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Abstract

Cells in the pluripotent state have the ability to self-renew indefinitely and to differentiate to all the 

cells of the embryo. These cells provide an in vitro window into development, including human 

development, as well as holding extraordinary promise for cell-based therapies in regenerative 

medicine. The recent demonstration that somatic cells can be reprogrammed to the pluripotent 

state has raised the possibility of patient and disease specific induced pluripotent cells. Here we 

review the molecular underpinning of pluripotency. We focus on the transcriptional and signaling 

networks that underlie the state of pluripotency and control differentiation. In general, the action 

of each of the molecular components and pathways is dose and context dependent highlighting the 

need for a systems approach to understanding pluripotency.

The three germ layers of the mammalian embryo all derive from the cells of the epiblast 

which is itself a derivative of the inner cell mass (ICM) (Figure 1). Mouse embryonic stem 

cell (mESC) lines were initially derived by plating cells from the ICM on a layer of 

embryonic feeder cells1, 2. The cells cultured from the ICM meet the defining criteria for 

pluripotency in that they: 1) self-renewal indefinitely and 2) give rise to all the cell types 

which comprise the embryo. More recently, pluripotent cells meeting these same criteria 

have been isolated from the early human embryo (Movies 1 and 2) 3.

Functionally, pluripotency can be demonstrated by several experimental tests. These include 

differentiation to all three germ layers in vitro and in vivo (embroid body and teratoma 

formation, respectively), contribution to chimeric mice upon injection into blastocyst-stage 

embryos, and, most stringently, tetraploid complementation. In the latter technique, the 

pluripotent cells generate the entire mouse while the tetraploid cells contribute only to 

extraembryonic tissue4, 5. The pluripotency of mESCs has been demonstrating using all of 

the above techniques, while human embryonic stem cells (hESCs) have been used to 

generate embryoid bodies, teratomas and even mouse-human chimeric blastocyst-stage 

embryos6.

The study of ESCs holds significant promise for problems of both fundamental and clinical 

significance. ESCs provided a technical means to manipulate the mouse germline. 
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Furthermore, while studies of mESCs in vitro can complement in vivo approaches, hESCs 

provide the only system for studying human development and its differences with other 

mammals. Finally, the ability to differentiate ESCs to specific cell types has the potential to 

lead to cell-based therapies for a wide range of disorders in regenerative medicine. The 

recent discovery that somatic cells can be reprogrammed into a pluripotent state7 (known as 

induced pluripotent stem cells or iPSCs) has raised the possibility of generating patient- and 

disease-specific stem cells through reprogramming. In this article, we review the molecular 

basis of pluripotency focusing in particular on the signaling and transcriptional networks that 

ESCs use to maintain pluripotency and to differentiate.

Signaling pathways in pluripotency and differentiation

During embryogenesis, signaling pathways provide the cues to establish positional 

information within the embryo and to instruct cells to differentiate. Pathways typically begin 

at the cell surface with ligand binding to a receptor complex and terminate in the cell 

nucleus with the activation of transcription thus allowing a transfer of information from 

outside the cell to inside the nucleus. Proper signaling cues are essential both for self-

renewal in the state of pluripotency and for instructing cells to differentiate to particular 

lineages. In this section, we review several emerging themes in signaling in pluripotent cells 

with a focus on the developmentally essential LIF, BMP, Activin/Nodal, FGF, and Wnt 

pathways (Table 1).

Proper signaling cues can maintain self-renewal by activating pluripotency 

and repressing differentiation-specific genes

Within the embryo, specific signals specify the ICM and allow its cells to remain 

pluripotent. Traditionally, in vitro, these signals have been replaced by culture on a feeder 

layer of mouse embryonic fibroblasts. These same cells are capable of maintaining the 

pluripotency of both mES and hESCs, however, elucidation of the signaling requirements to 

maintain each cell type without feeders has revealed large difference between mouse and 

human pluripotent cells.

Signaling pathways maintaining pluripotency in mESCs

Over twenty years ago, it was discovered that the feeder cells could be replaced by a 

combination of the signaling molecule LIF and serum8. LIF signals through the 

transcriptional activator STAT3 and activation of STAT3 alone is sufficient to replace the 

requirement for LIF in maintaining pluripotency9. The primary mechanism of action of LIF 

in maintaining pluripotency appears to be through STAT3 induction of Klf4, however, LIF 

also maintains Nanog expression by signaling through the PI3K pathway10. Thus, LIF 

appears to function mainly by directly inducing key pluripotency-associated genes.

More recently, it was discovered that under these culture conditions, the serum in the 

medium could be replaced with BMP ligands allowing the culture of mESCs in feeder-free, 

serum-free medium containing LIF and BMP11. In ESCs, BMP ligands signal through the 

Smad pathway to activate expression of Id genes that inhibit differentiation11. BMP also 
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functions by inhibiting the ERK and p38 MAPK pathways which promote differentiation in 

mES (see below)12. Thus, LIF and BMP function synergistically in mES by promoting 

pluripotency and suppressing differentiation, respectively.

It is natural to ask whether activation of these pathways is necessary or merely sufficient for 

the maintenance of pluripotency. In fact, mESCs deficient in either LIF or its receptor gp130 

can be propagated and mice generated from these cells develop nearly normally13. Further, 

the pluripotent state of mESCs can be maintained solely by inhibition of the FGF 

differentiation pathway using both an FGF receptor inhibitor and a MEK inhibitor, however, 

growth under these conditions is improved when GSK3β is inhibited as well14. Stat3-/- cells 

which are incapable of transducing LIF signals can be maintained in this formulation 

demonstrating that this pathway is not strictly required for pluripotency. The maintenance of 

pluripotency by these three inhibitors has been termed the “ground state” of ES cell self-

renewal14.

Signaling pathways maintaining pluripotency in hESCs

Surprisingly, the LIF and BMP pathways do not play a role in self-renewal in hESCs (Table 

2). Addition of LIF to hESC culture medium activates STAT3 but cannot substitute for the 

layer of feeder cells as is the case for mESC15. Additionally, BMP is a differentiation 

pathway in hESCs, and even relatively low doses cause differentiation to extraembryonic or 

mesodermal fates16-18. Instead, hESCs can be maintained in feeder-free, serum-free 

conditions through stimulation of the FGF19-21 and Activin/Nodal pathways22-24. Thus the 

signaling requirements of mouse and human pluripotent cells are significantly different. It 

has been suggested that hESCs may represent a later stage of development than mESCs and 

indeed stem cell populations derived from the E5.5 epiblast share many features with hESCs 

(Figure 2)25, 26. It has also been shown that it is possible to revert hESCs to an earlier 

developmental state that resembles mESCs in its signaling requirements27.

Similar to the roles LIF and BMP play in mESC, FGF and Actvin signaling both activate the 

expression of key pluripotency genes and suppress differentiation-related genes and 

pathways. Activin/Nodal signaling activates Nanog and the signal transducers Smad2/3 bind 

directly to the Nanog promoter28. This interaction has been suggested to occur in vivo in 

model organisms as well29. FGF signaling through the ERK pathway has been reported to 

sustain Nanog expression, however, this is likely an indirect effect acting through the 

Activin/Nodal pathway17. Independently, FGF activation of the PI3K pathway promotes 

pluripotency by directing Smad2/3 activity to pluripotency rather than differentiation genes 

(see below)30, 31. Further, both pathways play a role in suppressing the BMP differentiation 

pathway28, 32, although the molecular mechanisms of these interactions remain unclear. In 

other contexts, Activin/Nodal signaling has been suggested to suppress BMP signaling 

through competition for common pathway elements such as Smad433, while FGF signaling 

through ERK has been shown to induce inhibitory phosphorylations in the linker regions of 

the BMP signal transducers Smad1/5/834.

Despite the differences between mouse and human, Wnt signaling has emerged as a 

signaling pathway that plays a role in maintaining pluripotency in both mouse and human. In 

mESCs, Wnt signaling can maintain pluripotency under conditions that would otherwise 
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promote differentiation15, 35 and may function both by upregulating LIF/Stat3 signaling36 

and by suppressing the transition to the epiblast state37. Wnt signaling can also enhance the 

reprogramming of murine somatic cells to induced pluripotent cells38, 39. Wnt signaling 

appears to play a similar role in maintaining hESC pluripotency although the molecular 

mechanisms remain unclear15. As Wnt, FGF, and TGFβ all function as morphogens, it is 

very likely that particular concentrations are necessary for this activity as we now discuss.

The same signalling pathways recur in maintenance of pluripotency and 

induction of differentiation

Paradoxically, many of the pathways involved in maintaining pluripotency play a key role in 

differentiation as well. Decades of research in model organisms have delineated essential 

roles for the FGF, BMP, Activin/Nodal and Wnt signaling pathways in early developmental 

processes including mesoderm induction, dorsal-ventral patterning, and formation of 

Spemann's organizer40-44 and these pathways directly activate key differentiation genes such 

as Brachyury, Gooscoid, and Sox17. Furthermore, under differentiation conditions, these 

pathways play similar roles in ESCs. Taken together, these observations raise a central 

question: how do signaling pathways maintain pluripotency under some conditions while 

directing differentiation under others.

In mESCs, the key to answering this question may lie in the fact that mESCs represent an 

early stage of development and are not primed for differentiation. Recent studies argue that 

mESCs transition to a primed epiblast stem cell (EpiSC) state before differentiating to any of 

the three germ layer lineages. This ES to epiblast transition is induced by upregulation of 

FGF signaling, consistent with the expression of FGF5 in the epiblast in vivo. Subsequently, 

embryonic lineages are specified by particular activities and/or combinations of ligands such 

as BMP, Activin/Nodal or retinoic acid (RA)45, 46. Importantly, while some signals are 

instructive, others may potentiate differentiation directed by other pathways. Further, RA 

signaling also appears to initiate the upregulation of FGF signaling that leads to the EpiSC 

state45. Thus, complex signaling relationships mediate pluripotency versus differentiation 

toward specific germ layers, and differences in cell state may determine whether a signaling 

pathway promotes self-renewal or differentiation.

In human cells, the issue is more problematic as hESCs already represent a later stage of 

development and are primed for differentiation. Upon stimulation with growth factors such 

as BMP or Activin/Nodal, hESCs show both morphological and molecular signs of 

differentiation within 24 hours18, 47. Thus, how it is that Activin/Nodal or Wnt signaling can 

both promote pluripotency and direct differentiation in hESCs remains an important 

question. Indeed recent studies showing that activation of Wnt signaling in hESCs leads to 

mesendoderm differentiation have been used to suggest that Wnt is primarily a 

differentiation, not self-renewal, pathway in hESCs31, 48.

The answer to this issue may lie at least in part in the fact that nearly all of these pathways 

function as morphogens in vitro and in vivo, elucidating different outcomes depending on 

the concentration or duration of signaling40, 42, 49. In the case of Wnt signaling, recent 

evidence suggests that while low levels support pluripotency in hESCs, higher levels lead to 
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differentiation50, 51. This may also provide part of the explanation for the differing effects of 

Activin/Nodal signaling in hESCs as the concentrations used to maintain self-renewal are 

typically significantly lower than those used in differentiation18, 47. Thus, in this view, the 

state of pluripotency can be considered one of many possible fate outcomes induced by 

Activin/Nodal or Wnt morphogens and is induced by low but not high concentrations.

Signaling pathways form a network that dictates the balance of self-renewal 

and differentiation

Signaling pathways do not function in isolation but the status of signaling through one 

pathway can dictate the outcome when another is activated. Thus, another part of the 

explanation for how the same signaling pathways guide both self-renewal and differentiation 

likely lies in considering the status of a network of pathways rather than evaluating each 

pathway separately (Figure 3). Similar principles are needed to understand differentiation as 

the result of adding identical concentrations of a differentiating ligand can be altered 

depending on the status of other pathways.

An illustration of these ideas has recently been uncovered in the interactions between FGF 

and Activin/Nodal signaling governing the balance between pluripotency and differentiation 

in hESCs31. As discussed above, Activin/Nodal signaling mediates both self-renewal and 

differentiation to mesendodermal lineages. These effects depend on the status of the ERK 

and PI3K pathways which function downstream of FGF. In pluripotency conditions, the 

PI3K pathway is active and directs Activin/Nodal signaling to pluripotency-promoting genes 

such as Nanog. Under differentiation conditions, PI3K is suppressed, leading to upregulation 

of the ERK pathway as well as activation of Wnt signaling. These combined changes 

redirect Activin/Nodal from maintaining pluripotency to inducing differentiation. Thus 

considering the status of an integrated signaling pathway elucidates how Activin/Nodal 

signaling can play context-specific roles.

A similar phenomenon occurs during BMP-mediated differentiation. Results from model 

systems in vivo has identified a role for BMP in inducing mesodermal lineages52. In hESCs, 

however, treatment with BMP ligands leads to induction of genes and cell morphology 

associated with trophoectedermal lineages16. These differing results can be explained by the 

status of the FGF pathway. When the FGF pathway is active, it cooperates with BMP 

signaling to induce mesoderm, while in its absence, BMP induces trophectoderm17. A recent 

study has challenged whether BMP-differentiated hESCs represent a true trophectodermal 

population18, however, whatever the outcome of that debate, it is clear that outcome of 

BMP-mediated differentiation depends on the status of the FGF pathway. These results 

highlight that the effects of signaling pathways on self-renewal and differentiation can only 

be unraveled by considering an integrated signaling network.

Epigenetic control of pluripotency and differentiation

The chromatin state of a cell provides the context in which the transcriptional changes that 

mediate self-renewal and differentiation must take place. Recently, modulators of chromatin 

have emerged as important players in the maintenance of pluripotency, in differentiation, and 
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in reprogramming. A thorough discussion of this topic is beyond the scope of this review 

and the reader is directed to recent reviews devoted to this subject53, 54. Here we review 

basic concepts and highlight recent studies relevant to signaling and transcriptional networks 

in pluripotency.

ESCs are generally characterized by an open chromatin configuration54 and this is 

associated with a hyperactive transcriptome, including expression of low levels of many 

lineage specific genes55. This promiscuous transcription has been suggested to be associated 

with the plasticity of ESCs and differentiation is reflected in silencing genes from alternate 

lineages. In vivo studies have demonstrated a similar open chromatin configuration in cells 

from the E3.5 mouse blastocyst56.

Generally, genes active in the pluripotent state are associated with the chromatin mark 

H3K4me3 while those associated with differentiation have a repressive mark such as 

H3K27me353. Many differentiation genes have both active and repressive marks. This 

bivalent chromatin represents a state that is silent but poised for transcription57. These 

bivalent marks are recognized by the Polycomb complex that acts in a repressive role. 

Differentiation is accompanied by the loss of the repressive H3K27me3 mark and activation 

of transcription58. However, a simple role for Polycomb proteins in repressing 

differentiation-associated genes to maintain pluripotency is excluded by the observation that 

ESCs defective in a critical subunit of the Polycomb complex are pluripotent59. The 

maintenance of pluripotency in the absence of the Polycomb complex is likely due to the 

redundant role of several repressive complexes in silencing differentiation-related genes60. 

More recent studies have revealed a nuanced picture of Polycomb function with the 

composition and activity of the Polycomb complex changing during differentiation53.

A recent study has highlighted the role of poised chromatin in triggering differentiation61. 

This study revealed that complexes of the Activin/Nodal signal transducers Smad2/3 with 

TIF1γ/TRIM33 recognized the poised chromatin mark H3K9me3 on key mesendodermal 

regulators specifically in response to activation by Activin/Nodal. This recognition was 

necessary for activation of these genes by the canonical Activin/Nodal active signaling 

complex containing Smad2 and Smad4. Thus, Activin/Nodal/nodal signaling uses the poised 

chromatin marks to switch these genes from poised to active states. These finding remain 

controversial, however, as in other contexts TRIM33 has been shown to be antagonistic to 

Activin/Nodal signals62, 63 and the phenotype of the mouse knockout of TRIM33 is more 

consistent with overactive than repressed Activin/Nodal64.

There are extensive associations between the network of transcription factors governing 

pluripotency and chromatin modifications. In particular, c-Myc has emerged as a key factor 

involved in the core circuitry of ESCs and linked to multiple activities involving chromatin 

modifications65. This study shows that loss of Myc leads to widespread changes in 

chromatin modifications in both mESCs and the early mouse embryo.
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Transcriptional networks controlling pluripotency

Core Transcriptional Circuitry

Through microarray analysis, a global view of gene expression associated with the state of 

stemness has begun to emerge66-69. Prominent results in each of these studies included 

genes that had previously been shown to play critical roles in embryogenesis and formation 

of ESCs. These include genes that have been utilized for the reprogramming of mouse and 

human somatic cells, such as Klf4 and c-Myc. In addition, focused studies in mESCs and 

hESCs have confirmed requirements for other factors like FoxD3 and Id proteins in 

maintenance of self-renewal or pluripotency70-72. Relative to differences in signaling 

requirements and epigenetic status between mESCs, mEpiSCs and hESCs, transcriptional 

profiles appear to be more conserved between these cell types25, 26. Expression levels of 

some differentiation-associated genes are elevated in mEpiSCs and hESCs compared to 

mESCs at the RNA level, consistent with the notion of “primed” versus “naive” states of 

pluripotency26, 27. On the other hand, evidence that these differences exist at the protein 

level is limited. Further, pluripotency transcription factors Oct4, Sox2, Nanog, and Myc 

levels are consistent between cell types26. In this section, we will focus on Oct4, Sox2 and 

Nanog, three transcription factors that have been shown repeatedly to be at the heart of the 

transcriptional network that supports pluripotency.

Oct4, Sox2 or Nanog loss-of-function results in failure of epiblast formation and embryonic 

lethality by implantation stages. Consequently, mESCs cannot be established from Oct4-/-, 

Sox2-/- or Nanog-/- blastocysts73-75. RNA interference-mediated knockdown of these genes 

in hESCs results in loss of pluripotency and self-renewal76-78, consistent with results in 

mice. Gene expression and knockout studies established indispensible roles for Oct4, Sox2 

and Nanog in pre- and peri-implantation murine development. Oct4 is expressed from the 8 

cell stage, transiently in the extraembryonic endoderm and later becomes restricted to the 

epiblast79, 80. Similarly, Sox2 is expressed in all cells at morula stages and in the epiblast, as 

well as trophectoderm81. Nanog expression is initiated slightly later, in post-compaction 

morulae, and persists in the ICM and epiblast74, 82. Analysis of gene expression in human 

blastocysts indicates that Oct4, Sox2 and Nanog are expressed in the ICM83, 84. Recently, 

numerous genome-wide studies have been undertaken to determine how these key factors 

regulate the transcriptional repertoire of ESCs. Although the picture remains incomplete, 

several evolutionarily conserved trends have emerged.

Coordinators of the Pluripotency Network

Cooperative regulation—Genome-scale analyses of Oct4, Sox2 and Nanog binding sites 

reveal that they frequently bind the same regulatory regions in undifferentiated mouse and 

human ESCs, and that these binding sites are often in close proximity to one another85-88. 

Oct/Sox composite binding sites have been identified in individual promoters, directly 

adjacent or separated by less than five base pairs89-91. These data point not only to 

coordinated regulation of targets, but in some cases physical interactions between the 

transcription factors themselves89, 90, 92. Further, it appears that combinatorial binding sites 

may be significantly more conserved between mouse and human than individual binding 
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sites93, suggesting that this may be a dominant mode of transcriptional control in the state of 

pluripotency.

In addition to one another, Oct4, Sox2 and Nanog activities are modulated by downstream 

effectors of signaling pathways, such as Tcf3 and Smad3, and by Polycomb Repressor 

Complexes (PRCs). Tcf3 and Smad3 binding sites are enriched in promoters that are also 

bound by the Oct4/Sox2/Nanog combination94-96. In the presence of Wnt signaling levels 

that support pluripotency in mESCs, Tcf3 is likely to be associated with repression of 

transcription, whereas elevated levels of Wnt signaling overcome the repressive effect of 

Tcf3 and lead to differentiation of mESCs95, 97, 98. In the reciprocal experiment, knockdown 

of Tcf3 can substitute for the Wnt requirement in maintenance of pluripotency96. A critical 

component of TGFβ signalling, Smad3, appears to be recruited by Oct4 to specific 

promoters on a genome-wide scale94, providing another potential intersection between 

established signaling cues and the transcriptional network of ESCs. Finally, a subset of 

regulatory regions enriched for binding by each of these transcription factors is also enriched 

for binding by PRCs58, 85. Differential effects of Oct4, Nanog or Tcf3 knockdown on target 

gene expression (see below) may result from association of PRCs with some targets but not 

others95. Thus, a variety of inputs acting in concert, both cooperatively and antagonistically, 

are required to balance the transcriptional activity of the pluripotency network.

Targets—Oct4, Sox2 and Nanog have been shown to both activate and repress transcription 

in particular cases89, 90, 99. Indeed, global analyses have found Oct4, Sox2, and Nanog 

binding sites to be roughly equally distributed between genes that maintain pluripotency and 

those that promote differentiation85, 87. However, when Oct4 levels are experimentally 

manipulated, genes that are predicted to be activated by Oct4 are more likely to be affected 

than those predicted to be repressed88, 94. Suppression of Oct4 function in mESCs leads first 

to downregulation of targets that promote stemness, followed at later time points by 

upregulation of genes that promote differentiation85, 88. These observations suggest that 

Oct4 acts primarily through the activation of other pluripotency genes, which in turn repress 

genes associated with differentiation. In agreement with this hypothesis, overexpression of 

Oct4 coupled with cyclohexamide treatment to inhibit protein synthesis indicated that 

repressors of differentiation were far more likely to be direct targets than promoters of 

differentiation100. On the other hand, a slightly more even distribution between activated and 

repressed promoters was observed for Nanog binding sites88, and Nanog and Oct4 have both 

been associated with repressive protein complexes in mESCs101. Thus, the precise activity 

of Oct4, Nanog and Sox2 is likely to be context- and promoter-specific.

Roughly equal numbers of Oct4 and Nanog binding sites are found in intragenic regions 

compared to promoter regions86. Although it remains unclear whether functional binding is 

equivalent between these two categories, these findings point to the need for careful 

attention to the genomic regions examined in published studies and further analysis.

Stoichiometry and combinatorial regulation of cell fate—In addition to regulating 

other genes, Oct4, Sox2 and Nanog have been shown to cross- and auto-

regulate75, 86, 100, 102-105. Such feed-forward mechanisms support robustness of 

transcriptional programs, and also serve to maintain balanced levels of key regulatory 
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factors. Much like the case with signaling pathways, specific levels of transcription factor 

activity appear to be important for maintenance of pluripotency. Thus, even small 

perturbations of Oct4 or Sox2 levels lead to differentiation78, 106-108. Interestingly, 

upregulation of these transcription factors has different effects. For example, elevated levels 

of Oct4 expression lead to differentiation of ESCs to extraembryonic endoderm fates108, 

while overexpression of Sox2 generates a variety of fates that specifically exclude 

endoderm106. Similarly, in a growth factor-mediated differentiation paradigm, slightly 

elevated levels of Oct4 or Sox2 correlated with distinct differentiation outcomes109. Further, 

this study found that in pluripotent cells Oct4 and Sox2 bound promoters together in 

agreement with previous reports, but that they became enriched at opposing loci during 

differentiation. For example, Sox2 becomes enriched over Oct4 at its own enhancer and in 

the Brachyury regulatory region during neurectodermal differentiation, signaling positive 

and negative regulation, respectively. Together with the high degree of cooperative binding 

observed in ChIP experiments, these data support the notion that correct stoichiometry of 

key transcription factors is critical. Thus, concentration- and activity-specific mechanisms 

function at multiple levels in regulation of pluripotency, including extracellular signaling and 

intracellular transcription factors.

Reprogramming to the pluripotent state

Induced pluripotent stem cells (iPSCs) present an opportunity to further analyze and test our 

knowledge of pluripotency. Further, the ability to generate disease- or patient-specific iPSC 

lines for study and eventually for therapeutics holds great promise for both basic biology and 

medicine. Still in its infancy, the field of iPSC research began with the reprogramming of 

mouse fibroblasts7, followed closely by complementary experiments in human somatic 

cells110, 111. In these seminal studies, it was demonstrated that forced expression of a small 

number of transcription factors could alter the potency of highly derivative cells from 

embryos or adults, bringing them back to a status resembling embryonic stem cells. In the 

intervening five years, considerable progress has been made in our understanding of the 

reprogramming process. To thoroughly address this topic is the work of several 

reviews112-114. In this section, we focus on a few major developments in the field of 

reprogramming as they relate to our understanding of pluripotency.

The original study in mice found that four transcription factors, Oct4, Sox2, Klf4 and c-Myc 

(OSKM) were sufficient for reprogramming7. Although it was later postulated that these 

cells were only partially reprogrammed, the utility of OSKM has been upheld in numerous 

subsequent studies115-117. These requirements have further been dissected, revealing that 

different combinations of transcription factors are sufficient for the reprogramming of 

different somatic cell types118-124. In some cases, the function of individual transcription 

factors can be replaced by chemical or small molecule treatments125-127. Notably, the one 

requirement for which no substitute has been found is Oct4, underscoring the pivotal role 

that this transcription factor plays in pluripotency.

With very few exceptions, the efficiency of the reprogramming process continues to be low 

(< 1%)114. This suggests that numerous obstacles exist to the reacquisition of pluripotency 

by somatic cells114, 128. These include, but may not be limited to, deactivation of the somatic 
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cell gene program, activation of endogenous pluripotency genes (both the factors being used 

to reprogram and additional loci), epigenetic remodeling, and a number of cell divisions. It 

has further been postulated that only a small number of cells in any given population have 

the capacity to be reprogrammed128. It is likely that low reprogramming efficiency is the 

result of a combination of these factors – many barriers exist, and thus only a small number 

of cells manage to clear all the hurdles to be fully reprogrammed.

In order to be considered fully reprogrammed, iPSCs must pass all the tests of pluripotency, 

including the abilities to self-renew and to form derivatives of each of the three embryonic 

germ layers in vitro and in vivo (teratomas). The tetraploid complementation test, in which 

mouse iPSCs are challenged to form an entire embryo, was recently passed129, 130 albeit 

with possible complications131. Global profiling methods for gene expression and DNA 

methylation have also been leveraged in characterization of iPSC lines132-134. However, our 

incomplete understanding of the state of pluripotency and of embryonic development in 

general leads to several key challenges in the effort to utilize iPSC technology114, 135.

First, a more precise definition of the state of pluripotency is necessary. Focused and global 

studies of gene expression, promoter activation and repression, DNA methylation and other 

characteristics continue to refine this picture. Second, due to variability in the precise nature 

of iPSC lines derived using different methods, any study of disease-specific iPSC lines must 

have an isogenic wild-type iPSC line generated in the same manner, preferably in parallel. 

This increases confidence that defects in differentiation of the disease-specific iPSC line 

result from the disease defect, rather than an artifact of the reprogramming process. This 

leads to a third requirement, the ability to genetically modify iPSC lines. Although 

homologous recombination has been a standard technique in mESCs for decades, 

efficiencies in human cells have until recently been very low. However, use of zinc finger 

(ZF) and transcription activator-like effector (TALE) nucleases has significantly improved 

efficiency of this process136, 137. Finally, methods for directed differentiation of ESCs and 

iPSCs to specific cell types affected in a given disease must be established. This issue has 

and continues to be a major focus of the field.

The discovery of the possibility for somatic cells to reacquire pluripotency was a tremendous 

leap forward for both basic biology and medical applications. The field continues to move 

forward at an impressive pace, bringing new perspectives and tools to bear on questions of 

the nature of pluripotency.
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Figure 1. Early Mammalian Embryonic Development
After morula stages, the first cell fate decisions are made, in which cells sort to outer and 

inner populations. Outer cells give rise to the extraembryonic trophectoderm (TE), while 

inner cells form the inner cell mass (ICM). The ICM is located asymmetrically at one side of 

the blastocoel cavity within the TE. Subsequently, the ICM further differentiates to the 

extraembryonic endoderm (ExEn) and the epiblast, which gives rise to the embryonic 

ectoderm, mesoderm and endoderm. Mouse and human embryonic stem cells are derived in 

vitro by explanting the ICM.
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Figure 2. Relationships between signaling pathways, pluripotency, and differentiation
Schematic depicting the relationship between signaling pathways and the indicated cell 

states. The dashed line indicates a connection only present in human but not mouse ES cells 

while the red-circled state indicates a state only accessible to mouse but not human cells.
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Figure 3. Network of signaling pathways governing pluripotency and differentiation
(A) Schematic depicting the relationships between signaling pathways and genes control cell 

fate. Red lines denote interactions promoting pluripotency and green lines denote 

interactions promoting differentiation. Dashed lines indicate interactions only operative at 

low to intermediate activity of the signaling pathway. (B) Pluripotency is one of a spectrum 

of possible fates that result from modulating the Activin/Nodal pathway. Lower or higher 

levels of pathway activity lead to neural or mesendodermal differentiation, respectively.
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Table 2

Comparison of Mouse ESCs, mouse EpiSCs with Human ESCs. Many features of mESCs, mEpiSCs and 

hESCs have been evaluated singly and in parallel. A summary of key characteristics is provided here. For 

additional information, see refs 25, 26, 113, 114.

mESCs hESCs mEpiSCs

Morphology Rounded Flattened Flattened

Single cell survival Good Poor Poor

Potency All embryonic fates All embryonic fates All embryonic fates

Signaling inputs BMP, LIF Activin, FGF Activin, FGF

Embryoid Body Formation Yes Yes Yes

Teratoma Formation Yes Yes Yes

Tetraploid Complementation Yes N/A No

X inactivation No Yes Yes

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2018 March 28.


	Abstract
	Signaling pathways in pluripotency and differentiation
	Proper signaling cues can maintain self-renewal by activating pluripotency and repressing differentiation-specific genes
	Signaling pathways maintaining pluripotency in mESCs
	Signaling pathways maintaining pluripotency in hESCs

	The same signalling pathways recur in maintenance of pluripotency and induction of differentiation
	Signaling pathways form a network that dictates the balance of self-renewal and differentiation
	Epigenetic control of pluripotency and differentiation
	Transcriptional networks controlling pluripotency
	Core Transcriptional Circuitry
	Coordinators of the Pluripotency Network
	Cooperative regulation
	Targets
	Stoichiometry and combinatorial regulation of cell fate


	Reprogramming to the pluripotent state
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2

