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Abstract

Here we present the results of protein contact prediction achieved in CASP12 by our RaptorX-

Contact server, which is an early implementation of our deep learning method for contact 

prediction. On a set of 38 free-modeling target domains with a median family size of around 58 

effective sequences, our server obtained an average top L/5 long- and medium-range contact 

accuracy of 47% and 44%, respectively (L=length). A more advanced implementation has an 

average accuracy of 59% and 57%, respectively. Our deep learning method formulates contact 

prediction as a pixel-level labeling problem and simultaneously predicts all residue pairs of a 

protein using a combination of two deep residual neural networks, taking as input the residue 

conservation information, predicted secondary structure and solvent accessibility, contact 

potential, and co-evolution information. Our approach differs from existing methods mainly in (1) 

formulating contact prediction as a pixel-level image labeling problem instead of an image-level 

classification problem; (2) simultaneously predicting all contacts of an individual protein to make 

effective use of contact occurrence patterns; and (3) integrating both 1D and 2D deep 

convolutional neural networks to effectively learn complex sequence-structure relationship 

including high-order residue correlation. This paper discusses the RaptorX-Contact pipeline, both 

contact prediction and contact-based folding results, and finally the strength and weakness of our 

method.
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Introduction

Ab initio protein folding or de novo structure prediction is one of most challenging problems 

in computational biology. The popular fragment assembly method mainly works well on 

some small proteins. Recent progress has indicated that long-range contacts are very helpful 

for structure prediction [1] and that direct co-evolution analysis may correctly predict some 

long-range contacts for proteins with a very large number of sequence homologs [2, 3]. 

However, soluble proteins with that many sequence homologs likely have similar solved 

structures in PDB and thus, may be modelled by template-based methods. For proteins with 

few sequence homologs, pure co-evolution methods such as CCMpred[4], PSICOV[5], 

Evfold[6], Gremlin[7], and CoinDCA[8] do not fare well and their predictions are not very 

helpful to ab initio folding. Supervised learning such as PhyCMAP[9], DNCON[10] and 

SVMSEQ[11] predicts contacts using a variety of protein features, on average 

outperforming pure co-evolution methods on proteins with few sequence homologs.

In CASP11, MetaPSICOV[12] stands out as an excellent contact predictor. It predicts 

contacts by combining direct co-evolution information generated by several statistical 

methods and a few “classic” protein features such as sequence profile and predicted local 

structure properties. MetaPSICOV embraces the advantage of both co-evolution analysis and 

supervised learning, but its accuracy on proteins without many sequence homologs is still 

unsatisfactory. To further improve contact prediction especially for small-sized protein 

families, we have developed a deep learning method [13] that can effectively integrate both 

“classic” protein features and co-evolution information. Our deep learning method is good at 

learning contact occurrence patterns and predicting protein-like contact maps, and thus 

significantly improves contact prediction accuracy. Contact occurrence patterns describe 

multi-body residue correlation learned from native structures, which is orthogonal to 

pairwise co-evolution information (extracted from sequences) and the “classic” protein 

features (e.g., sequence profile and predicted local structure properties).

In this paper, we analyze the deep learning method we developed during CASP12. Since we 

were developing our method during the whole CASP12 season, the deep models we used in 

CASP12 varied as we gradually improved them through the end of CASP12. We started by 

formulating contact prediction as an image-level classification problem and then switched 

the formulation to a pixel-level labeling problem. Pixel-level image labeling refers to each 

pixel in an image having a label to be predicted whereas image-level classification means 

that the whole image has only one label to be predicted (e.g., face recognition). We also 

gradually added more convolution and batch normalization[14] layers to our deep models 

and optimized our training algorithm to yield better model parameter estimation. Minor 

improvement includes searching for sequence homologs using different E-values and 

splitting a multi-domain protein into domains. Here we focus on the major ideas we used in 

CASP12, discuss our performance and analyze the strengths and weaknesses of our 

approach. We also examine several interesting free modeling cases and discuss the models 

we have built and can build using our predicted contacts. Finally, we highlight our views on 

the future development of contact prediction and its challenge.
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Materials and Methods

Following the CASP definition, we say two residues form a contact if in the native structure, 

the distance of their Cβ atoms is less than 8Å. Contacts in a protein are not randomly 

distributed, instead they are sparse and form some patterns.

Multiple sequence alignment (MSA) and input features

We generate MSAs in three ways. To save time in generating features for the training 

proteins, we used the MSAs already in our template-based RaptorX server[15]. These MSAs 

were generated before 2016 by the buildAli.pl program in the HHpred package[16], which 

calls PSI-BLAST (5 iterations and E-value=0.001) to find sequence homologs from an old 

NR database and then build MSAs. For CASP12 targets, initially we generated one MSA for 

each target by running HHblits[17] with 3 iterations and E-value set to 0.001 on the 

unitprot20 library released in February 2016. At the late stage of CASP12, for each test 

target we generated four different MSAs by running HHblits with 3 iterations and E-value 

set to 0.001 and 1, respectively, to search through the uniprot20 library released in 

November 2015 and February 2016, respectively. That is, for each target we generated 4 sets 

of input features and accordingly 4 different contact predictions, which are then averaged to 

obtain the final prediction. Our in-house test shows that using 4 rather than 1 MSAs may 

yield 1–2% accuracy improvement in contact prediction.

From each individual MSA, we derive two types of protein features: sequential features and 

pairwise features. Sequential features include sequence profile and secondary structure and 

solvent accessibility predicted by our RaptorX-Property[18]. Pairwise features include 

mutual information, pairwise contact potential and direct co-evolution strength calculated by 

CCMpred. Whereas MetaPSICOV uses three co-evolution analysis tools to generate direct 

co-evolution information, we employed only CCMpred, which runs very fast on GPUs yet 

has very good accuracy.

Pixel-level labeling formulation vs. image-level classification formulation

Pixel-level image labeling refers to each pixel in an image having a label whereas in image-

level classification, the whole image has only one label (e.g., face recognition). By 

formulating contact prediction as a pixel-level image labeling problem, we simultaneously 

predict the labels of all the entries in a contact matrix without splitting this contact matrix 

into small submatrices. By doing so, the prediction error at one residue pair may be fed back 

to all the other residue pairs through back propagation (in training). Such a formulation also 

makes it easy to exploit high-order residue correlation or contact correlation. By contrast, 

existing methods such as MetaPSICOV formulate contact prediction as an image-level 

classification problem by separating the prediction of one residue pair from the others. For 

each residue pair under prediction, these methods extract a submatrix centering around this 

residue pair and predict one label for this submatrix (e.g., the center residue pair being in 

contact or not in contact). Since the submatrix is cut off from the original contact matrix, the 

prediction error at its center residue pair cannot be effectively fed back to the other residue 

pairs. Such a formulation also makes it challenging to directly model contact correlation. To 

predict the complete contact matrix of a protein with L residues, these other methods need to 
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predict the labels of L*(L-6)/2 submatrices one-by-one while our method directly works on 

the whole contact matrix. This implies that pixel-level formulation is also computationally 

more efficient than image-level formulation (given the same network architecture and the 

same number of residue pairs to be predicted).

Deep learning models

We treat a protein contact map as an image of L×L where L is sequence length and 

formulate contact prediction as a pixel-level image labeling problem. This is different from 

the formulation employed by MetaPSICOV, which formulates contact prediction as an 

image-level classification problem. However, we cannot directly apply the deep models 

developed for image labeling to contact prediction since proteins have more complex 

features and the ratio of contacts (i.e., positive labels) is very small (<2%). Instead we 

developed a deep learning model by concatenating two deep residual neural networks.

As shown in Fig. 1(A), the first residual network conducts a 1-dimensional (1D) 

convolutional transformation of sequential features to capture long-range sequential context 

of a residue. Its output is converted to a 2-dimensional (2D) matrix by an operation similar 

to outer product and then fed into the 2nd residual network together with the original 

pairwise features. The 2nd residual network conducts 2D convolutional transformation of its 

input to capture long-range 2D context of a residue pair. Finally, the output of the 2nd 

network is fed into logistic regression, which predicts the probability of any two residues in 

a contact.

Each residual network is composed of some residual blocks, each block in turn consisting of 

2 batch normalization layers, 2 convolution layers and 2 ReLU activation layers (Fig. 1(B)). 

In the first residual network, Xl and Xl+1 represent sequential features and have dimension 

L×nl and L×nl+1, respectively, where nl (nl+1) is the number of hidden neurons at each 

residue. In the 2nd residual network, Xl and Xl+1 represent pairwise features and have 

dimension L×L×nl and L×L×nl+1, respectively, where nl (nl+1) is the number of hidden 

neurons at one residue pair. The filter size (i.e., window size) used by a 1D convolution layer 

is 15 or 17 while that used by a 2D convolution layer is 3×3 or 5×5. We fix the depth (i.e., 

the number of convolution layers) of the first residual network to 6 and vary the depth of the 

second network. Each 1D convolutional layer has around 50 hidden neurons. With ~50 

hidden neurons at each of the 1D convolutional layers, 55–75 hidden neurons at of the 2D 

convolutional layers, and 50–60 convolution layers for the 2nd network, our model can yield 

pretty good performance.

Our deep learning method is unique in the following aspects. First, the formulation of pixel-

level labeling is different from the image-level classification formulation employed by many 

existing methods such as MetaPSICOV. Second, our model employs a combination of two 

deep residual neural networks, which has not been applied to contact prediction before. 

Third, we predict all contacts of a protein simultaneously, as opposed to existing supervised 

methods that predict contacts one by one. By simultaneous prediction, we can easily learn 

contact occurrence patterns from protein structures so that our predicted contact maps are 

more protein-like. By contrast, current co-evolution methods focus only on pairwise 

relationship extracted from sequences. Finally, our deep model learn knowledge from 
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thousands of non-redundant protein families, as opposed to current co-evolution methods 

that use information only in a single protein family.

Model training and validation

We train our models by maximum-likelihood with L2-norm regularization. The objective 

function to be minimized in training our deep model is the negative log-likelihood averaged 

per residue pair plus the L2 norm of model parameters multiplied by the regularization 

factor. As long as its value is between 0.005 and 0.0001, the regularization factor does not 

impact prediction accuracy much. We train our deep models using minibatches and run our 

training algorithm for only 20 epochs. Each epoch scans through all the training proteins 

once and each minibatch has several proteins. Proteins in different minibatches may have 

different lengths while proteins in the same minibatch are forced to have the same length by 

zero padding. A stochastic gradient descent algorithm is used to minimize the objective 

function. The whole algorithm is implemented with Theano and runs on a GPU card. It took 

about one week to train a single deep model with 6000–7000 training proteins.

Training and test data—We have self-tested our method using the 150 Pfam families, the 

105 CASP11 test proteins, 398 non-redundant membrane proteins and 76 hard CAMEO test 

proteins released from 10/17/2015 to 04/09/2016 (see [13] for the detailed results of these 

test sets). Our training set is a subset of PDB25 created in 2015, in which no two proteins 

share more than 25% sequence identity. To remove redundancy, we also exclude the proteins 

having a BLAST E-value <0.1 with any of the test proteins. In total there are ~6300 training 

proteins plus 400 validation proteins, from which we have trained several models, which are 

then averaged to produce the final model.

Calculating the number of effective sequence homologs

Meff measures the amount of homologous information in an MSA. It can be interpreted as 

the number of non-redundant (or effective) sequence homologs in an MSA when 70% 

sequence identity is used as cutoff. To calculate Meff, we first calculate the sequence 

identity between any two proteins in the MSA. Let a binary variable Sij denote the similarity 

between two protein sequences i and j. Sij is equal to 1 if and only if the sequence identity 

between i and j is at least 70%. For a protein i, we calculate the sum of Sij over all the 

proteins (including itself) in the MSA and denote it as Si. Finally, we calculate Meff as the 

sum of 1/Si over all the protein sequences in this MSA.

Results

Contact prediction accuracy in CASP12

Table 1 summarizes the average contact prediction accuracy of our method RaptorX-submit 

and a few others on the 38 CASP12 FM targets. See Supplementary File 1 for the accuracy 

on each target. The top L/k (k=1, 2, 5, 10) contact prediction accuracy is the number of 

correctly-predicted contacts divided by L/k independent of how many native contacts exist. 

In addition to the predicted contacts submitted to CASP12, we also evaluate our deep 

learning method (denoted as RaptorX-postdict) trained right after the CASP12 season (i.e., 

between August and September 2016). This deep model still uses the uniprot20 sequence 
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database dated in February 2016 to generate MSAs. As mentioned before, we were 

gradually improving our deep models until the end of the CASP12 season. Therefore, by 

comparing our CASP12 submissions with the predictions from our model trained right after 

CASP12, we can gauge how much improvement can be achieved by a well-developed deep 

learning method. This comparison is fair since the underlying sequence database for MSA 

generation is unchanged and all the training proteins were publicly released in PDB before 

CASP12 started. As shown in Table 1, RaptorX-postdict is much better than RaptorX-

submit, but the advantage is much smaller at the end of CASP12 (see Supplementary Files 1 

and 2 for details). While RaptorX-postdict outperforms RaptorX-submit on most targets, 

RaptorX-postdict underperforms on two domains T0918-D1 and T0918-D3. This worse 

performance is due to that RaptorX-postdict employed 4 different MSAs to produce an 

average prediction. If only the MSA generated from uniprot20-2016 with E-value=0.001 is 

used, RaptorX-postdict has the same accuracy as RaptorX-submit on T0918-D1 and slightly 

better accuracy on T0918-D3. RaptorX-submit used only the MSA generated from 

uniprot20-2016 with E-value=0.001 on this target.

In addition to the MetaPSICOV group in CASP12 (denoted as MetaPSICOV-submit), we 

also studied the performance of the standalone MetaPSICOV program publicly released by 

Jones group after CASP12 (denoted MetaPSICOV-standalone). The results of MetaPSICOV-

submit were downloaded from the CASP12 web site and we ran MetaPSICOV-standalone 

locally using the same uniprot20 sequence database as our deep learning method. 

MetaPSICOV-submit has slightly better accuracy than MetaPSICOV-standalone. This may 

be because that our method of generating MSAs is not as good as that of the Jones group. 

We also examined the performance of CCMpred and Baker-GREMLIN, the state-of-the art 

pure co-evolution methods for contact prediction. We ran CCMpred locally with the same 

uniprot20 sequence database. The results of Baker-GREMLIN are downloaded from the 

CASP12 web site. CCMpred has similar long-range accuracy as GREMLIN, but much better 

medium-range accuracy.

In summary, our submitted predictions are slightly better than MetaPSICOV submissions, 

but our fully-implemented deep model trained right after CASP12 performs much better 

than MetaPSICOV, which is consistent with our previous results [13]. This indicates that our 

deep neural network indeed performs much better than the shallow neural network used by 

MetaPSICOV. The CASP12 results show that pure co-evolution methods do not work well 

on the CASP12 hard targets mainly because most of them do not have many sequence 

homologs. However, even for targets with more than 1000 effective sequence homologs such 

as T0866-D1, T0899-D1, T0905-D1, T0918-D1 and T0918-D3, MetaPSICOV and our deep 

learning method still greatly outperform CCMpred and GREMLIN (Table 2). This may 

confirm that MetaPSICOV and our method indeed introduce extra information (orthogonal 

to co-evolution information) for contact prediction.

Contact-assisted folding accuracy

We examined the accuracy of 3D models built from our predicted contacts. During CASP12, 

we built 3D models by feeding our predicted secondary structure and top L predicted 

contacts to the CNS package [19], which builds 3D models by treating contacts as distance 
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restraints and converting predicted secondary structure to backbone torsion angles. At the 

very late stage of CASP12, we revised our 3D modeling strategy. In particular, we first 

normalized the predicted contact probability values by their mean and standard deviation 

calculated on the whole contact matrix. Then we selected those top predicted contacts with 

normalized value ≥3 and fed them to CNS. We also added or removed some contacts to 

make the number of selected contacts between L and 3L. To evaluate this new protocol, we 

rebuilt 3D models from our submitted contact predictions for all the CASP12 targets to see 

how much we may improve 3D model quality. We denote such a method as RaptorX-

rebuild. In addition, we also built 3D models for all CASP12 targets using the contacts 

predicted by RaptorX-postdict (i.e., the deep model trained right after CASP12). As a 

comparison, we examined the quality of the 3D models built from CCMpred- and 

MetaPSICOV-predicted contacts using the same contact selection and 3D model building 

protocols. We also evaluated the 3D models submitted to CASP12 by RaptorX-TBM (i.e., 

our template-based modeling server), Baker-server, Zhang-server, Baker-human and Zhang-

human. The latter four used a much more sophisticated protocol (i.e., hybrid of template-

based and template-free methods) to predict 3D models than us. It is also possible that the 

two human groups used information from other CASP12-participating servers.

As shown in Table 3, the 3D models submitted to CASP12 by RaptorX-submit (i.e., 

RaptorX-Contact group) are not very good although on average they are better than 

CCMpred- and slightly better than MetaPSICOV-derived 3D models. RaptorX-rebuild is 

slightly better than RaptorX-submit. That is, by using more than top L contacts submitted to 

CASP12, we can slightly improve 3D modeling accuracy. The underlying reason why 

RaptorX-rebuild is not significantly better than RaptorX-submit is because the accuracy of 

our submitted contacts is not good enough. This finding is consistent with our observation 

that by using the same contact selection and model building protocols to build 3D models 

from CCMpred- or MetaPSICOV-predicted contacts, we cannot improve 3D modeling 

accuracy much either over using only top L contacts. However, by using the contacts 

predicted from RaptorX-postdict, we can generate much better 3D models with quality 

better than RaptorX-TBM and comparable to the 3D models submitted by Baker and Zhang 

servers, although RaptorX-postdict makes use of only predicted contacts and secondary 

structure. Nevertheless, RaptorX-postdict is slightly worse than Baker and Zhang human 

groups. See Supplementary File 3 for the 3D modeling accuracy of each CASP12 hard 

target.

Our deep learning method can generate good models for several targets with very few 

sequence homologs. For example, RaptorX-postdict can generate 3D models with 

TMscore>0.6 for T0864-D1, T0869-D1 and T0904-D1. They have only 209, 19, and 34 

effective sequence homologs, respectively. The 3D models generated by RaptorX-postdict 

for them have much better quality than RaptorX-TBM, Baker- and Zhang-server and Baker- 

and Zhang-human groups. In contrast, Baker-human generated 3D models with 

TMscore>0.6 for 4 targets, among which two have >800 effective sequence homologs and 

the other two have >3000 effective sequence homologs. This may imply that Baker-human 

did very well as long as pure co-evolution methods can provide some correctly-predicted 

contacts. RaptorX-postdict also generates reasonable 3D models (TMscore ~0.5) for T0862-
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D1, T0863-D1, T0866-D1, T0870-D1, T0886-D1, T0886-D2, T0899-D1, T0905-D1, and 

T0915-D1. Four of these targets have fewer than 100 effective sequence homologs.

Case Study

In this section, we study in detail three specific targets T0864-D1, T0869-D1 and T0904-D1 

on which RaptorX-postdict performs well.

T0864-D1—Table 4 shows that for this target our method produced much better contact 

prediction than CCMpred and MetaPSICOV, especially when top L contacts are evaluated. 

Specifically, the contact map predicted by our method has L long-range accuracy 69.1%, 

while that by CCMpred and MetaPSICOV has corresponding accuracy 20.3% and 36.2%, 

respectively. Fig. 2 visualizes the top L/2 predicted contacts of the three methods as 

compared to the native contact map. The best of top 5 3D model submitted by our contact 

server has TMscore 0.63 and RMSD 4.48Å. The best of top 5 models built by CNS from 

CCMpred- and MetaPSICOV-predicted contacts have TMscore 0.274 and 0.353, 

respectively. Fig. 3 shows the superimposition between the native structure and the 3D 

models generated by our method, CCMpred and MetaPSICOV, respectively. To examine the 

superimposition of our model with its native structure from various angles, please see http://

raptorx.uchicago.edu/DeepAlign/63883537/.

T0869-D1—Table 5 show that our method produced much better contact prediction than 

CCMpred and MetaPSICOV, especially when top L long-range contacts are evaluated. 

Specifically, the contact map predicted by our method has top L long-range accuracy 48.1%, 

while that by CCMpred and MetaPSICOV has corresponding accuracy 10.6% and 23.1%, 

respectively. Fig. 4 visualizes the top L predicted contacts by the three methods as well as all 

native contacts. The best of top 5 3D model generated by our method has TMscore 0.69 and 

RMSD 2.58Å. The best of top 5 3D models built by CNS from CCMpred- and 

MetaPSICOV-predicted contacts have TMscore 0.265 and 0.441, respectively. Fig. 5 shows 

the superimposition between the native structure and the 3D models predicted from our 

method, CCMpred and MetaPSICOV, respectively. To examine the superimposition of our 

model with its native structure from various angles, please see http://raptorx.uchicago.edu/

DeepAlign/25220368/.

T0904-D1—Table 6 show that our method produced much better contact prediction than 

CCMpred and MetaPSICOV, especially when top L long-range contacts are evaluated. 

Specifically, the contact map predicted by our method has top L long-range accuracy 60.6%, 

while that by CCMpred and MetaPSICOV has corresponding accuracy 4.4% and 17.9%, 

respectively. Fig. 6 visualizes the top L/2 predicted contacts by each method superimposed 

to the native contact map. The 3D model generated by our method has TMscore 0.682 and 

RMSD 4.61Å. The best of top 5 models built by CNS from CCMpred- and MetaPSICOV-

predicted contacts have TMscore 0.221 and 0.385, respectively. Fig. 7 shows the 

superimposition between the native structure and the 3D models generated from our method, 

CCMpred and MetaPSICOV, respectively. To examine the superimposition of our model 

with its native structure from various angles, please see http://raptorx.uchicago.edu/

DeepAlign/28399687/.

Wang et al. Page 8

Proteins. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://raptorx.uchicago.edu/DeepAlign/63883537/
http://raptorx.uchicago.edu/DeepAlign/63883537/
http://raptorx.uchicago.edu/DeepAlign/25220368/
http://raptorx.uchicago.edu/DeepAlign/25220368/
http://raptorx.uchicago.edu/DeepAlign/28399687/
http://raptorx.uchicago.edu/DeepAlign/28399687/


What went right?

Both our self-test results and the CASP12 result indicate that deep learning is a good 

technique for protein contact prediction although previous deep learning methods such as 

DNCON [10] and CMAPpro [20] did not stand out in CASP11. This is due to a totally new 

network architecture we invented. In our in-house benchmark, we found out that increasing 

the depth of our 2D residual neural network from 1–2 layers to 30 layers can greatly 

improve contact prediction accuracy. This improvement arises as more layers are used, our 

learning model can learn more accurately contact occurrence patterns and make the 

predicted contact maps more protein-like. However, increasing the depth from 30 to 60 

layers can only yield a small improvement.

It is possible to obtain good accuracy by using a shallow, but very wide convolutional neural 

network (i.e., each layer has many more hidden neurons than our current deep model), but 

we have not rigorously tested such a network yet. One concern with a wide neural network is 

that to achieve the same performance as our narrow and deep neural network, we may have 

to use many more hidden neurons at each layer and thus, many more model parameters than 

our current deep model.

It is important to formulate contact prediction as a pixel-level labeling problem so that we 

can do simultaneous prediction of all residue pairs in a protein, which allows us to easily 

capture contact occurrence patterns. For comparison, we developed a deep residual network 

for the image-level classification formulation of contact prediction. That is, for each residue 

pair to be predicted, we extract the submatrix (of dimension 41×41) centered around this 

residue pair, treat it as an image, and assign a positive label to this image if this residue pair 

forms a contact, otherwise a negative label. Our in-house tests indicate that in terms of top 

L/10 long-range contact accuracy, image-level classification formulation is about 0.08–0.10 

worse than pixel-level labeling formulation. Both formulations use a similar number of 2D 

convolutional layers and at each layer a similar number of hidden neurons.

What went wrong?

The major issue is that our method for contact prediction and contact-assisted folding was 

still under development during CASP12 and thus, we missed a good opportunity to blindly 

test a fully-implemented deep learning method. Our protocol of building 3D models from 

predicted contacts was not optimized either. Initially, we fed only top L predicted contacts 

and predicted secondary structure to CNS[19] to build 3D models. Only at the end of 

CASP12 did we found out that we should have used more than top L predicted contacts to 

build better 3D models since our contact prediction had significantly improved.

There are also some other issues in our protocol. For example, we did not handle multi-

domain targets very well. For more than half of the multi-domain CASP12 targets, we did 

not split them into domains for contact prediction. Without domain splitting, sometimes we 

may miss a good percentage of sequence homologs for some domains (especially those hard 

targets) and thus, could not generate a good contact prediction. Second, we only employed 

HHblits and the uniprot20 sequence database dated in February 2016 to generate MSAs 

while many other predictors also used Jackhmmer[21] and other sequence databases (e.g., 
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metagenomics data), which may be helpful to some targets. Finally, we employed only one 

tool CCMpred to generate direct co-evolution information while other methods such as 

MetaPSICOV employed three complementary tools.

Discussion

We have presented a deep learning method for contact prediction that has much better 

contact prediction accuracy than existing methods. Our method employs a combination of 

two deep residual neural networks to model contact occurrence patterns and sequence-

contact relationship. As opposed to existing supervised methods that predict contacts of a 

protein individually, our method predicts all contacts of a protein simultaneously, which 

makes it easy to model contact occurrence patterns and thus, make predicted contact maps 

more protein-like. The blind test in CASP12 shows that our deep learning method indeed 

can do better contact prediction than existing methods. After CASP12, we have been testing 

our method in a fully-automated, weekly online benchmark CAMEO[22]. The blind test in 

CAMEO indicates that ab initio folding using our predicted contacts as restraints can fold 

large proteins without similar structures in PDB and many sequence homologs[13]. It is 

worth pointing out that currently we fold proteins by feeding predicted contacts to CNS 

using a very simple protocol. We do not use any fragment assembly, sophisticated energy 

functions or time-consuming folding simulations. Our folding protocol runs very fast, from 

30 minutes to a few hours to generate 200 models on a Linux workstation of 20 CPUs. It is 

possible to develop a much better folding protocol by combining our predicted contacts with 

fragment assembly and a sophisticated energy function.

In summary, contact prediction and ab initio folding is becoming easier with the advent of 

direct evolutionary coupling analysis and deep learning techniques. Deep learning can 

improve contact prediction accuracy not only for proteins with a small number of sequence 

homologs, but also for proteins with thousands of sequence homologs (see Table 2). We 

have been studying a few other deep network architectures for protein contact prediction 

including the dense deep network[23], the wide residual network[24] and the LSTM[25], 

which have similar or slightly better performance than our current implementation. It is also 

possible to further improve contact prediction accuracy by including more protein-like 

features into the deep learning model. For example, the contacts connecting two beta strands 

of a beta sheet form a special pattern in a contact matrix. If we can incorporate this kind of 

prior-knowledge into our deep learning model, we shall be able to improve contact 

prediction accuracy for beta proteins. Nevertheless, predicting contacts for proteins with 

very few sequence homologs is still very challenging. It is unclear if there is an effective 

way to use deep learning to yield very accurate contact prediction for this type of proteins.

Our deep learning method also applies to membrane proteins, even though it was not trained 

on them. We are not aware of any CASP12 hard targets being membrane proteins, but our 

deep learning method produced decent models for 4 membrane proteins in the blind 

CAMEO test[26]. This finding implies that the sequence-structure relationship learned by 

our model from soluble proteins can be transferred to membrane protein contact prediction. 

Finally, our deep learning method in principle shall also apply to interfacial contact 
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prediction for protein complexes, but may be less effective since on average protein 

complexes have fewer sequence homologs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) The overall network architecture of the deep learning model. Meanwhile, L is protein 

sequence length and n is the number of hidden neurons in the last 1D convolutional layer. 

(B) The internal structure of a residual block with Xl and Xl+1 being input and output, 

respectively.
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Figure 2. 
Overlap between predicted contacts (in red and green) and the native (in grey) for T0864-

D1. Red (green) dots indicate correct (incorrect) prediction. Top L/2 predicted contacts by 

each method are shown. (A) The comparison between our prediction (in upper-left triangle) 

and CCMpred (in lower-right triangle). (B) The comparison between our prediction (in 

upper-left triangle) and MetaPSICOV-submit (in lower-right triangle).
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Figure 3. 
Superimposition between the predicted models (red) and the native structure (blue) for 

T0864-D1. The models are built by CNS from the contacts predicted by (A) our method, (B) 
CCMpred, and (C) MetaPSICOV. The TMscores of the three models are 0.63, 0.27 and 0.35, 

respectively.
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Figure 4. 
Overlap between predicted contacts (in red and green) and the native (in grey) for T0869-

D1. Red (green) dots indicate correct (incorrect) prediction. Top L/2 predicted contacts by 

each method are shown. (A) The comparison between our prediction (in upper-left triangle) 

and CCMpred (in lower-right triangle). (B) The comparison between our prediction (in 

upper-left triangle) and MetaPSICOV (in lower-right triangle).
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Figure 5. 
Superimposition between the predicted models (red) and the native structure (blue) for 

T0869-D1. The models are built by CNS from the contacts predicted by (A) our method, (B) 
CCMpred, and (C) MetaPSICOV. Their TMscores are 0.690, 0.265 and 0.441, respectively.
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Figure 6. 
Overlap between predicted contacts (in red and green) and the native (in grey). Red (green) 

dots indicate correct (incorrect) prediction. Top L/2 predicted contacts by each method are 

shown. (A) The comparison between our prediction (in upper-left triangle) and CCMpred (in 

lower-right triangle). (B) The comparison between our prediction (in upper-left triangle) and 

MetaPSICOV (in lower-right triangle).
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Figure 7. 
Superimposition between the predicted models (red) and the native structure (blue) for 

T0904-D1. The models are built by CNS from the contacts predicted by (A) our method, (B) 
CCMpred, and (C) MetaPSICOV. Their TMscores are 0.682, 0.221 and 0.385, respectively.
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Table 3

The average quality (TMscore) of the 3D models built by different methods (groups) for the CASP12 hard 

targets. Top k (k=1, 5) means that for each target the best of top k 3D models is considered. See 

Supplementary File 3 for details.

Group Top 1 Top 5

RaptorX-submit 0.274 0.307

RaptorX-rebuild 0.285 0.322

RaptorX-postdict 0.354 0.397

RaptorX-TBM 0.320 N/A

Baker-server 0.326 0.370

Zhang-server 0.347 0.404

Baker-human 0.392 0.422

Zhang-human 0.375 0.420

CCMpred 0.216 0.235

MetaPSICOV 0.262 0.289
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