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Abstract

Motivation: Text and genomic data are composed of sequential tokens, such as words and nucleo-

tides that give rise to higher order syntactic constructs. In this work, we aim at providing a compre-

hensive Python library implementing conditional random fields (CRFs), a class of probabilistic

graphical models, for robust prediction of these constructs from sequential data.

Results: Python Sequence Labeling (PySeqLab) is an open source package for performing super-

vised learning in structured prediction tasks. It implements CRFs models, that is discriminative

models from (i) first-order to higher-order linear-chain CRFs, and from (ii) first-order to higher-

order semi-Markov CRFs (semi-CRFs). Moreover, it provides multiple learning algorithms for esti-

mating model parameters such as (i) stochastic gradient descent (SGD) and its multiple variations,

(ii) structured perceptron with multiple averaging schemes supporting exact and inexact search

using ‘violation-fixing’ framework, (iii) search-based probabilistic online learning algorithm (SAPO)

and (iv) an interface for Broyden–Fletcher–Goldfarb–Shanno (BFGS) and the limited-memory BFGS

algorithms. Viterbi and Viterbi A* are used for inference and decoding of sequences. Using

PySeqLab, we built models (classifiers) and evaluated their performance in three different do-

mains: (i) biomedical Natural language processing (NLP), (ii) predictive DNA sequence analysis and

(iii) Human activity recognition (HAR). State-of-the-art performance comparable to machine-

learning based systems was achieved in the three domains without feature engineering or the use

of knowledge sources.

Availability and implementation: PySeqLab is available through https://bitbucket.org/A_2/pyseqlab

with tutorials and documentation.

Contact: ahmed.allam@yale.edu or michael.krauthammer@yale.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Sequence labeling is a crucial task in domains such as natural lan-

guage processing (NLP) and bioinformatics. Given a sequence of ob-

servations (words, nucleotides), the goal is to tag/label each

observation using a set of permissible tags, which represent higher

order syntactic constructs such as part-of-speech or exon bounda-

ries. A related task is sequence segmentation, which consists of pre-

dicting constructs composed of several observations, such as exons

that are composed of multiple nucleotides. The underlying structure

of both the input and the output (i.e. sequence of observations such

as words and its corresponding part-of-speech) is exploited to build

better predictors/classifiers in a supervised learning paradigm.

Because of this inherent structure, many of the developed models

and algorithms in the literature are described as structured predic-

tion tasks. Early notable models in this area are conditional random

fields (CRFs) (Lafferty et al., 2001). CRFs are ‘undirected’ graphical

models that are ‘discriminative’ (i.e. models the conditional prob-

ability of the entire label sequence given the observation sequence)
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and ‘global’ (i.e. uses feature vector mapping that considers the

whole observation sequence with its corresponding label sequence).

These characteristics together with the use of a log-linear model

gave CRF an advantageous position over earlier models such as the

hidden Markov models (HMMs) and the maximum-entropy

Markov models (MEMMs). Another class of models that represents

a generalization to CRFs is the semi-Markov CRFs (semi-CRFs)

(Sarawagi and Cohen, 2004). Semi-CRFs tackle sequence segmenta-

tion by predicting tags that extend across several consecutive obser-

vations of the input sequence. Hence, CRFs could be seen as a

special case of semi-CRFs when the segment length is 1 (i.e. each

label is assigned to one observation). Existing literature on both

classes of models is focused on linear-chain versions using the first-

order Markov assumption. This simplification guarantees the tract-

ability of the model training (i.e. estimating the parameters using

exact inference) by using the sum-product algorithm (i.e. performing

a variation of the forward-backward algorithm). In its original for-

mulation, the linear-chain first-order Markov assumption restricts

the applicability of CRFs to learning on adjacent pairs of label fea-

tures (i.e. models that depend on two states; the current and the pre-

vious state), where increasing the model order (i.e. k�2) would lead

to exponential computational complexity in terms of k.

However, recent work by (Cuong et al., 2014), showed under

the assumption of label pattern sparsity that the use of higher-order

models (i.e. models with k�2) is feasible without incurring an expo-

nential complexity in the training and inference algorithms of both

CRFs and Semi-CRFs. We refer to these generalized models by HO-

semiCRFs (Cuong et al., 2014).

Generally, these probabilistic models are trained (i.e. the process

of finding optimal weights) by optimizing the objective function that

consists of the sum of the log-likelihood of the sequences in the train-

ing set. Typically, gradient computation is a prerequisite for perform-

ing such probabilistic optimization. However, alternative approaches

for discriminative training exist, including search- and perceptron-

based methods that are adapted for structured prediction task

such as the structured perceptron (Collins, 2002). To obtain the

advantages of both approaches (probabilistic- and search- based), a

hybrid method (search-based probabilistic online learning, SAPO)

(Sun, 2015) was recently proposed.

The PySeqLab package features the implementation of CRFs and

semi-CRFs models supporting higher order features, as well as mul-

tiple optimization/training and inference methods, achieving state-

of-the-art performance on structured prediction tasks.

2 Models and implementation features

PySeqLab includes an implementation of (1) the original first-order

CRF (FO-CRF) formulation (Lafferty et al., 2001), (2) higher-order

CRF (HO-CRF) (Cuong et al., 2014; Ye et al., 2009) and (3)

HO-semiCRF (Cuong et al., 2014). In addition, variants of both

HO-CRF and HO-semiCRF models implementing an efficient algo-

rithm for gradient computation (i.e. efficient backward algorithm)

as proposed in (Vieira et al., 2016) are also provided. Gradient-

based training methods are implemented such as (i) stochastic gradi-

ent descent (We used stochastic gradient ascent, as the objective is to

maximize the log-likelihood of the sequences in training data).

(Bottou and Le Cun, 2004) supporting adaptive learning rates (such

as ADADELTA (Zeiler, 2012)) and multiple learning rate schedul-

ing, (ii) variance reduction method using stochastic variance reduced

gradient (SVRG) (Johnson and Zhang, 2013) and (iii) an interface to

BFGS and limited-memory BFGS (BFGS and limited-memory BFGS

are offered using the scipy.opitimize module in the SciPy package)

optimization routines that use the computed gradients in addition to

second order information (estimation of hessian matrix) to optimize

weights during training. Perceptron-based training is offered

through structured perceptron with the support of multiple averag-

ing schemes (Collins, 2002). The package also implements the hy-

brid SAPO (An adapted version of SAPO where the regularization is

based on weight averaging as in structured perceptron case) (Sun,

2015) optimization. Sequence decoding is achieved using Viterbi al-

gorithm (Viterbi, 1967) and Viterbi A* (Soong and Huang, 1990)

making it possible to output top-k sequences. Additionally, inexact

search is supported using beam search (i.e. pruning states falling off

a specified beam size) allowing for faster inference and training is

supported within the ‘violation-fixing’ framework (see (Huang

et al., 2012) for more details). Maximum likelihood (MLE) and

maximum a posteriori (MAP) estimation are implemented by offer-

ing two regularization schemes: (i) L2 regularization (i.e. assuming

prior Gaussian distribution on the model weights) and (ii) L1 regu-

larization using the approach in (Tsuruoka et al., 2009). A training

workflow in addition to various utilities that operate on the dataset

(i.e. data splitting, preprocessing and normalizing) and observation/

feature functions that automatically extract attributes and generates

features using user-provided feature templates are also provided.

Measuring trained models’ performance is also supported using pre-

cision, recall, accuracy and F-measure.

3 Results

To demonstrate the use and potential of the PySeqLab package in

structured prediction tasks, we evaluated its performance in three

different domains: (i) Natural language processing (NLP), classifying

terms in molecular biology texts according to the Bio-Entity

Recognition task (Bio-NER) (Kim et al., 2004), (ii) DNA sequence

analysis, predicting Eukaryotic splice-junctions based on a publicly

available dataset (Noordewier et al., 1991) and (iii) Human activity

recognition (HAR), recognizing locomotion and gestures from sen-

sor data using the OPPORTUNITY challenge dataset (Chavarriaga

et al., 2013). We discuss model features, training and evaluation in

the Supplementary Materials. Overall, the trained models achieved

state-of-the-art performance (see Supplementary Materials) com-

pared to existing machine-learning based systems, notably without

using feature engineering or external knowledge sources. We make

the source code publicly available, and provide online full instruc-

tions to use our code and trained models in the three focus domains.

4 Conclusion

We presented PySeqLab, a comprehensive Python package aimed at

building robust models for labeling sequences. We demonstrated the

utility of the package in three different domains. More generally,

given a training data composed of sequences of observations and

associated labels, PySeqLab will learn state-of-the-art models that

are accessible to use, customize and experiment with.
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