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Abstract
The field of pediatric and adult congenital cardiac catheterization has evolved
rapidly in recent years. This review will focus on some of the newer
endovascular technological and management strategies now being applied in
the pediatric interventional laboratory. Emerging imaging techniques such as
three-dimensional (3D) rotational angiography, multi-modal image fusion, 3D
printing, and holographic imaging have the potential to enhance our
understanding of complex congenital heart lesions for diagnostic or
interventional purposes. While fluoroscopy and standard angiography remain
procedural cornerstones, improved equipment design has allowed for effective
radiation exposure reduction strategies. Innovations in device design and
implantation techniques have enabled the application of percutaneous
therapies in a wider range of patients, especially those with prohibitive surgical
risk. For example, there is growing experience in transcatheter duct occlusion
in symptomatic low-weight or premature infants and stent implantation into the
right ventricular outflow tract or arterial duct in cyanotic neonates with
duct-dependent pulmonary circulations. The application of percutaneous
pulmonary valve implantation has been extended to a broader patient
population with dysfunctional ‘native’ right ventricular outflow tracts and has
spurred the development of novel techniques and devices to solve associated
anatomic challenges. Finally, hybrid strategies, combining cardiosurgical and
interventional approaches, have enhanced our capabilities to provide care for
those with the most complex of lesions while optimizing efficacy and safety.
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Introduction
Over the last three decades, the pediatric cardiac catheterization  
laboratory has undergone a transformation from primarily a  
diagnostic tool to a modality for therapy. While this is an ongo-
ing process, a variety of signature advances have taken place, 
altering management strategies. In the next few pages, we hope to  
highlight a few of those advances, which have improved the  
outcomes of children born with congenital lesions of the heart.

Advances in imaging
Three-dimensional rotational angiography and fusion 
imaging techniques
Three-dimensional rotational angiography (3DRA) is an  
emerging imaging modality that provides tableside, real-time 
acquisition of 3D volume rendered and cross-sectional images to  
aid the visualization of complex cardiac anatomy and navigation 
during diagnostic or interventional procedures1–4. Image acqui-
sition is performed by rotation through an arc around the patient  
of the C-arm of the angiography system, equipped with flat- 
detector computer tomography (CT)1,4. The volume set is used 
to reconstruct the 3D structures of interest. These images can 
then be overlaid onto live fluoroscopy for road mapping during  
therapeutic procedures2,4. The so-registered 3D space can also be 
integrated with 3D datasets from magnetic resonance imaging 
(MRI) or CT studies.

Diagnostically, the advantage of 3DRA is its ability to profile the 
complexities of the cardiac anatomy from multiple projections, 
enhancing the appreciation of the spatial vascular relation-
ships. To this end, several recent studies have reported the addi-
tive yield of using 3DRA compared to standard 2D biplane  
angiography2,3,5. For example, in children with cavopulmonary 
connections, 3DRA can facilitate an understanding of the  
mechanisms underlying pulmonary artery (PA) stenosis and  
identify additional discrete proximal lesions at the anastomosis 
site5. Additionally, the relationship of the trachea and bronchi to 
surrounding cardiovascular structures allows the assessment of  
airway anomalies and vascular compression frequently encoun-
tered in this population with significant implications for clinical  
management (Figure 1)6,7.

In the interventional setting, 3DRA is useful for planning and  
guiding stenting for aortic coarctation and complex PA anato-
mies, percutaneous pulmonary valve implantation, interven-
tions in the Fontan circulation, or after an atrial switch repair8–12.  
Image fusion from disparate modalities and image overlay dur-
ing fluoroscopic procedures can provide continuous visualization 
of the target lesion in any angulation and guidance for catheters, 
wires, and device placement, enhancing procedural efficiency1. As 
such, shortened procedural time reduces radiation exposure not 
only to the child but also to laboratory personnel and total contrast  
dose13,14. Current challenges, however, include the inability to 
gate for cardiac and respiratory motion and the potential for  
misalignment of multi-modality image registration and distor-
tion of anatomy by rigid interventional equipment. Innovations to  
address these concerns, including non-rigid registration tech-
niques to compensate for translational motion, and the “triple 
overlay” technique, allow co-registration of pre-procedural CT or 
MR angiography and intra-procedural 3DRA and transesophageal  

Figure 1. Rotational angiograms. Panel A: a three-dimensional 
(3D)-rotational angiogram in a child with severe left pulmonary 
artery stenosis related to the retained ductal stent (arrow). The 
injection was in the bidirectional cavopulmonary connection.  
Panel B: this reconstruction from a 3D-rotational angiogram  
shows the relationships between vascular structures; in this  
case, left bronchial stenosis (star) is due to vascular compression  
(arrow) following previous arch reconstruction.

echocardiography with live fluoroscopy2,11.

Three-dimensional printing, holography, and stereoscopic 
imaging for the interventional laboratory
Over the last two decades, catheter-directed interventions for  
congenital heart lesions have taken on a significant role in patient 
management. Indeed, many transcatheter interventions have 
become the standard of care for a number of abnormalities of  
heart valves, cardiac chambers, and proximal vessels15. In this 
regard, children with complex congenital heart lesions, especially 
after complex operations, represent a challenge owing to their 
wide variation in complex morphology. One limiting factor in 
understanding and planning a percutaneous intervention is the 
limits of available 3D imaging modalities (MRI and CT) using 
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images viewed on 2D screens. As such, these 2D representations 
make it inherently more difficult to appreciate the 3D relation-
ships of cardiac structures unique to a particular intervention.  
Three-dimensional printing (also known as rapid prototyping,  
stereolithography, or additive manufacturing), while not a new 
technology, has only recently been used to fabricate physical 
models from 3D computerized imaging datasets16. While the first 
medical applications were to produce surgical implants for oral and 
maxillofacial surgery and prosthetics for orthopedic surgery, the 
ability to generate a 3D model of complex cardiac anatomy has 
made this a tool for education, procedural planning, and device 
testing in both structural and congenital heart disease interven-
tions (Figure 2)17,18. The use of these constructed models repre-
senting true anatomical relationships has been a promising adjunct 
in planning a number of interventional procedures allowing for  
virtual device implantation19–27. However, expertise is required 
to generate these 3D models and the investment in resources is 
required to establish a 3D printing lab. As such, this technology 
has been limited thus far to teaching hospitals and research cent-
ers. In addition to the creation of physical models to view 3D  
anatomy, several augmented viewing modalities, using holography 
or stereoscopic imaging, are being evaluated.

Radiation safety
Radiation safety awareness and techniques to reduce radiation 
exposure are essential for all procedures but have a special role 
in children with complex congenital cardiac lesions who often  
require long, and at times multiple, procedures during their  

lifetimes28. A recent systematic review noted that radiation dose  
during pediatric cardiac catheterization remains varied and  
potentially substantial despite a downward trend in recent years29. 
The observed decline in exposure estimates is attributed to  
improvement in physician awareness of dose optimization in  
tandem with technological advances29–31. However, the variation in  
radiation exposure amongst centers suggests that further  
initiatives towards minimizing radiation dose in children to “as  
low as reasonably achievable” (the ALARA principle) and  
standardization of practice are warranted29. Comparisons between 
centers also highlight the inadequacy of fluoroscopy time alone 
as a metric of radiation dose estimate because of differences in 
programmed fluoroscopy modes, pulse rates, and cine acquisi-
tion frame rates32,33. Instead, recognition and comparison of actual  
radiation energy exposure such as dose area product and air  
kerma in relation to procedure types are more appropriate.

Several technical developments have impacted positively on 
the reduction of radiation exposure, notably the transition to flat  
panel detector (FPD) technology, which converts X-ray  
photon energy to digital signals more efficiently than image  
intensifiers30,34–36. Innovation in FPD including increased pixel 
bit depth and usage of crystalline silicon rather than amorphous  
silicon combined with novel flat emitter X-ray tubes offers  
further reduction in radiation dose owing to better digitaliza-
tion and lower detector noise37. Additionally, alternative imaging  
techniques, such as transesophageal and/or intracardiac echocar-
diography or fusion of MRI/CT imaging with fluoroscopy,  
have been successfully used to reduce radiation exposure in  
various interventional procedures32,33.

Specific applications
Patent ductus arteriosus in preterm and low-birth-weight 
infants
A persistent patent ductus arteriosus (PDA) in the preterm  
newborn is often associated with important comorbidities (venti-
lator dependence, congestive heart failure, and failure to thrive) 
and increased mortality38,39. Definitive treatment strategies in 
this group remain debated, as both medical and surgical thera-
pies have attendant risks40,41. Percutaneous ductal closure in these 
small newborns is generally limited by delivery sheath size,  
procedure-related hemodynamic instability, and the anchoring  
and retrievability characteristics of current devices42. Although 
manufacturer recommendations for the most commonly used  
Amplatzer ductal occluders are a weight of 6 kg or more, there  
is no consensus on the minimum weight limit in practice.

Recently, there has been a growing body of evidence supporting 
the feasibility and efficacy of percutaneous PDA closure in the  
premature or small infant under 6 kg. The procedural success 
rates range from 88 to 94% in those with a median weight of  
between 2.5 and 6 kg43–47. Technical feasibility has also been 
demonstrated in extremely preterm (under 28 weeks) or very  
preterm (28 to under 32 weeks) infants under 2.5 kg, with the  
smallest noted in the literature weighing 755 g, having an 
uncomplicated closure with a 4 mm Amplatzer vascular plug II  
device44,48–52. The adverse event rate was higher in the under 4 kg 
group, which was not unexpected given that premature infants 

Figure 2. Three-dimensional modeling. The upper image is a three-
dimensional model obtained from a magnetic resonance angiogram 
with the free wall of the right ventricle cut away revealing the location 
of the ventricular septal defect (VSD); the lower model, made from 
a soft pliable material, shows the appearance of the VSD as seen 
through a virtual incision in the right atrium, as would be seen by 
the surgeon.
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are medically fragile45,53–55, in keeping with the known inverse 
event rate related to patient weight at the time of catheterization56.  
The increased risk of embolization is also noteworthy in low- 
weight and premature infants; hence, the retrievability of the 
occluder and duct morphology needs careful consideration46,47. 
There were no deaths attributable to the procedure reported in  
these studies.

Access-related complications, in particular acute arterial injury 
leading to vascular compromise of the extremity, is a significant 
concern when catheterizing these low-weight infants57,58. Some 
centers have avoided arterial access by adopting a transvenous-
only approach guided by fluoroscopy and echocardiography33.  
The risk of device-induced obstruction to the descending aorta or 
left PA (LPA) was low in these studies, and the majority tended 
to resolve over time with growth of the vessels43–45,52. However,  
the severity of LPA stenosis may be underestimated because of  
outflow diversion to the right lung. Studies using scintigraphic  
perfusion imaging have shown evidence of decreased  
perfusion of the left lung after PDA occlusion, but the long-term  
clinical impact is unknown59,60. More recently, the introduction 
of a new microvascular plug (MVP™, Medtronic Inc.) for PDA 
closure in the extremely premature infant has shown promising  
results61,62. Advantages of the device include delivery through 
a microcatheter (<3 F), a flexible delivery cable, and diskless  
device design which minimizes the risk of device protrusion to the 
aorta or LPA.

The role of right ventricular flow tract stenting in symptomatic 
neonates with Fallot’s tetralogy
Primary repair in infants with tetralogy of Fallot (TOF) with  
good-sized confluent central PAs is the standard of care with  
excellent outcomes. However, the ideal management strategy 
for the symptomatic (cyanotic) neonate with TOF and one or 
more adverse risk factors, such as prematurity, low birth weight,  
unfavorable PA anatomy, or pulmonary atresia or non-cardiac  
co-morbidities, remains debated63,64. Conventional palliation 
with the Blalock–Taussig (BT) shunt in this high-risk group can  
result in complications such as shunt stenosis or occlusion,  
distortion and differential growth of the PAs, and pulmonary  
overcirculation65–67. Balloon dilation of the pulmonary valve 
alone has inconsistent benefit owing to frequently associated  
muscular obstruction in the infundibulum. Stent implanta-
tion to enlarge the right ventricular outflow tract (RVOT) is now  
increasingly used as a bridging procedure to palliate the cyanosis 
and promote PA growth (Figure 3).

Several small studies have documented favorable outcomes 
of RVOT stents in isolation since 2008, focusing on technical  
aspects and acute outcomes65,67–72. More recently, Sandoval and  
colleagues provided comparative data on 180 infants with TOF 
who underwent RVOT stenting, early primary repair, or standard 
repair over 3 months of age63. While the RVOT stented group 
had worse PA anatomy and clinical factors compared to the early 
intervention group, final clinical outcomes were comparable to  

Figure 3. Hypoplastic pulmonary arteries and outflow stent. Upper panels from right ventricular angiograms show the obstructive right 
ventricular outflow tract (^) in a newborn with Fallot’s tetralogy. The lower panels show stent implantation (*) to enlarge the outflow and 
improve pulmonary blood flow, relieving the cyanosis.
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infants who underwent standard repair. RVOT stenting resulted 
in relief of cyanosis and PA growth, allowing time for somatic 
growth and resolution of non-cardiac comorbidities until  
definitive repair63,71. Quandt and colleagues compared outcomes 
of RVOT stenting and BT shunts, reporting better PA growth and 
hence shorter duration of palliation before complete repair after 
stenting. The RVOT stent group also had a shorter intensive care 
unit (ICU) and hospital stay, whilst mortality until surgical repair 
was similar in both groups73,74.

Several disadvantages of RVOT stenting exist, notably the  
technical complexity and risk of inadvertent perforation of the 
RVOT in low-weight infants with membranous pulmonary valve 
(PV) atresia, who undergo radiofrequency perforation to open 
the RVOT prior to stenting63. A hybrid perventricular route may 
offer a more controlled approach to PV perforation and RVOT 
stent placement while avoiding cardiopulmonary bypass and 
femoral vessel complications and has been reported in a few case 
series, including a neonate as small as 1.3 kg75,76. There is a high  
re-intervention rate for additional stent implantation (if the  
initial implant did not cover the full extent of the outflow tract) 
and PA dilation, although in this subset of infants the PAs 
are hypoplastic and require repeat procedures to encourage  
growth72.

Previous retrospective comparisons of early primary repair versus 
a staged repair with a BT shunt in symptomatic neonatal TOF  
showed equivalent mortality and outcomes, although shunted 
patients had a greater likelihood of avoiding a transannular 
patch at the time of repair66. However, there are currently no  
published data comparing the outcomes of early primary repair, 
BT shunt, and RVOT stent. Ultimately, the preferred palliative 
option, whether surgical or percutaneous, is likely to depend on 
local expertise, patient factors, and clinical condition at the time 
of intervention.

The role of ductal stenting in the duct-dependent 
pulmonary circulation
While ductal stenting (DS) has been applied for well over two 
decades, the procedure has gained a wider acceptance as a  
palliative option for the cyanotic infant with a duct-depend-
ent pulmonary circulation deemed unsuitable for primary repair  
(Figure 4)77,78. The technique has been applied in various lesions, 
either leading to a biventricular repair or destined for univen-
tricular palliation77,79,80. Apart from avoidance of surgery and  
shunt-related adverse events, maintaining duct patency has been 
shown to promote significant and uniform PA growth compared 
to a BT shunt alone77,81,82. The effective patency of the stented  
duct or PA growth potential was not significantly different  
between cases with a single source (ductal) of pulmonary blood 
flow or those with multiple sources of pulmonary blood flow77,81. 
In a few retrospective reports, DS has performed favorably 
and offered early survival advantage with improved hemody-
namic stability compared to a BT shunt but with an increased  
likelihood of re-intervention prior to next-stage surgery78–80,83.

One major disadvantage of DS is progressive neointimal  
proliferation and consequent endoluminal narrowing with an  
unpredictable timecourse82. The adequacy of palliation provided 
by DS, however, depends on the clinical setting. When DS 
is performed after RVOT intervention for critical PS or PA,  
short-term patency is usually adequate. In other conditions, 
such as univentricular palliation prior to a Glenn procedure or  
biventricular repair of complex anatomy, a longer lifespan of the 
stented duct from 6 to 12 months is desirable to allow somatic  
growth82. The impact of drug-eluting stents used in adult  
coronary artery disease has been investigated in this setting. 
Sirolimus-eluting stents implanted in the porcine arterial duct 
had higher patency rates compared with bare-metal stents with  
anti-proliferative action on ductal smooth muscle84. Early trials of 
drug-eluting stents in neonates showed no clinically significant 

Figure 4. Ductal stent. The left panel details a stenotic arterial duct as it connects with the main pulmonary artery in a child with ductal-
dependent pulmonary circulation. The right panel shows the appearance of the duct after the placement of a ductal stent to support the 
pulmonary blood flow.
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adverse outcomes; however, their clinical efficacy has yet to be 
evaluated85.

Percutaneous pulmonary valve implantation in the right 
ventricle to pulmonary artery conduit and native outflow tract
Percutaneous pulmonary valve implantation (PPVI) is a  
recognized alternative to surgical pulmonary valve replacement 
in selected patients with dysfunctional synthetic right ventricle- 
to-PA (RV-PA) conduits, bioprosthetic pulmonary valves, or  
homografts. Currently available percutaneous pulmonary valves 
include the Melody™ valve (Medtronic, Minneapolis, MN),  
which has a maximum outer diameter of 24 mm, and the Edwards 
Sapien™ valve system (Edwards Lifesciences Corp), with outer 
diameters of up to 29 mm.

Multiple studies have reported excellent procedural success 
and clinical efficacy of the Melody™ valve with thus far up to  
7 years of follow up86–89. Published experience on the Sapien™  
valve in the pulmonary position is comparatively less, although 
there are robust data supporting its use in the aortic position in 
high-risk or elderly patients with acquired aortic stenosis90,91.  
Early results of the COMPASSION (COngenital Multicenter 
Trial of Pulmonic VAlve Regurgitation Studying the SAPIEN  
Interventional THV) trial reported a good safety and efficacy 
profile, and several small studies have demonstrated comparable  
results to the Melody™ valve in the medium term92–95. With both 
the Melody™ and the Sapien™ valve, primary valve failure was 
rare and overall complication rates were low (0–5%) with reported 
mortality rates of up to 2%86–89,92–95. Coronary compression due 
to expansion of the implant occurred in less than 1% of cases  
and was significantly associated with an abnormal coronary artery 
course. Pre-implantation coronary artery compression testing is 
mandatory to avoid this potentially catastrophic complication51,96. 
Stent fractures which occurred with the Melody™ valve in the  
early experience have been addressed with routine RVOT pre- 
device implant stenting. The incidence of infective endocarditis 
after PPVI is estimated at approximately 3% per year with the 
Melody™ valve, whilst a lower incidence with the Sapien™ valve 
is suggested97.

More recently, the application of both Melody™ and Sapien™ 
valves in the so-called “native” RVOT have been described in case 
reports and case series98–101. “Native” refers to the non-operated 
RVOT or one having a previous balloon pulmonary valvulo-
plasty/valvectomy for pulmonary stenosis or previous transannu-
lar patch repair for correction of TOF, which constitutes the vast 
majority of patients with a dysfunctional RVOT. The potentially  
distensible tissue in the contractile “native’” RVOT and the absence 
of a pre-existing “scaffold” such as in a conduit or bioprosthetic 
valve presents potential problems with implant valve stability, 
a paravalvular leak, or framework fracture. To overcome such 
issues, several techniques of pre-stenting the RVOT have been 
developed to create a “landing zone” for the selected transcatheter  
valve11. Implantation of the Melody™ valve in the branch PAs  
has also been described102.

For the dilated “native” RVOT often encountered after a  
transannular patch repair for TOF, hybrid approaches of RVOT 
plication through a limited sternotomy or thoracotomy and  
subsequent percutaneous or perventricular delivery of the  
Melody™ valve have been explored103–105. Paralleling the limited 
application of these first-generation PPVIs in the “native” RVOT 
is the development of self-expanding percutaneous valves such 
as the Harmony™ valve (Medtronic Inc, Minneapolis, USA), the 
Venus P™ valve (Medtech, Shenzhen, China), and a rendezvous  
Alterra™ stent (Edwards Lifesciences) as a landing zone for 
a Sapien™ valve106–111. The flared ends of these systems are  
designed to provide stability in the large pulsatile outflows, 
whilst the self-expanding nitinol frames adapt to various outflow  
anatomies (Figure 5). Other concepts in development (in animal 
studies) include implantation of expandable conduits in the RVOT 
that can be dilated sequentially with growth or replaced with a  
percutaneous valve112–114.

Transcatheter tricuspid and mitral valve replacement
The rapidly expanding transcatheter heart valve technology has 
been applied to the treatment of atrioventricular valve dysfunc-
tion with a growing experience in the tricuspid valve position.  
Implantation of percutaneous valves into degenerated biopros-
theses (valve-in-valve, VIV) or into annuloplasty rings (valve-in-
ring, VIR) is an attractive alternative to surgery in the high-risk 
and often-debilitated patient with acquired or congenital cardiac  
disease115–118. A large multicenter experience of tricuspid 
VIV implantation has recently been published, using both the  
Melody™ and the Sapien™ valves with favorable outcomes 
at more than a year follow up117. The majority of patients were  
relatively young (median age 40 years), and over half had  
tricuspid valve disease associated with congenital heart disease  
including Ebstein’s anomaly, intrinsic tricuspid valve (TV) abnor-
malities, or TV injury related to previous surgery or catheter  
intervention. There was an excellent procedural success of 99%, 
with significant improvements in the degree of regurgitation or 
stenosis and symptomatic improvement. The 30-day mortality 
was 3.3%, and estimated freedom from tricuspid re-intervention 
at 1 year was 83%. The extension of the tricuspid VIV concept to  
VIR is considerably more challenging owing to larger diameters 
and geometric variability of surgically placed rings. Although 
this approach is technically feasible and clinically effective in  
reducing tricuspid regurgitation, paravalvular regurgitation has 
been common119,120.

Transcatheter mitral valve replacement remains in its early  
clinical stages121. Mitral VIV implantation is more difficult 
to accomplish owing to difficulty in coaxial alignment of the  
percutaneous valve within the existing valve. The majority of  
implantations are performed using a direct transapical approach 
with the larger diameter Sapien™ valves122–124. A transvenous, 
transseptal technique utilizing an apical rail to facilitate the delivery 
of Melody™ valve into the dysfunctional mitral prosthesis has also 
been described118. To date, the results of mitral VIV implantations 
within a high-pressure hemodynamic environment have shown 
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Figure 5. Percutaneous pulmonary valves for the large outflow tract. The left panel is a picture of the Edwards Alterra™ stent, designed 
to be placed in the right ventricular outflow tract in patients after transannular patch repair for Fallot’s tetralogy. �������������������������������    The nitinol stent hosing (seen 
in the photo) provides a landing zone for a 29 mm Sapien™ valve. The right panel is a photo of Medtronic’s Harmony™ valve. This valve stent 
design has porcine pericardial valve leaflets sewn into the nitinol framework.

good valve performance with low transvalvular gradients and low 
rates of paravalvular regurgitation in the short term122–125. Apply-
ing the Sapien™ valve to surgically implanted ring (VIR) is even 
less appealing because of incomplete sealing of the variable and 
D-shaped annuloplasty rings and the risk of causing left ventricu-
lar outflow tract obstruction. Recent successful case reports of the 
Melody™ VIR technique, however, offer significant promise126,127. 
Compared to Sapien™ valves, the Melody™ valve has a longer 
stent that is covered throughout its length, which provides good 
sealing at the subvalvar level128. Transcatheter valve-in-native-ring 
for calcified native mitral stenosis has also been reported in high-
risk adult patients129–131.

In infants and children with severe mitral stenosis or regurgita-
tion associated with congenital heart disease, the Melody™ valve 
as a surgical implant has shown promising results after failed  
attempts at primary mitral valve repair132,133. The Melody™  
valve has the potential for future expansions with child growth  
and is a viable option in the lack of appropriately sized mitral 
valve prostheses in these small children; however, further study  
is required to determine longer-term durability and safety.

Conclusion
Recent years have seen the rapid development of imaging and 
device technologies as well as percutaneous interventions in a 
variety of congenital cardiac lesions, with an increased application 

of percutaneous therapies to a broad range of patients. It is  
important, however, to remember that long-term outcomes for  
many such novel interventions are lacking, and rigorous prospec-
tive studies and data surveillance are required to determine safety 
and efficacy profiles before these become standard of care. Future  
innovations and growing experience in this field, in addition to 
increased collaboration between surgeons and interventionists, 
will undoubtedly continue to expand transcatheter options in 
the management of congenital heart disease, further improving 
the quality of life for the child and adult with congenital heart  
disease. This short review touches on some of the highlights 
that have been developed over the last decade. A number of  
percutaneous procedures (not mentioned) have become standard  
of care in many centers, and with continued diligence we can  
anticipate the continued application of such therapies.
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