centrifuged at 20,000 RPM for 15 min. The
nuclear pellet was resuspended in 500 μL of nuclear resuspension buffer without
NP-40 and then centrifuged at 100 × g for 10 min. For nuclear–cytoplasmic frac-
tionation, the protocol was stopped here and extracts analysed by WB. For further
fractionation, nuclei were washed 1× with nuclear wash buffer (10 mM Tris pH 7.4,
2 mM MgCl2, 1× CPI), then resuspended in 400 μL of nuclear wash buffer and
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placed at 37 °C for 5 min. CaCl2 was added to 1 mM and DNA digested by adding
Mircococcal nuclease (New England Biolabs) to 9.6 UmL−1 for 10 min. Digestion
was stopped by adding EGTA to 2 mM final. An aliquot was saved as the total
nuclear fraction. Nuclei were pelleted for 10 min at 100 × g, and the supernatant
was saved as the MNase fraction. Nuclei were then re-suspended in 700 μL of 150
mM extraction buffer (10 mM Tris pH 7.4, 140 mM NaCl, 1 mM MgCL2, 2 mM
EGTA, 0.1 % Triton X-100, 1× CPI) and incubated for 2 h on a rocker at 4 °C. After
centrifugation for 10 min at 100 × g, the supernatant was saved as the 150 mM
fraction. Nuclei were then re-suspended in 700 μL of extraction buffer, with 590
mM NaCl, and incubated overnight on a rocker at 4 °C. After centrifugation for 10
min at 500 × g, the supernatant was saved as the 600 mM fraction. Nuclei were
finally resuspended in 10 mM Tris pH 7.4, 200 mM NaCl, 1 mM EDTA, 1× CPI
and kept as the pellet fraction. DNA was purified using a PCR Purification Kit
(BioBasic, Cat.# BS614) and then run on an agarose gel in order to confirm efficient
digestion and DNA extraction. Protein fractions were analysed by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and WB.

Chromatin immunoprecipitation. For ChIP in primary B cells, naive Aicda−/−

mouse B cells were stimulated with 12 μg mL−1 LPS and 50 ng mL−1 IL-4 and
retrovirally transduced 24 h later. Cells were harvested at 18–20 h postinfection
when GFP+ cell proportions were 30–50%. For ChIP in DT40 Aicda−/− ΔΨVλ
cells, repeated retroviral transduction achieved ~75–90% GFP+ cells, and cells were
expanded for 48 h. ChIP procedures have been described in detail58. Briefly, cells
fixed with 1% formaldehyde for 30min, were lysed in RIPA buffer and sonicated to
generate DNA fragments 500 bp. Lysate fractions (2 μg μL−1) of 0.5 mg (for
endogenous AID) or 1.25mg (for endogenous SPT6) were precleared with G
protein-Sepharose slurry before incubating overnight with 2–5 μg anti-AID anti-
body (328.8b, Active Motif) at 4 °C. In ChIPs from DT40 extract, Protein G
magnetic microbeads were used and IP purified by µMACS columns (Miltenyi
Biotech). DNA was purified and used as template in real-time PCR reactions
containing 1× SYBR Green Mix (Applied Biosystems), 1/10 fraction ChIP-enriched
DNA and 100 nM primers (see Supplementary Table 2 for primer sequences). Plates
were read in an Applied Biosystems StepOnePlus instrument. Standard curves with
different amounts of the input extracts were run in each plate for each individual
amplicon and used to calculate input %. The input % of the IgG control immu-
noprecipitation was subtracted from each sample to calculate the values reported.

Co-immunoprecipitation. AID-deficient CH12 cells were reconstituted with GFP-
tagged AID variants then lysed as in ref. 17. Briefly, 50 × 106 cells were resuspended in
400 µL of low salt buffer (20mM HEPES pH 7.5, 10 mM KCl, 1 mM MgCl2, 10%
glycerol, 1% NP40, 1× CPI) containing Benzonase nuclease (Sigma) and were soni-
cated 2 × 10 s at 50% amplitude on ice. Samples were then incubated 30min and
clarified at max. speed for 10min. Supernatant was collected and mixed with 250 µL
of high salt buffer (low salt buffer containing 400mM NaCl). The pellet was then re-
extracted with low salt buffer (no Benzonase) as above, and the supernatant was again
supplemented with high salt buffer after clarification. The pellet was finally resus-
pended in 400 µL of high salt buffer and subjected to same extraction. All three
supernatants were pooled (final NaCl concentration of 200mM) and clarified one last
time, before GFP immunoprecipitation was carried out using the μMACS GFP Iso-
lation Kit according to the manufacturer’s instructions (Miltenyi Biotec, Cat.# 130-
091-125). Elution and total lysate were analysed by SDS-PAGE and WB.

BioID and mass spectrometry. BioID samples were processed as described else-
where61, with modifications. Briefly, for each construct, 18 × 106 Aicda−/− mouse B
cells were pre-cultured for 48 h with 0.5 μg mL−1 anti-CD180 (BD Biosciences).
Cells were then infected twice over consecutive days with pMX-AID variants-BirA*-
Ires-GFP or pMX-A2-BirA*-Ires-GFP retrovirus in the presence of 5 μg mL−1 LPS.
After the second infection, media was supplemented with 5 μg mL−1 LPS+25 ngmL
−1 IL-4. The next day, the media was supplemented to 50 μM biotin (Sigma). Cells
were harvested 24 h later (~40–50 × 106 cells), washed 3× with PBS, then lysed in
1.5mL of RIPA buffer and sonicated 30 s at 30% amplitude (3 × 10 s bursts with a 2
s break in between). Benzonase (250U, EMD Millipore) was added to the lysates
during centrifuging, 30min at 16,000 × g, 4 °C. Forty μL aliquots of supernatant
were kept to monitor expression and biotinylation, and the remaining lysate was
incubated with 70 μL of pre-washed streptavidin-sepharose beads (GE Healthcare)
for 3 h on a rotator at 4 °C. Beads were then washed with 1 mL of RIPA buffer,
transferred to a new tube and washed again 2× with 1mL of RIPA buffer and then
3× with 1 mL of 50mM Ammonium Bicarbonate (ABC) (Biobasic). Beads were
then resuspended in 100 μL of ABC with 1 μg of trypsin (Sigma) and incubated
overnight at 37 °C with rotation. The following day, 1 μg of trypsin was added for a
further 2 h digestion. Samples were centrifuged 1 min at 2000 RPM, and the
supernatant was transferred to a new tube. Beads were rinsed twice with 100 μL of
water, and all supernatants were pooled and adjusted to 5% formic acid. Samples
were then centrifuged for 10 min at 16,000 × g for clarification. Trypsin-digested
peptides in the supernatant were dried in a SpeedVac (Eppendorf) for 3 h at 30 °C.
Samples were resuspended in 15 μL of 5% formic acid and kept at −80 °C for mass
spectrometric analysis. Samples were injected into an Orbitrap Fusion (Thermo
Fisher). Protein identification and analysis was carried out as described elsewhere61.
Briefly, RAW files were converted to.mzXML in Proteowizard62. Peptide search and

identification was processed using Human RefSeq Version 57 and the iProphet
pipeline63 integrated in ProHits64.

Statistical analyses. We used four different methods to identify wt AID–BioID
interactions that were significantly and consistently reduced in both R-mutants
tested. Comparative results for the four methods are provided in Supplementary
Table 1. All methods were implemented through ad-hoc scripts in R version 3.3.2
that are available upon request. Tables were handled in R using the data.table
package. Method 1 used fold-enrichment ('Fold'), calculated using mean spectral
counts (s.c.). First, s.c. were normalized in all samples to their corresponding BirA*
s.c. levels. Interactors with at least 2.5-fold enrichment in wt AID over the R
mutants or vice versa were considered differential interactors. To eliminate inter-
actions that were not AID-specific, only interactions with at least five-fold
enrichment over APOBEC2 were considered. Method 2 calculated a Z-score using
log-transformed fold-enrichment values ('Normz'). Method 3 calculated local Z-
scores using a sliding window of 10% of the data points around the candidate in an
ratio-intensity R-I plot ('Maz')65. In methods 2 and 3, hits with global or local,
respectively, Z-scores ≥2 (i.e., 2 s.d. from the mean) were considered as differential
interactors. Methods 1–3 assume normal distribution of the data. Method 4 used
DESeq2 v.1.14.166, an R package that uses generalized linear models to fit a
negative binomial distribution to the data ('Deseq'). The R-mutants were defined as
reference and default parameters from the package were used to carry out the
analysis and calculate differential interactions for AID. Preys with multiple-testing
adjusted P-values (Benjamini–Hochberg procedure) <0.1 were considered as sig-
nificant. All figures were plotted using ggplot2 package in R. Dot plots were gen-
erated using the Prohits-Viz web tool67.

Where indicated, for pairwise comparisons of treatments or conditions,
differences were evaluated by unpaired, two tailed t-test with alpha= 0.05 using
Prism (GraphPad).

Code availability. R scripts used for statistical analyses of BioID data are available
from the corresponding author upon reasonable request.

Data availability. Sequences of mouse Sµ and DT40 IgV regions have been
deposited in GenBank as follows: For Sµ region in Fig. 8g, AIDΔE5 MG904385-
MG904404, AIDΔE5 R171Y MG904405-MG904427, AIDΔE5 R174E MG904428-
MG904449, AIDΔE5 R178D MG904450-MG904469. For DT40 IgV region in
Fig. 8f, AIDΔE5 MG904470-MG904484, AIDΔE5 R171Y MG904485-MG904522,
AIDΔE5 R174E MG904523-MG904557, AIDΔE5 R178D MG904558-MG904592.
For Sµ region in Fig. 3a, AID MG904593-MG904622, AID R171Y MG904623-
MG904654, AID R178D MG904655-MG904685. Mass spectrometric data have
been deposited in MassIVE under ID MSV000081963. All other data generated or
analysed during this study are included in this published article and its supple-
mentary information files.
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