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Abstract

Motivation: In 2012, Iqbal et al. introduced the colored de Bruijn graph, a variant of the classic de

Bruijn graph, which is aimed at ‘detecting and genotyping simple and complex genetic variants in an

individual or population’. Because they are intended to be applied to massive population level data,

it is essential that the graphs be represented efficiently. Unfortunately, current succinct de Bruijn

graph representations are not directly applicable to the colored de Bruijn graph, which requires add-

itional information to be succinctly encoded as well as support for non-standard traversal operations.

Results: Our data structure dramatically reduces the amount of memory required to store and use

the colored de Bruijn graph, with some penalty to runtime, allowing it to be applied in much larger

and more ambitious sequence projects than was previously possible.

Availability and Implementation: https://github.com/cosmo-team/cosmo/tree/VARI

Contact: martin.muggli@colostate.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the 20 years since it was introduced to bioinformatics by Idury

and Waterman (1995), the de Bruijn graph has become a mainstay

of modern genomics, essential to genome assembly (Compeau et al.,

2011; Muggli et al., 2015; Ronen et al., 2012). The near ubiquity of

de Bruijn graphs has led to a number of succinct representations,

which aim to implement the graph in small space, while still sup-

porting fast navigation operations. Formally, a de Bruijn graph con-

structed for a set of strings (e.g. sequence reads) has a distinct vertex

v for every unique (k – 1)-mer (substring of length k – 1) present in

the strings, and a directed edge (u, v) for every observed k-mer in the

strings with (k – 1)-mer prefix u and (k – 1)-mer suffix v. A contig

corresponds to a non-branching path through this graph. See

(Compeau et al., 2011) for a more thorough explanation of de

Bruijn graphs and their use in assembly.

Iqbal et al. (2012) introduced the colored de Bruijn graph, a vari-

ant of the classical structure, which is aimed at ‘detecting and geno-

typing simple and complex genetic variants in an individual or

population.’ The edge structure of the colored de Bruijn graph is the

same as the classic structure, but now to each vertex ((k – 1)-mer)

and edge (k-mer) is associated a list of colors corresponding to the

samples in which the vertex or edge label exists. More specifically,

given a set of n samples, there exists a set C of n colors c1; c2; ::; cn

where ci corresponds to sample i and all k-mers and (k – 1)-mers

that are contained in sample i are colored with ci. A bubble in this

graph corresponds to an undirected cycle, and is shown to be indica-

tive of biological variation by Iqbal et al. (2012). CORTEX, the imple-

mentation of Iqbal et al. (2012), uses the colored de Bruijn graph to

develop a method of assembling multiple genomes simultaneously,

without losing track of the individuals from which (k – 1)-mers (and
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k-mers) originated. This graph is derived from either multiple refer-

ence genomes, multiple samples, or a combination of both.

Variant information of an individual or population can be

deduced from structure present in the colored de Bruijn graph and the

colors of each k-mer. As implied by Iqbal et al. (2012), the ultimate in-

tended use of colored de Bruijn graphs is to apply it to massive,

population-level sequence data that is now abundant due to next gen-

eration sequencing technology (NGS) and multiplexing. These tech-

nologies have enabled production of sequence data for large

populations, which has led to ambitious sequencing initiatives that

aim to study genetic variation for agriculturally and bio-medically im-

portant species. These initiatives include the Genome 10K project that

aims to sequence the genomes of 10 000 vertebrate species (Genome

10K Community of Scientists, 2009), the iK5 project (Robinson et al.,

2011), the 150 Tomato Genome ReSequencing project (Causse et al.,

2013; Kobayashi et al., 2014) and the 1001 Arabidopsis project, a

worldwide initiative to sequence cultivars of Arabidopsis (Weigel and

Mott, 2009). Hence, the succinct colored de Bruijn graph is applicable

in the context of these projects, in that it can assist in variation discov-

ery within a species by analyzing all the data in these projects at once.

In addition to species-specific initiatives, scientific and regulatory

agencies are showing increased interest in shotgun metagenomic se-

quences for public health purposes (EMBL-EBI Metagenomics,

2016; Miller et al., 2013), specifically monitoring for antimicrobial

resistance (AMR) (Baquero et al., 2012; Port et al., 2014). AMR is

considered one of the top public health threats, with fears that the

spread of AMR will lead to increased morbitiy and mortality for

many bacterial illnesses (Food and Agricultural Organization of the

United Nations, 2016; The White House, 2015). AMR occurs when

bacteria express genetic elements that render them impervious to

antibiotic treatments. Importantly, these genetic resistance elements

can be exchanged between distantly-related bacteria via multiple

genetic mechanisms, which makes AMR an inherently population-

level phenomenon (Baquero et al., 2013). Shotgun metagenomic

sequencing allows access to the entire microbial population in a

sample (the ‘metagenome’), which is of immense value for tracking

and understanding the evolution of resistance elements within and

across diverse bacteria(MacLean et al., 2010). This metagenomics

approach to AMR surveillance has been applied in both human and

agricultural settings (King et al., 2016; Noyes et al., 2016), generat-

ing hundreds of samples with terabytes of sequence data for rela-

tively small studies. Given the large number of samples and large

size of sequence data involved in these whole-genome and metage-

nomic projects, it is imperative that the colored de Bruijn graph can

be stored and traversed in a space- and time-efficient manner.

Our contribution. We develop an efficient data structure for storage

and use of the colored de Bruijn graph. Compared to CORTEX, the im-

plementation of Iqbal et al. (2012), our new data structure dramatic-

ally reduces the amount of memory required to store and use the

colored de Bruijn graph, with some penalty to runtime. We demon-

strate this reduction in memory through a comprehensive set of ex-

periments across the following three datasets: (i) four plant genomes,

(ii) 3765 Escherichia coli assemblies and (iii) 87 sequenced metage-

nomic samples from commercial beef production facilities. We show

our method, which we refer to as VARI (Finnish for color), has better

peak memory usage on all these datasets. Our plant reference genomes

dataset required 101 GB of RAM for CORTEX to represent while VARI

required only 4 GB. And our largest two datasets contain too many k-

mers and colors for CORTEX’s data structure to represent in the

512 GB of RAM available on our bioinformatics servers. VARI is a

novel generalization of the succinct data structure for classical de

Bruijn graphs due to Bowe et al. (2012), which is based on the

Burrows-Wheeler transform of the sequence reads, and thus, has inde-

pendent theoretical importance.

In addition to demonstrating the memory and runtime of VARI,

we validate its output using the E.coli reference genome and a simu-

lated variant.

Related work. As noted above, maintenance and navigation of the

de Bruijn graph is a space and time bottleneck in genome assembly.

Space-efficient representations of de Bruijn graphs have thus been

heavily researched in recent years. One of the first approaches was

introduced by Simpson et al. (2009) as part of the development of

the ABySS assembler. Their method stores the graph as a distributed

hash table and thus requires 336 GB to store the graph correspond-

ing to a set of reads from a human genome (>38� depth paired-end

reads from Illumina Genome Analyzer II, HapMap: NA18507

(https://www.ncbi.nlm.nih.gov/sra/?term¼SRA010896)).

Conway and Bromage (2011) reduced space requirements by

using a sparse bitvector (by Okanohara and Sadakane, 2007) to rep-

resent the k-mers (the edges), and used rank and select operations

(to be described later) to traverse it. As a result, their representation

took 32 GB for the same dataset. Minia, by Chikhi and Rizk (2013),

uses a Bloom filter to store edges. They traverse the graph by gener-

ating all possible outgoing edges at each node and testing their mem-

bership in the Bloom filter. Using this approach, the graph was

reduced to 5.7 GB on the same dataset. Contemporaneously, Bowe

et al. (2012) developed a different succinct data structure based on

the Burrows-Wheeler transform (Burrows and Wheeler, 1994) that

requires 2.5 GB. The data structure of Bowe et al. (2012) is com-

bined with ideas from IDBA-UD (Peng et al., 2012) in a metagenom-

ics assembler called MEGAHIT (Li et al., 2015). In practice

MEGAHIT requires more memory than competing methods but

produces significantly better assemblies. Chikhi et al. (2014) imple-

mented the de Bruijn graph using an FM-index and minimizers.

Their method uses 1.5 GB on the same NA18507 data. Holley et al.

(2015) released the Bloom Filter Trie, which is another succinct data

structure for the colored de Bruiin graph; however, we were unable

to compare our method against it since it only supports the building

and loading of a colored de Bruijn graph and does not contain oper-

ations to support our experiments. SplitMEM (Marcus et al., 2014)

is a related algorithm to create a colored de Bruijn graph from a set

of suffix trees representing the other genomes. Lastly, Lin et al.

(2014) point out the similarity between the breakpoint graph, which

is traditionally viewed as a data structure to detect breakpoints be-

tween genome rearrangements, and the colored de Bruijn graph.

Roadmap. In the next section, we describe our succinct colored de

Bruijn graph data structure, generalizing the stucture for classic de

Bruijn graphs presented by Bowe et al. (2012). Section 3 then eluci-

dates the practical performance of the new data structure, compar-

ing it to CORTEX. Section 4 offers some concluding remarks.

2 Materials and methods

Our data structure for colored de Bruijn graphs is based on the succinct

representation of individual de Bruijn graphs introduced by Bowe et al.

(2012)—which we refer to as the BOSS representation from the au-

thors’ initials—so we start by describing that representation. We note

that BOSS is itself a generalization of FM-indexes (Ferragina and

Manzini, 2005) obtained by extending the Burrows-Wheeler transform
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(BWT) from strings to the multisets of edge-labels of de Bruijn graphs.

We then give a general explanation of how we add colors, and finally

give details of our implementation.

2.1 BOSS representation
Consider the de Bruijn graph G ¼ ðV;EÞ for a set of k-mers, with

each k-mer a0 � � � ak�1 representing a directed edge from the node

labelled a0 � � � ak�2 to the node labelled a1 � � � ak�1, with the edge itself

labelled ak�1. Define the nodes’ co-lexicographic order to be the lex-

icographic order of their reversed labels. Let F be the list of G’s edges

sorted co-lexicographically by their ending nodes, with ties broken

co-lexicographically by their starting nodes (or, equivalently, by their

k-mers’ first characters). Let L be the list of G’s edges sorted co-

lexicographically by their starting nodes, with ties broken co-

lexicographically by their ending nodes (or, equivalently, by their

own labels). If two edges e and e0 have the same label, then they have

the same relative order in both lists; otherwise, their relative order in

F is the same as their labels’ lexicographic order. Defining the edge-

BWT (EBWT) of G to be the sequence of edge labels sorted according

to the edges’ order in L, so labelðL½h�Þ ¼ EBWTðGÞ½h� for all h, this

means that if e is in position p in L, then in F it is in position

jfd : d 2 E; labelðdÞ � labelðeÞgj þ EBWTðGÞ:ranklabelðeÞðpÞ � 1 ;

where EBWTðGÞ:ranklabelðeÞðpÞ is the number of times labelðeÞ ap-

pears in EBWTðGÞ½1; p�. It follows that if we have, first, an array

storing jfd : d 2 E; labelðdÞ � cgj for each character c and, second,

a fast rank data structure on EBWTðGÞ then, given an edge’s pos-

ition in L, we can quickly compute its position in F.

Let BF be the bitvector with a 1 marking the position in F of the

last incoming edge of each node, and let BL be the bitvector with a 1

marking the position in L of the last outgoing edge of each node. Given

a character c and the co-lexicographic rank of a node v, we can use BL

to find the interval in L containing v’s outgoing edges, then we can

search in EBWTðGÞ to find the position of the one e labelled c. We can

then find e’s position in F, as described above. Finally, we can use BF to

find the co-lexicographic rank of e’s ending node. With the appropriate

implementations of the data structures, we can store G in ð1þ oð1ÞÞjE
jðlg rþ 2Þ bits, where r is the size of the alphabet (i.e. 4 for DNA),

such that when given a character c and the co-lexicographic rank of a

node v, in Oðlog log rÞ time we can find the node reached from v by

following the directed edge labelled c, if such an edge exists.

If we know the range L½i::j� of k-mers whose starting nodes end

with a pattern P of length less than (k– 1), then we can compute the

range F½i0::j0� of k-mers whose ending nodes end with Pc, for any

character c, since

i0 ¼ jfd : d 2 E; labelðdÞ � cgj þ EBWTðGÞ:rankcði� 1Þ

j0 ¼ jfd : d 2 E; labelðdÞ � cgj þ EBWTðGÞ:rankcðjÞ � 1 :

It follows that, given a node v’s label, we can find the interval in

L containing v’s outgoing edges in Oðk log log rÞ time, provided

there is a directed path to v (not necessarily simple) of length at least

k – 1. In general there is no way, however, to use EBWTðGÞ, BF and

BL alone to recover the labels of nodes with no incoming edges.

To prevent information being lost and to be able to support

searching for any node given its label, Bowe et al. add extra nodes

and edges to the graph, such that there is a directed path of length at

least k – 1 to each original node. Each new node’s label is a (k – 1)-

mer that is prefixed by one or more copies of a special symbol $not

in the alphabet and lexicographically strictly less than all others.

Notice that, when new nodes are added, the node labelled $
k�1

is al-

ways first in co-lexicographic order and has no incoming edges.

Bowe et al. also attach an extra outgoing edge labelled $, that leads

nowhere, to each node with no original outgoing edge. The edge-

BWT and bitvectors for this augmented graph are, together, the

BOSS representation of G.

2.2 Adding color
We cannot represent the colored de Bruijn graph for a multiset

G ¼ fG1; . . . ;Gtg of individual de Bruijn graphs satisfactorily by

simply representing each individual graph separately, for two rea-

sons: first, the memory requirements would quickly become imprac-

tical and, second, we should be able to answer efficiently queries

such as ‘which individual graphs contain this edge?’ Therefore, we

set G to be the union of the individual graphs and build the BOSS

representation only for G. As long as most of the k-mers are com-

mon to most of the individual graphs, the memory needed to store

G is comparable to that need to store an individual graph.

To indicate which edges of G are in which individual graphs, we

build and store a two-dimensional binary array C in which C½i; j� indi-

cates whether the ith edge in G is present in the jth individual de

Bruijn graph (i.e. whether that edge has the jth color). (Recall from

the description above of BOSS that we consider the edges in G to be

sorted lexicographically by the reversed labels of their starting nodes,

with ties broken lexicographically by their own single-character

labels.) If the individual graphs are sufficiently similar, then we can

compress C effectively and store it in such a way that we can still ac-

cess its individual bits quickly and support fast rank and select queries

on the rows. (A select query on the ith row takes an argument r and

returns the index j of the rth individual graph that contains the ith

edge in G.) In the next subsection we give details of some relatively

simple compression strategies that support fast access, rank and se-

lect. With these data structures, we can navigate efficiently in any of

the individual graphs and switch between them. For example, we can

efficiently check whether an edge has a particular color (with an ac-

cess), count the number of colors it has (with a rank query) or list

them (with repeated select queries). We have not yet considered more

sophisticated compression schemes that could still offer fast queries

while taking advantage of, e.g. correlations among the variations or

grouping of the individual graphs by subpopulation.

Figure 1 shows an example of how we represent a colored de Bruijn

graph consisting of two individual de Bruijn graphs. Suppose we are at

node ACG in the graph, which is the co-lexicographically eighth node.

Since the eighth 1 in BL is BL½10� and it is preceded by two 0s, we see

that ACG’s outgoing edges’ labels are in EBWT½8::10�, so they are A, C

and T. Suppose we want to follow the outgoing edge e labelled C. We

see from C½9;0::1� (i.e. the tenth column in CT) that e appears in the

second individual graph but not the first one (i.e. it is blue but not red).

There are four edges labelled A in the graph and three Cs in

EBWTðGÞ½0::9�, so e is F½6�. (Since edges labelled $ have only one end,

they are not included in L or F.) From counting the 1s in BF½0::6�, we

see that e arrives at the fifth node in co-lexicographic order that has

incoming edges. Since the first node, $$$, has no incoming edges, that

means e arrives at the sixth node in co-lexicographic order, CGC.

2.3 Implementation
We now give some details of how our data structure is implemented

and constructed in practice.

2.3.1 Data structure

The arsenal of component tools available to succinct data structures

designers has grown considerably in recent years (Navarro, 2016),

with many methods now implemented in libraries. We chose to
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make heavy use of the succinct data structures library (SDSL)

(https://github.com/simongog/sdsl-lite) in our implementation.

EBWTðGÞ, the sequence of edge labels, is encoded in a wavelet

tree, which allows us to perform fast rank queries, essential to all our

graph navigations. The bitvectors of the wavelet tree and the B bitvec-

tor are stored in the Raman-Raman-Rao (RRR) encoding (Raman

et al., 2007). The rows of the color matrix, C, are concatenated (i.e.

C is stored in row-major order) and this single long bit string is then

compressed. It is either stored with RRR encoding, or alternately

Elias-Fano encoding (Elias, 1974; Fano, 1971; Okanohara and

Sadakane, 2007) which supports online construction. Online con-

struction is important for datasets where C is too large to fit in mem-

ory in uncompressed form, such as our metagenomic sample dataset.

These encodings reduce the size of C considerably because we expect

rows to be very sparse and both encodings exploit this sparseness.

2.3.2 Construction

In order to convert the input data to the format required by BOSS

(that is, in correct sorted order, including dummy edges and bit vec-

tors), we use the following process. We take care to ensure only sub-

sets of data are needed in RAM at any one time during construction.

Our construction algorithm takes as input the set of (k-mer,

color-set) pairs present in the input sets of reads, or alternately,

k-mer counts for each color which we convert to the former our-

selves. Here, color-set is a bit set indicating which samples the k-mer

occurs in. We provide the option to use the CORTEX frontend to gen-

erate the (k-mer, color-set). Unfortunately, this also limits the data-

sets to those that would run through CORTEX. To overcome this, we

provide the option to use a list of KMC2 (Deorowicz et al., 2015)

sorted k-mer counts as input. With this option, the k-mers from

each k-mer count file in native KMC2 binary format are streamed

through a priority queue to produce the union of all k-mer sets; ini-

tially one k-mer from each file is tagged with which file it originated

from, and the (k-mer, file ID) pair is added to the queue. The prior-

ity queue ensures the lexicographically smallest k-mer instances

across all files can be popped off the queue consecutively. All of the

k-mer count files contributing a particular k-mer value have their

corresponding color recorded as ‘1’ bits in the bit set for that k-mer.

Both the k-mer and the bit set are then appended to vectors which

optionally are allocated in external memory using the STXXL

(http://http://stxxl.sourceforge.net/) library. As each k-mer is popped

off the queue, another k-mer is added to the queue to take the old

k-mer’s place (i.e. using the file identified by the popped k-mer’s

tag). This process continues until all files are read in their entirety.

By both streaming data from the source files and streaming it to the

external vectors, only a small amount of the data need exist in

memory at a time; the priority queue will only contain the number

of samples and only one row of the color matrix needs to exist in

memory before being written out to disk.

After constructing the initial union set of k-mers and their corres-

ponding color rows, BOSS construction mostly continues as originally

described by Bowe et al. The changes from the original construction

algorithm are that most of the data optionally resides in external

memory and the rows of the color matrix are permuted with their

corresponding k-mers as they are sorted. For each of the k-mers we

generate the reverse complement (giving it the same color-set as its

twin). Then, for each k-mer (including the reverse complements), we

sort the (k-mer, color-set) pairs by the first k – 1 symbols (the source

node of the edge) to give the F table (from here, the colors are moved

around with rows of F, but otherwise ignored until the final stage).

Independently, we sort the k-mers (without the color-sets) by the last

k – 1 symbols (the destination node of the edge) to give the L table.

With F and L tables computed, we calculate the set difference

F – L (comparing only the ðk� 1Þ-length prefixes and suffixes re-

spectively), which tells us which nodes require incoming dummy edges.

Each such node is then shifted and prepended with $signs to create the

required incoming dummy edges (k – 1 each). These incoming dummy

edges are then sorted by the first k – 1 symbols. Let this table of sorted

dummy edges be D. Note that the set difference L – F will give the

nodes requiring outgoing dummy edges, but these do not require sort-

ing, and so we can calculate it as is needed in the final stage.

Finally, we perform a three-way merge (by first k – 1 symbols) D

with F, and L – F (calculated on the fly). For each resulting edge, we

keep track of runs of equal k – 1 length prefixes, and k� 2 length

suffixes of the source node, which allows us to calculate the BF and

BL bit vectors, respectively. Next, we write the bit vectors, symbols

from last column, and count of the second to last column to a

packed file on disk, and the colors to a separate file. The color file is

then either buffered in RAM and RRR encoded or optionally

streamed from disk and then Elias-Fano encoded online (i.e. only

the compressed version is ever resident). The time bottleneck in the

above process is clearly in sorting the D and F tables, which are of

the same size, and are made up of elements of size OðkÞ. Thus, over-

all, construction of the data structure takes OðkðjFj log jFjÞÞ time.

2.3.3 Traversal

We implemented two traversal methods based on those of CORTEX

with a modification in light of our intention to apply VARI to meta-

genomic reads looking for AMR gene presence.

The first, bubble calling, is a simple algorithm to detect sequence

variation in genomic data. It consists of iterating over a set of

k-mers in order to find places where bubbles start and terminate.

Fig. 1. Left: A colored de Bruijn graph consisting of two individual graphs, whose edges are shown in red and blue. (We can consider all nodes to be present in

both graphs, so they are shown in purple.) Center: The nodes sorted into co-lexicographic order, with each node’s number of incoming edges shown on its left

and the labels of its outgoing edges shown on its right. The edge labels are shown in red or blue if the edges occur only in the respective graph, or purple if they

occur in both. Right: Our representation of the colored de Bruijn graph: the edge-BWT and bitvectors for the BOSS representation for the union of the individual

graphs, and the binary array C (shown transposed) whose bits indicate which edges are present in which individual graphs
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When combined with the k-mer color (in a colored de Bruijn graph),

this enables identification of places where genomic sequences di-

verge from one another. The differing region of the two sequences

will form the two arms of a bubble, each colored with only one of

the two sequence’s colors. A bubble is identified when a vertex has

two outgoing edges. Each edge is followed in turn to navigate a non-

branching path until reaching a vertex with two incoming edges. If

the terminating vertex is the same for both paths, we call this a bub-

ble. Colors for the bubbles are determined by looking at the color

assignment of the corresponding ðkÞ-mers. Our implementation in

VARI closely follows the pseudocode given by Iqbal et al. (2012).

CORTEX’s traversal algorithms were designed for single isolates.

For the beef safety experiments, which use metagenomic samples,

we implemented a traversal inspired by CORTEX’s path divergence al-

gorithm. In the original CORTEX path divergence algorithm, bubbles

are identified where a user-supplied reference sequence prescribes a

walk through a (possibly tangled) sections of the graph in one arm of

a bubble while the alternative arm must be branch free. This branch

free requirement on the second arm could be a problem for metage-

nomic data. Due to the presence of tangle inducing homologous gen-

omes and risk of inferring erroneous, chimeric sequences (which

comprise reads from a mix of genomes in the sample), variant detec-

tion in metagenomic data is more complex. In the absence of a simple

metagenomic-aware traversal algorithm, we implemented a variation

of the path divergence algorithm which addresses a simpler problem,

primarily for the purpose of measuring performance. This algorithm

uses a reference guided approach and allows us to measure the mem-

ory footprint at traversal time as well as the time savings of not tra-

versing the entire dataset. For this purpose, we focus specifically on

the presence of AMR genes (our reference sequence) rather than vari-

ants of those genes; in our derived algorithm we ignore sample path

segments leading away from and returning to the AMR gene path.

This avoids some of the problems with tangles, incomplete coverage,

or read errors. Thus as we traverse the gene path, we simply count the

number of samples in each sample group that color the current edge.

We note that keeping C in row major order allows us to compute this

count in constant time as the difference between two rank queries.

3 Results

We evaluated VARI performance on three different datasets, described

below. For this evaluation, we compare peak memory, which was

measured as the maximum resident set size, and CPU core time, meas-

ured as the userþ system process time as our metrics. In addition to

evaluating performance, we also validated VARI by the ability to cor-

rectly call bubbles known to be present in a simulated dataset.

Our software supports a variety of options. It can consume

k-mer counts from either Cortex’s binary files or KMC2. For all ex-

periments, we use the KMC2 flow because using Cortex as a front

end limits designs to only those that would fit in memory with

Cortex. Next, our software can compress the color matrix using ei-

ther RRR or Elias-Fano encodings. The SDSL-light implementation

allows the color matrix to be compressed in an on-line fashion only

using the Elias-Fano encoding. This allows us to process larger de-

signs, as the uncompressed matrix need never fit in RAM, and thus

we use this option for all experiments. Finally, STXXL (which holds

temporary vectors during data structure construction) allows using

internal or external memory. Again, we used the more scalable ex-

ternal memory option for all experiments. All experiments were per-

formed on a machine with AMD Opteron model 6378 processors,

having 512 GB of RAM and 64 cores.

3.1 Datasets
The three different datasets were chosen in order to test and evaluate

the performance of VARI on a variety of diverse yet realistic data

types that are likely to be used as input into VARI. For the first two

datasets which comprise single isolates, we use preassembled gen-

omes. Assembly serves to try correct sequencing errors which could

otherwise falsely be detected as variants. To this end, CORTEX in-

cludes its own optional data cleaning operations. However, by using

instead the output of third party assembly software we can compare

the colored de Bruijn graph performance on identical graphs.

Characteristics about these datasets are provided in Table 1.

Our first performance dataset comprises reference genomes for four

different plant species: Oryza sativa Japonica (rice) (http://rice.plantbiol

ogy.msu.edu/annotation_pseudo_current.shtml) (Tanaka et al., 2008),

Solanum lycopersicum (tomato) (ftp://ftp.solgenomics.net/tomato_

genome/assembly/build_2.50/SL2.50ch00.fa.tar.gz) (Causse et al., 2013;

Kobayashi et al., 2014), Zea mays (corn) (ftp://ftp.ncbi.nlm.nih.gov/gen

omes/all/GCF/000/005/005/GCF_000005005.1_B73_RefGen_v3/GCF_

000005005.1_B73_RefGen_v3_genomic.fna.gz) (Schnable et al., 2009)

and Arabidopsis thaliana (Arabidopsis) (ftp://ftp.ensemblgenomes.org/

pub/plants/release-34/fasta/arabidopsis_thaliana/dna/) (Swarbreck et al.,

2008). This represents a sufficiently large dataset for comparing the per-

formance of VARI with CORTEX.

Our second performance dataset consists of the set of all 3765

NCBI GenBank assemblies (ftp://ftp.ncbi.nlm.nih.gov/genomes/gen

bank/bacteria/assembly_summary.txt; https://www.ncbi.nlm.nih.

gov/genome/doc/ftpfaq/) having the organism_name field equal to

‘Escherichia coli’ as of March 22, 2016. To evaluate the effects of

varying k-mer size, we ran this dataset with k ¼ 32; 48; 64. The

union of all assemblies contains 158 501 209 k-mers for k¼32, 205

938 139 k-mers for k¼48 and 251 764 413 k-mers for k¼64. The

minimum, maximum and average assembly lengths are 2 911

360 bp, 7 687 202 bp and 5 156 744 bp, respectively.

Our third performance dataset consists of 87 metagenomic sam-

ples (https://www.ncbi.nlm.nih.gov/bioproject/292471) taken at vari-

ous timepoints during the beef production process from eight pens of

cattle in two beef production facilities by Noyes et al. (2016).

Sequentially, these timepoints were feedlot arrival, feedlot exit,

slaughter transport truck, slaughter holding and slaughter trimmings

and sponges. Sample reads were preprocessed using trimmomatic

v0.36 by Bolger et al. (2014). Although further assembly or error cor-

rection would have been possible, it would reduce the biological

Table 1. Characteristics of our datasets

Name Accession numbers Aprox. size GC Content

Plant

species

Rice (NC_008394 to

NC_008405)

430 Mbp 43.42%

Tomato (NC_015438 to

NC_015449)

950 Mbp 43.42%

Corn (NC_024459 to

NC_024468)

2.07 Gbp 35.70%

Arabidopsis (NC_003070

to NC_003076)

135 Mbp 47.4%

E.coli

strains

N/A avg¼5.1 Mbp

min¼2.9 Mbp

max¼ 7.7 Mbp

50.5%

Beef safety PRJNA292471 N/A 44.3%

The E.coli dataset represents 3765 strains and hence only summary statis-

tics for size and GC content are given. Accession numbers for this dataset as

well as download procedure can be found in assembly_summary.txt as dis-

cussed in the main text.
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variation which may be useful for some queries. Furthermore, build-

ing the data structure on uncorrected data better stresses our represen-

tation method. Samples were then arranged into groups based on the

sample timepoints. The original study used these samples to demon-

strate the advantages of shotgun metagenomic sequencing in tracking

the evolution of antimicrobial resistance longitudinally within a com-

plex environment like beef production; the results suggested that se-

lective pressures occurred within the feedlot, but that slaughter safety

measures drastically reduced both bacterial and AMR levels. In add-

ition to the metagenomic samples, we included 4062 AMR genes

from the previously mentioned gene databases (https://meg.colostate.

edu/MEGaRes/). 23 genes in the databases containing IUPAC codes

other than the four bases were filtered out as KMC2 and the succinct

de Bruijn graph were configured with a four symbol alphabet. Because

we have the reference to guide the traversal, all AMR genes were com-

bined into a single color. By combining AMR genes, the uncompressed

color matrix that exists on disk during sorting and as intermediate file

is much smaller (still occupying 1.2 TB), thus accelerating the permu-

tation during construction and reducing the external memory and disk

space requirements. The union of all samples and genes contains 40

995 794 366 32-mers and the GC content is 44.3%. While our server

has enough RAM to represent a dataset with twice the memory foot-

print, this dataset nearly exhuasted the approximately 10 TB of disk

space available when intermediate files were preserved. Thus this data-

set is on the order of the upper limit for VARI in practice.

Finally, for validation purposes, we generated a dataset (https://

github.com/cosmo-team/cosmo/tree/VARI/experiments/ecoli_vali

dation) comprising two genomes: (i) E.coli K-12 substraing MG

1655 reference genome, and (ii) a copy of the reference genome to

which we applied various simulated mutations. We simulated muta-

tions by choosing 100 random loci and either inserting, deleting, or

replacing a region of random length ranging from 200 to 500 bp.

For each mutation locus, we record the flanking regions and the two

variants (original reference and simulated) as a ground truth bubble.

3.2 Time and memory usage
To measure VARI’s resource use and compare with CORTEX by Iqbal

et al. (2012) where possible, we constructed the colored de Bruijn

graph for the plant dataset, the E.coli assembly dataset and the beef

safety dataset. Construction time and memory is detailed in

Supplementary Table 2. We performed bubble calling on the first

two and recorded peak memory usage and runtime. Direct resource

comparison with CORTEX was only possible on the smallest dataset,

as the largest two have too many k-mers and colors to fit in memory

on our machine with CORTEX. Based on the data structure defined in

CORTEX’s source as well as the supplementary information provided by

Iqbal et al., it would have required more than 3 TB of RAM and more

than 18 TB of RAM for its hash table entries alone, respectively.

In order to test query performance characteristics, various ex-

periments were performed on all three performance datasets

described in the previous subsection. Datasets varied in the number

of k-mers in the graph from 158 million to over 40 billion, the num-

ber of colors, from 4 to 3765, and degree of homology from disper-

ate plants to the single E.coli species. This diversity shows the space

savings achievable when the population is largely homologous, as is

the case with the E.coli dataset, where the graph component is rela-

tively small, in contrast to the plant dataset, where the graph com-

ponent is relatively large. As can be seen in Table 2, where directly

comparable, VARI used an order of magnitude less than the peak

memory that CORTEX required but required greater running time.

This memory and time trade-off is important in larger population

level data. This is highlighted by our largest two datasets which

could not be run with CORTEX. Hence, lowering the memory usage

in exchange for higher running time deserves merit in contexts

where there is data from large populations.

3.3 Validation on simulated E.coli
We ran the implementations of bubble calling from both VARI and

CORTEX, using k¼32 on the simulated E. coli dataset. Both tools re-

ported the same set of 223 bubbles, 55 of which were in the ground

truth set. This ensures our software faithfully implements the ori-

ginal data handling capabilities of CORTEX. For biological implica-

tions of colored de Bruijn graph variant calls and in particular with

parameter choices such as k see Iqbal et al. (2012).

3.4 Observations on beef safety dataset
While the beef safety dataset was primarily used for measuring the

scalability of VARI and to determine if representing a dataset of this

type and size was possible, we used VARI to additionally make obser-

vations about the presence of AMR genes in the beef production

dataset. As previously described, during our path divergence derived

algorithm, we compute a count of how many k-mers in each AMR

gene are found across all samples within a sample group. This algo-

rithm need only traverse the AMR genes, so despite the size of the

overall dataset, it only took 20 minutes to load and access the neces-

sary parts of the data structure. In contrast, if bubble calling were to

run at the same rate for this dataset as for the E.coli assembly data-

set, it would take 3001 hours to complete, thus suggesting value in a

targeted inquiry approach on datasets of this size.

Since longer genes have more k-mers, the counts are likely to be

larger, as are those from larger sample groups. To make these counts

comparable, we normalize by both gene length and sample group

size. We can then examine the number of genes having a

Table 2. Comparison between the peak memory and time usage required to store all the k-mers and run bubble calling on the data in CORTEX

and VARI

CORTEX VARI

Dataset No. of k-mers Colors Memory Time Memory Time

Plants (k¼32) 1 709 427 823 4 100.93 GB 2 h 18 m 3.53 GB (sdBG¼0.89 GB, sC¼ 1.95 GB) 32 h 39 m

E. coli (k¼32) 158 501 209 3765 N/A N/A 42.17 GB (sdBG¼0.09 GB, sC¼ 38.35 GB) 3 h 57 m

E. coli (k¼48) 205 938 139 3765 N/A N/A 42.26 GB (sdBG¼0.11 GB, sC¼ 38.42 GB) 4 h 38 m

E. coli (k¼64) 251 764 413 3765 N/A N/A 42.32 GB (sdBG¼0.13 GB, sC¼ 38.45 GB) 5 h 28 m

Beef safety (k¼32) 40 995 794 366 88 N/A N/A 245.54 GB (sdBG¼27.08 GB, sC¼ 200.34 GB) N/A

The peak memory is given in megabytes (MB) or gigabytes (GB). The running time is reported in seconds (s), minutes (m) and hours (h). The succinct de Bruijn

graph and compressed color matrix components of the memory footprint are listed in parenthesis as sdBG and sC, respectively.
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disproportionately large (>3 std. dev. above mean) shared k-mer

count for each gene and sample group combination. The number of

such genes with disproportionately large normalized counts in each

sample group were: feedlot arrival—304, feedlot exit—93, transport

truck—230, slaughter holding—16 and slaughter trimmings and

sponges—0. This observation supports the conclusion of Noyes et al.

(2016), namely, that antimicrobial interventions during slaughter

were effective in reducing AMR gene presence in the trimmings and

sponge samples, which represent the finished beef products just before

they are shipped to retail outlets for human consumption.

4 Concluding remarks

We presented VARI, which is an implementation of a succinct col-

ored de Bruijn graph that significantly reduces the amount of mem-

ory required to store and use the colored de Bruijn graph. In

addition to the memory savings, we validated our approach using

E.coli. Moreover, we introduced the use of colored de Bruijn graph

for accurately identifying the presence of AMR genes within metage-

nomic samples, which is an important advance as public health offi-

cials increasingly move towards a metagenomic sequence-based

approach for surveillance and identification of resistant bacteria

(Baquero et al., 2012; Food and Agricultural Organization of the

United Nations, 2016; Port et al., 2014). Possible nontrivial exten-

sions to our work include (i) using multi-threading to speed up the

bubble calling, (ii) compressing the color array C more effectively

by taking advantage of correlations among the variations and

(iii) applying more sophisticated approaches to metagenomic data.
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