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Precision histology: how deep learning is poised to revitalize
histomorphology for personalized cancer care
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Accurate interpretation of the hematoxylin and eosin (H&E) slide
has remained the foundation of pathological analysis and
diagnostic medicine for over a century.' For the pathologist, the
H&E slide is equivalent to a high-quality patient history or physical
exam. It combines art and science to help triage and guide more
focused and specialized ancillary studies. Unfortunately, the
perceived value of histomorphologic analysis in the era of
precision medicine is diminishing in recent years due to the
emergence of more contemporary and data-rich molecular
studies.™ Ironically, this is no different than the scrutiny that
the patient history and physical exam have faced, in light of
widely available whole-body imaging technologies.’™” Some have
even proposed that given the exponential decrease in sequencing
costs, medical assessment could effectively begin with whole-
genome analysis® Here, we discuss the current state and the
possible future of the H&E stain by highlighting some of its
strengths and shortcomings. It may well be that the scrutiny that
the H&E microscopic exam has faced in recent years* is no fault of
its own, but the lack of effective approaches to routinely extract
more of the rich morphologic information it contains.

The H&E slide continues to be a valuable tool for pathologists
and clinicians alike. For example, quite often, surgeons request
urgent intra-operative pathological interpretations to help guide
surgery. This clinical scenario often necessitates that an accurate
diagnosis be rendered within 5-10 min. The outcome usually has
huge implications for the trajectory of the remaining surgery (e.g.,
extent of resection, triaging additional laboratory tests). As a
result, most surgeons have a strong preference for the expert
opinion of highly subspecialized pathologists (e.g., from a
neuropathologist for neurosurgical intra-operative consults). Until
molecular or alternative analytic approaches become compatible
with these acute timeframes, the H&E slide will continue to be an
essential tool to help guide surgical care.

The H&E slide also has a key role in precision oncology in sub-
acute settings. Technological advances now allow patients’ tumors
to be globally profiled at the genomic, epigenomic, transcrip-
tomic, proteomic, phosphoproteomic, and other -omic levels.>
'° This list of molecular tests, each with their own strengths and
weaknesses, continues to grow. However, even with decreasing
costs of sequencing, performing routine multi-platform molecular
analysis on every specimen will likely not become a time-effective
or cost-effective strategy in the foreseeable future. This relatively
high cost of multi-omic analysis will continue to necessitate
molecular triaging to help narrow testing to those most

appropriate for the specific tumor type and clinical scenario.
Lastly, the H&E slide still remains one of the most versatile
diagnostic tools when only minute amounts of tissue, insufficient
for molecular analysis, is available. Similarly, unlike bulk tissue-
based molecular tests, microscopic analysis preserves important
region-to-region, single-cell-level spatial information that may
have significant implications for diagnostic and treatment
decisions." 2 For example, even for tumors that have been
analyzed at the molecular level, treatment regimens can
dramatically change when specific microscopic features are noted
(e.g., lymphovascular invasion, metastatic foci, elevated mitotic
activity,'”> tumor morphology).'* Therefore, there are many
compelling reasons to retain the H&E exam as a non-
overlapping and essential tool in our growing precision oncology
toolbox.

Perhaps a major limitation of the H&E slide in the era of “big-
data” is the unassisted human interpretation currently used for
analysis. To promote consistency and objective inter-observer
agreement, most pathologists are trained to follow simple
algorithmic decision trees that sufficiently stratify patients into
reproducible groups based on tumor type and aggressiveness
(Fig. 1a-b). For example, in the most common group of brain
tumors known as diffuse gliomas, the pathologist first begins by
examining nuclear morphology to decipher a cell of origin (e.g.,
astrocytoma vs. oligodendroglioma). Once this first decision is
established, the pathologist next assigns a degree of malignancy
based on the presence of mitotic activity, tumor necrosis, and
vascular proliferation (WHO grade II-IV). Even with these simplified
algorithms that focus on binary and sufficiently different features,
inter-observer discordance still persist, even among sub-
specialists.> > '° This diagnostic uncertainty has promoted liberal
and widespread use of costly molecular testing to differentiate
between seemingly histologically indistinguishable lesions.? > 7
'8 Similarly, in efforts to maintain diagnostic objectivity, other
potential prognostic and therapeutic morphologic biomarkers,
such as foci of tumor-infiltrating lymphocytes and fibrotic tumor
reaction, are often omitted. Indeed, even in the molecular era, the
unassisted physician still largely relies on simple decision tree
approaches that utilize only a small fraction of available -omics
knowledge (Fig. 1b). This simplified, technology-free and unaided
approach to histopathology is thus not maximizing the complex
morphological information present for optimal patient
management.
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In an increasing number of social and clinical scenarios, a form
of artificial intelligence (Al) known as deep neural networks (DNNs)
is proving to be a valuable tool for the generation and
implementation of complex multi-parametric decision algo-
rithms.'®"2> With appropriate training, DNNs can match and even
outperform expert-level decision-making in strategic board games
such as chess and Go.'” %° More recently, DNN-based image
analysis of skin lesions has proven capable of yielding diagnostic
interpretations with accuracy similar to board-certified dermatol-
ogists!?! With the recent improvement in high-throughput whole-
slide scanning technologies and image computing, DNNs are
poised to make H&E slide analysis and classification a new source
of large biological data sets for precision oncology.>* 26-%°

Unlike simplified algorithms pathologists are trained to use,
DNNs deconstruct images into pixels and sequentially aggregate
them to form shapes (e.g., lines) and reproducible features that
represent distinct diagnostic patterns (Fig. 1c-d). When given
enough annotated training images, even subtle feature differ-
ences between clinically significant groups can be theoretically
extracted and used to classify future cases.”® 2° With robust
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clinically and genomically well-annotated training sets, minute
differences not apparent to the human observer may even be
used to aid classification and predict likelihood of specific
molecular alterations and prognosis®® (Fig. 1c). Such image-
based exercises, as we have seen, are ideally suited for deep
learning®’ and could provide significant time and cost-saving
measures when prioritizing molecular testing in precision
oncology. They could also significantly improve pathologists’
productivity by highlighting actionable morphologic features (e.g.,
mitotic figures, lymphovascular invasion) that are time-consuming
to identify by the unaided human eye.** 2% 29

Digital revitalization of histomorphology is already showing
promise. For example, Dong et al. recently showed that upwards
of 22 different morphologic nuclear features (e.g., size, shape,
texture) could be extracted and used to train classification models
to reliably differentiate between neoplastic (ductal carcinoma
in situ) and non-neoplastic (ductal hyperplasia) breast lesions.?
Such studies highlight how machine learning can extract novel
and multi-parametric morphologic features not readily accessible
by the human eye.?* *° In addition to refining current diagnostic
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criteria, a recent study by Yu et al. showed that automated
computer-based image analysis of the non-small cell lung cancers
found in The Cancer Genome Atlas (TCGA) could identify novel
morphologic features that predict survival.® Integration of DNN-
based analyses will likely continue to push the boundaries of
clinically relevant morphologic information not found in our
current human-derived pathologic criteria.”® 3' More recently, the
use of DNNs to scan for metastatic tumor foci in lymph nodes
achieved substantially lower false-negative rates when compared
to pathologists (from 26.8 to 7.6%).% 2°

Automation and routine Al-based analysis of the H&E slide to
include these milestones would provide immediate benefits to
patient care. For example, robustly trained DNNs may assist
general pathologists in providing subspecialist-level expertise for
intra-operative consultations. Integration of Al/DNNs into labora-
tory medicine could eventually shift training and the role of future
pathologists toward “big-data” information specialists.?? Such an
evolution would help address the shortage of pathologists and
improve consistency in reporting.

Similarly, automating Al-assisted histologic analysis in non-
emergent settings would likely also improve diagnostic workflow.
Currently, there are numerous “practical” delays in rendering
diagnoses. There is usually a day lost between generation of an
H&E slide and delivery to a pathologist or clinical fellow for review.
Once analyzed, the pathologist generates a differential diagnosis
and triages appropriate immunohistochemical tests to narrow
diagnostic considerations. This usually takes an additional
2-3 days. Only then are appropriate diagnostic and confirmatory
molecular tests considered. This linear series of steps, and the
need to revisit cases multiple times, creates significant delays in
rendering diagnoses and valuable molecular information to
clinicians for personalized patient care. Often, a multitude of
unnecessary molecular tests are liberally and prematurely ordered
in attempts to avoid such delays. Implementation of DNN-based
image analysis could allow a preliminary digital diagnosis to be
provided and initiation of appropriate immunohistochemical
stains and molecular tests before the slides even reach the
pathologists’ microscope. Automated selection of lesional regions
of interest and initiation of relevant multi-omics testing could
even be initiated minutes after the initial slide is generated!

Recent large-scale immunohistochemical efforts are also gen-
erating massive amounts of protein-based histologic information
across different tissue and cancer types.'" 2 These valuable and
publicly available resources are ideally suited to train DNNs to
incorporate follow-up studies into their diagnostic algorithms.
Machine-driven decisions could therefore provide improved and
optimized immunohistochemical approaches that lead to rapid
and cost-effective diagnostic convergence among various other
morphologic considerations.

This revised workflow would significantly expedite pathology
sign-out by having pathologists function as analytic experts that
unify clinical, morphologic, and molecular information into an
integrated diagnosis.”?> Robust training of DNNs with a large
number of molecularly confirmed cases, such as those found in
TCGA, may also identify subtle morphologic features that better
predict presence/absence of molecular alterations.3* This could
provide significant cost savings for pathology departments
without affecting patient care. Similarly, training DNNs with
images from known responders and non-responders to specific
treatments (e.g., immunotherapy) may help to better stratify
patients for appropriate future personalized and precision-based
clinical trials. For example, the presence of tumor-infiltrating
myeloid (TIM) cells are thought to promote invasion and
immunosuppression in glioblastomas.®® Their presence in the
tumor microenvironment may be an important cause of treatment
failure to both conventional and immune-based therapies.3* 3°
Prompt and reliable quantification of TIM in gliomas may thus
provide vital information to stratify a patient to combined
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tripartite immune therapies that include colony stimulating factor
1 inhibitors.>* Alternatively, H&E-based deep learning may
uncover specific TIM density thresholds that, when exceeded,
suggest that immune-based therapies will likely be ineffective and
signal prioritization of patients to other therapeutic strategies.
Similarly, neutrophilia in glioblastomas have been associated with
release of elastase that promotes brain invasion and malig-
nancy.*® 3’ High-content image analysis that quantifies these
additional immune cell parameters may help predict patients with
well-circumscribed tumor borders. Such patients could be good
candidates for de-escalation therapy*® following gross total
resection. Al-based discovery of robust morphologic surrogates
of genetic alterations (i.e, BRAF V600E3**? and IDH* 4
mutations) may even become objective stand-alone inclusion
criteria that could grant patients early enrollment in precision-
based clinical trials as they await confirmatory molecular testing
(Fig. 1c).

Lastly, quality assurance is becoming an increasingly relevant
component in precision oncology. Most cancer centers encourage,
or even require, regular peer-review and consensus on all
oncologic diagnoses. An online cloud-based DNN-based image
analysis tool may thus provide a fast and reliable way for
pathologists at small centers to receive timely and cost-effective
second opinions and consensus.

Thankfully, unlike many other emerging molecular technolo-
gies, Al-based diagnostics presents a relatively cost-effective
addition to the current workflow with a low financial barrier of
entry for most institutions. Recent digital pathology educational
initiatives have helped equip most pathology departments with
whole-slide scanning technologies that can digitize slides in a
standardized high-resolution format.*> *® In fact, improvements in
throughput (1 slide/minute) and quality, coupled with the
decreasing cost of data storage, are now at a point where some
pathology departments are considering archiving their complete
slide libraries digitally.*6=*®

Similarly, many technical concerns of computer-assisted diag-
nostics have now also been adequately addressed. For example,
there have been concerns that variations in imaging quality
resulting from difference in staining protocols, technical handling,
and scanner setting could introduce “non-biological” batch effects
that can significantly compromise the performance of computer-
driven morphologic analysis and classification accuracy. Fortu-
nately, these concerns have now also been largely addressed with
quality control algorithms that can carry out automated color
normalization to reduce batch-related variance to insignificant
levels.**~>? Introduction of random perturbations to the brightness
and color saturation levels of training images allows Al-based
algorithms to effectively learn color-invariant features for classi-
fication.?® Such simple image-augmentation procedures allow for
cross-institutional sharing and pooling of digital resources that
could allow DNNs to handle even rare and highly variable tumor
types. Similarly, they allow access to freely available and multi-
omic data sets (e.g., TCGA) to carry out large-scale morpho-
genomic corrrelations.>

As scanners can now routinely handle batches of 400 slides, it is
conceivable that the current throughput of scanning could allow
for routine digitization and analysis of every slide produced in a
large proportion of pathology departments. Even if additional
capital and personnel investment is necessary, image-based
analysis is already making a compelling case as a cost-effective
tool to reduce pathology workload and excessive confirmatory
tests to a more sustainable level. In one study, for example, DNNs
could effectively highlight slides with cancer for pathologists and
safely exclude 30-40% of slides containing only normal tissue.*®

Despite technological advances and criticisms, the physical
exam has endured the test of time to remain a powerful, cost-
effective, and adaptable diagnostic tool that contributes to
strengthen the patient—physician bond, trust, and ultimately
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patient care.>® The H&E slide provides many of the same positive
sentiments to pathologists and represents the origins of precision-
based diagnostics and medicine." DNN-based technologies are
now poised to revolutionize how pathologists use the H&E slide
by helping physicians extract unprecedented and colossal
amounts of objective and multiparametric morphologic informa-
tion. Although recent studies highlighted give reasons for
optimism, this field is still in its infancy. Integration of this new
technology into diagnostic workflows will require pathologists to
continue to practice their mastery of the microscopic exam to
oversee and approve machine-based interpretations. Such an
evolution will allow the H&E slide to remain a pivotal component
to the multi-omics approach to personalized and precision
oncology.
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