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Oxidative and electrophilic changes in cells are mainly coordinated by the KEAP1/NRF2 (Kelch-like erythroid-derived cap-n-collar
homology- (ECH-) associated protein-1/nuclear factor (erythroid-derived 2)-like 2) axis. The physical interaction between these
two proteins promotes the expression of several antioxidant defense genes in response to exogenous and endogenous insults.
Recent studies demonstrated that KEAP1/NRF2 axis dysfunction is also strongly related to tumor progression and chemo- and
radiotherapy resistance of cancer cells. In solid tumors, the KEAP1/NRF2 system is constitutively activated by the loss of KEAPI
or gain of NFE2L2 functions that leads to its nuclear accumulation and enhances the transcription of many cytoprotective genes.
In addition to point mutations, epigenetic abnormalities, as aberrant promoter methylation, and microRNA (miRNA) and long
noncoding RNA (IncRNA) deregulation were reported as emerging mechanisms of KEAP1/NRF2 axis modulation. This review
will summarize the current knowledge about the epigenetic mechanisms that deregulate the KEAP1/NRF2 cascade in solid

tumors and their potential usefulness as prognostic and predictive molecular markers.

1. Introduction

Oncogenes and tumor suppressor genes are deregulated in
cancer and modify their expression through heterogeneous
genetic and epigenetic modifications. All these alterations
exert their effects on several cellular processes in which
transient modifications of redox balance might occur, such
as cell cycle and apoptosis. These transient cellular changes
are mainly coordinated by the KEAP1/NRF2 (Kelch-like
erythroid-derived cap-n-collar homology- (ECH-) associated
protein-1/nuclear factor (erythroid-derived 2)-like 2) signal-
ing pathway [1]. NRF2 is a transcription factor that acts as a
master modulator of cellular defense against toxic and
oxidative damage, mitochondrial physiology, differentiation,
and stem cell maintenance [2-4]. In normal cell conditions,
the NRF2 negative regulator KEAP1 forms an ubiquitin
ligase complex with cullin 3 (CUL3) and ring-box 1 (RBX1)
and targets NRF2 for proteolysis. Upon stress exposure, a
specific pattern of KEAP1 cysteine modification arises. By
consequence, the KEAP1 releases NRF2 which translocates
into the nucleus, where it forms a heterodimeric complex

with the small MAF proteins. This complex recognizes the
enhancer sequences known as antioxidant response
elements (AREs) located in the cytoprotective genes and
activates their transcription [5]. Additionally, NRF2 can be
subjected to a KEAPIl-independent transcriptional and
posttranslational regulation, with a consequent alteration
of its cellular localization, protein degradation, and DNA-
binding capability [6].

Deregulation of the KEAP1/NRF2 axis is actually consid-
ered a hallmark in cancer cells, since KEAP1 and NRF2 can
modulate oncogenesis, cell proliferation, apoptosis, and
tumor cell growth [7].

A decreased levels of KEAP1 protein were firstly reported
to be linked to poor outcome in NSCLC patients treated with
platinum-based neoadjuvant regimen and in the NSCLC
group of patients with lymph node metastases [8, 9].

Actually, the main molecular events that lead to NRF2
abnormal nuclear accumulation in solid tumors can be gen-
erally divided into genetic and epigenetic alterations. The
final effect is in any case the disruption of protein-protein
interaction of the KEAP1/NRF2 crosstalk and its imbalance
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in expression levels, with a consequent upregulation of cellu-
lar detoxifying proteins.

Genetic alterations were the first reported mechanisms of
KEAP1/NRF2 axis deregulation. Biallelic changes of the
tumor suppressor KEAPI gene (by point mutations and loss
of heterozygosity) were described for the first time in NSCLC
[10] and, immediately after, in other several malignancies
together with NFE2L2 mutations, the gene that codifies for
the NRF2 protein [11]. More recently, the discovery of
hypermethylation of the KEAPI promoter and noncoding
RNAs linked to cell-detoxifying network added a new impor-
tant dimension in the complex regulation of the KEAP1/
NREF2 system (Figure 1) [12].

This minireview describes the recent updates about the
deregulation mechanisms of the KEAP1/NRF2 pathway,
with a particular focus on the epigenetic modulation of
KEAPI and NFE2L2 and their cellular significance and
potential impact on cancer patient management.

2. The Genetic Deregulation of Keap1/Nrf2
Signaling and Its Translational Impact in
Solid Tumors

Among the genetic lesions that affect the KEAP1/NRF2
activity, point mutations are the most frequently investigated
ones in solid tumors. They commonly occur in the exonic
regions that codify for the KEAP1 and NRF2 interaction sites
(the Kelch/DGR domain of KEAP1 and the Neh2 domain of
NRF2) and induce a general failure of the ubiquitination pro-
cess led by the KEAP1 (Figure 2).

By consequence, the NRF2 escapes from proteasomal
degradation and increases the ARE-target gene expression
with an enhancement of the antioxidant defense system and
chemo- and radioresistance of cancer cells [13, 14]. Moreover,
since the KEAP] is able to negatively modulate the BCL-2 and
p62 degradation, the KEAPI point mutations also lead to an
accumulation of these proteins with a general deregulation
of apoptosis, autophagy, and inflammation [15, 16].

Loss-of-function mutations of the human KEAPI gene
have been firstly reported in NSCLC with a prevalence of
about 20-25%. These mutations were frequently observed
in the lung papillary subtype and in TTF-1 negative lung ade-
nocarcinoma [10, 17, 18]. Moreover, KEAPI point mutations
were identified in several human cancers such as gastric
(11.1%), liver (2-8%), colorectal (7.8%), prostate (1.3%), gall-
bladder (30.7%), ovarian (37%), glioma (1.7%), head and
neck (42%), and clear renal cell carcinoma (4.7%) [19-29].
More recently, Fernandez-Cuesta et al. and Derks reported
KEAPI genetic alterations as a new uncovered molecular
hallmark of LCNEC (lung cancer neuroendocrine) with
adenocarcinoma-like features [30, 31]. This last finding was
also confirmed by a different group which reported a preva-
lence of KEAPI-NFE2L2 (31%) alterations in tumors with
high neuroendocrine gene expression, mainly cooccurrent
with gene mutations [4, 32, 33].

Gain-of-function NFE2L2 mutations are generally mutu-
ally exclusive with respect to KEAP1 mutations and are fre-
quently located into the DLG or ETGE motifs. NFE2L2
point mutations were identified in several tumors with
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squamous histological features, such as esophageal, skin, lung,
and laryngeal carcinomas. An increased NFE2L2 gene copy
number was also described in lung squamous cell carcinoma.
An increased NFE2L2 gene copy number was also described
in lung squamous cell carcinoma. All of these mutations are
generally missense changes that interfere with the KEAP1 abil-
ity to bind to NRF2, thus inducing an escape of NRF2 degra-
dation without changing its gene functionality [34-37].
Somatic lesions linked to KEAP1/NRF?2 axis deregulation were
also reported in the CUL3 gene, the component of the E3
ligase complex KEAP1/CUL3/RBX1 that marks NRF2 for
proteasomal degradation [7, 38]. Mutations in CUL3, together
with those in NFE2L2, are frequent in hereditary type 2 papil-
lary renal cell carcinoma (PRCC2). In squamous carcinoma of
the head and neck, somatic lesions of CUL3/NFE2L2/KEAP]I
have a prevalence of 64% and were associated with a lower
patient overall survival (Tables 1 and 2) [25, 39-41].

Dysfunction of the KEAP1/NRF2 axis by genetic muta-
tions is gradually becoming a milestone to understand cancer
development, progression, and resistance to conventional
and biological treatments [42]. It is now well known that
loss-of-function mutations of the KEAPI gene or gain-of-
function mutations in NFE2L2 enhance the resistance of can-
cer cells to anticancer drugs, such as etoposide and carbopla-
tin, and it is associated with poor outcome of platinum-based
advanced NSCLC patients [43]. Nuclear accumulation of
NRF2 was also correlated with a poor survival of lung SqQCC
and pancreatic adenocarcinomas and a worse progression
free survival (PES) in patients treated with surgery only
[44-47]. Aberrant NRF2 activation due to KEAPI alterations
is also reported as one of the molecular mechanisms of
chemoresistance of gallbladder cancer under 5-FU-based
regimen and of colorectal cancer under demethylase and
methyltransferase treatments [20, 48, 49].

Jeong and coworkers suggested a new role for KEAPI and
NFE2L2 mutations in radiotherapy resistance of NSCLC
patients and in identifying patients who might benefit from
radiation dose escalation [50]. Knockdown experiments
reported that radiochemosensitization was led by CDK20
that competes with NRF2 for KEAP1 binding and induces
nuclear translocation of NRF2 and the enhancement of its
transcriptional activity. This ultimately results in prolifera-
tion defects and provides new insights into the cellular
response to NRF2-mediated DNA damage [51].

An interesting link between the KEAP1/NRF2 axis and
target therapies was recently reported. Cell proliferation in
cancer was demonstrated to be cross-regulated by KEAP1/
NRF2 and EGFR signaling. Moreover, cells expressing onco-
genic allele of KRAS are able to activate NRF2 via the MAPK
pathway in mouse embryonic fibroblasts [52, 53]. In the same
way, the loss of KEAPI by the CRISPR-Cas9 system cooper-
ates with the tumor mutational landscape in modulating the
response to BRAF, MEK, EGFR, and ALK inhibition and in
allowing cancer cells to increase their ability to resist to treat-
ments and proliferate [54]. KRAS activity confers in NSCLC
chemoresistance also by upregulating NRF2 through the link
with TPA response element (TRE) located in exon 1 of the
NFE2L2. In the same context of resistance to target therapy,
it is possible that NFE2L2 mutations can contribute to
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F1GURE 1: Overview of the main genetic and epigenetic modifications that lead to KEAPI-NFE2L2 impairment and constitutive NRF2 nuclear
accumulation in cancer cells. NFE2L2 gene copy number variations (CNV), oncogene activity (KRAS, BRAF, MYC, and PTEN), DNA
promoter methylation, and miRNAs contribute in a synergic manner to increase cancerous NRF2 activity as a result of reduction of
KEAPI mRNA or increase of NRF2 mRNA levels and/or protein expression. By contrast, somatic point gain-of-function mutations in
NFE2L2 or in loss-of-function in KEAPI promote the disruption of the interaction between KEAP1 and NRF2 and lead the increase of

NRF2 protein quantity which translocates into the nucleus.

survival under crizotinib treatment and can allow the cells to
acquire additional resistance mutations over time. In line
with these hypotheses, Krall et al. recently identified a
hotspot mutation in NFE2L2 in a patient with acquired resis-
tance to ALK inhibitors that could exert a synergic effect with
a secondary ALK mutation in the resistance to second-
generation ALK inhibitors [55].

Recent additional studies in this field gave the first hint
of the prognostic role of single-nucleotide polymorphisms
(SNPs) of the KEAPI gene in breast cancer without induc-
ing any evident and detectable variations of the protein
structure or conformation. More specifically, five tagging
SNPs (rs34197572, 1rs9676881, rs1048290, rs11085735,
and rs8113472) located in the KEAPI were genotyped
and appeared to be in allelic linkage disequilibrium (LD)
with each other. This finding suggests the existence of a

haplotype block at the KEAPI gene locus that might cor-
relate with specific clinical features of cancer patients
[56]. The two SNPs rs9676881 and rs1048290 resulted to
be significantly associated with a shorter PES survival in
invasive breast cancer patients. The main hypothesis is
that they reside into cell type-specific regulatory elements
that modulate the binding capability of critical transcrip-
tional factors, which in turn change target gene expression.
Thus, it might explain the observed correlation with the
high KEAP1 protein expression levels and the high cyto-
plasmic localization of NRF2 in breast tissues [57]. The
SNP rs1048290 is located in the DGR domain, so it may
affect the maintenance of physiological levels of NRF2.
Tumor susceptibility SNPs might be also associated with
specific miRNA/IncRNA binding regions [58, 59]. The SNP
rs1048290 was found in LD with the SNP rs9676881, which
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FIGURE 2: Domain architecture of the NRF2 (a) and KEAP1 (b) proteins. (a) NRF2 protein is divided into seven highly conserved domains,
Nehl to Neh7 (NRF2-ECH homology: Neh). The coordinates of NRF2 protein domains are shown as follows: Neh2 (16-89aa); Neh2 DLG
motif (17-32aa), Neh2 ETGE motif (77-82aa), Neh4 (111-134aa), Neh5 (182-209aa), Neh7 (209-316aa), Neh6 (337-394aa), Nehl (435-
568aa), and Neh3 (569-605aa). (b) KEAP1 protein contains a number of functional domains including the N-terminal region (NTR; 1-
60aa), broad complex, tramtrack and bric-a-brac (BTB; 61-179aa), the intervening linker domain (IVR; 180-314aa), the double glycine/
Kelch domain harboring six Kelch-repeat domains (315-359aa; 361-410aa; 412-457aa; 459-504aa; 506-551aa; 553-598aa), and the C-

terminal region (CTR; 599-624aa).

is located in a putative enhancer region, few bases down-
stream of the 3-untraslated region (3'-UTR) of the KEAPI
gene and 410 bp from the miR-200a binding site. By conse-
quence, it is clear to suppose that a LD may exist with these
silent variations and the specific miRNA binding site. How-
ever, the role of KEAP1 SNPs in predicting patient survival
remains controversial. The two SNPs rs9676881 and
rs1048290 appeared to be the most interesting ones and
resulted to be significantly associated with a shorter PFS sur-
vival in both invasive and ER-positive tamoxifen-treated
invasive breast cancer patients [60].

3. The Aberrant Methylation of the Keap1-Nrf2
Axis and Its Translational Impact in Solid
Tumors

Gene promoter hypermethylation at the specific CpGs and
chromatin remodeling are two of the main epigenetic events
that can modulate gene expression by spatial interfering with
the ability to work with the transcriptional machinery.
Epigenetic mechanisms are clearly implicated in the
complex regulation of the KEAP1/NRF2 axis and are actually
considered the most frequent mechanisms of KEAPI silenc-
ing in solid tumors [61]. The first hypothesis of an epigenetic
dysregulation of the KEAPI gene comes from the intriguing
observation that the KEAPI mutations were not frequent
enough to justify alone the frequency of aberrant NREF2
nuclear accumulation reported in lung tumor cells [8]. All
the scientific findings on the hypermethylation of the KEAP1I
promoter and its effects on the KEAP1/NRF2 pathway are
summarized in Table 3. The first report in this field was in
human NSCLC and prostate DU-145 cancer cell lines. The
promoter CpGs affected by this phenomenon are grouped

into one island located at the P1 region of KEAPI, near the
transcriptional start site [62-64]. The KEAPI promoter
hypermethylation was described in neoplastic tissues of
patients affected by glioma, breast cancer (51%), and primary
NSCLC (47%). In lung cancer, the presence of epigenetic
abnormalities in the KEAPI gene plus its point mutations/
LOH matched with the prevalence of NRF2 nuclear accumu-
lation in NSCLC tissues and was associated with an increased
risk of lung cancer progression in surgically resected patients
[65-67]. In clear renal cell carcinoma (ccRCC), the epigenetic
modulation of KEAPI was shown to be the leading mecha-
nism of KEAPI deregulation (48.6%), thus supporting a
driver role of the KEAP1/NRF2 axis in renal cancer. TCGA
(The Cancer Genome Atlas) concomitant data analysis
suggested that KEAPI hypermethylation is able to strongly
predict patient survival [68]. In primary breast cancers and
preinvasive lesions, an aberrant KEAPI promoter methyla-
tion was seen to be more recurrent in ER-positive, HER2-
negative than in triple-negative breast cancers and was
hypothesized to be a prognostic marker since a higher
mortality risk in triple-negative patients was predicted.
Moreover, KEAP1 promoter silencing by methylation was
also predictive of a lower risk of tumor relapse in patients
treated with sequential therapy of anthracyclines and cyclo-
phosphamide followed by taxanes [67]. Gliomas are the sec-
ond tumor described by our group to have a promoter
hypermethylation. In these tumors, it was reported that
KEAPI epigenetic modifications were associated with poor
prognosis and contribute to the prediction of the disease
progression of patients subjected to radiotherapy and temo-
zolomide treatment [65]. The role of KEAP1/NRF2 in radia-
tion has been also elucidated in A549 lung adenocarcinoma
cell line under DNMT inhibitor genistein treatment. The
pharmacological demethylation of the KEAPI CpG promoter
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islands was demonstrated to induce an increase in transcript
levels and a consequent overexpression of NRF2, GSS, and
HO-1 [69].

Aberrant KEAPI methylation was also reported in 53% of
colorectal cancer and head and neck cancer tissues (29.3%)
and was also linked to the worse prognosis of these tumors
[70, 71]. In pancreatic cancer cell lines, the suppression of
KEAP1 protein was demonstrated to be correlated with
UHRFI, a scaffold protein for DNA methyltransferase
DNMT1 [72].

A possible role of epigenetic variations in the modula-
tion of NRF2 expression is less investigated. Li and
colleagues showed that a low methyltransferase EZH2
expression correlates both lung cancer cell lines and tissues
with an elevated expression of NRF2, NQO1 (NAD(P)H-
quinone oxidoreductase 1), and HO-1 (heme oxygenase 1).
Since the EZH2 is involved in the establishment and/or
maintenance of chromatin architecture and histone methyla-
tion, its downstream effect was attributed to a decrease in the
trimethylation of lysine 27 on histone H3 (H3K27Me3) in the
NFEZ2L2 promoter region [73]. Recently, Kang and colleagues
focused on the causative relationship between NRF2 expres-
sion and its epigenetic alterations, especially in the context of
DNA methylation at cytosines and histone methylation sta-
tus during 5-fluorouracil- (5-FU-) induced oxidative stress
in colon cancer cells. They found that elevated reactive oxy-
gen species (ROS) level induced by 5-FU activates TET
(ten-eleven translocation) DNA demethylases and produces
a hypomethylation of the NFE2L2 promoter with consequent
activation of NRF2 translation. This, in turn, upregulates the
expression of the antioxidant enzymes and generates the
resistance to 5-FU in cancer cells [48, 49].

4. MicroRNAs Directly Targeting the Keap1/
Nrf2 Pathway

An intriguing epigenetic way of KEAP1/NRF2 pathway
deregulation in tumor cells comes from miRNAs that act
in cancer as oncogenes or tumor suppressors [74]. miR-
NAs are proximately 22 nucleotide single-stranded non-
coding RNA molecules which regulate gene expression at
posttranscriptional levels by binding to the 3'-untrans-
lated regions (UTRs) of specific mRNAs. They generally
affect the translation or stability of mRNA molecules
through the interaction of specific mRNAs with comple-
mentary base pairing.

Two different blocks of miRNAs can be distinguished in
the context of posttranscriptional regulation of the KEAP1/
NRF2 pathway (Table 4) [75]. The first group includes the
miRNAs that directly target NFE2L2 and usually negatively
regulate the KEAP1/NREF2 pathway by decreasing the NRF2
protein levels. The second one comprises those miRNAs that
directly interact with KEAPI and indirectly influence the
NREF2 signaling. In addition, a lot of miRNAs are reported
to indirectly modulate the ARE-mediated redox signaling
through their interaction with additional factors located in
the crossing points of the NRF2 network (Figure 3). All of
these interactions are complex and still remain to be fully
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elucidated. So we focalized our attention on the main find-
ings concerning NRF2 and KEAP1.

Several miRNAs predicted to target the KEAP1/NRF2
axis were identified by bioinformatic analysis of miRNA
databases [76]. Some of these were experimentally proven
to directly target and repress the NRF2 activity. The negative
effects on the NRF2 expression by miR-28 were firstly docu-
mented in MCF-7 breast cancer cells [77]. A similar activity
was described for miR-155 in 16-HBE human bronchiolar
epithelial cells under arsenite treatment, together with an
observed upregulation of glutathione (GSH), nitric oxide
(NO), and superoxide dismutase (SOD) [78]. The increased
expression of miR-155 correlates with radiation-induced
severe fibrosis in a murine skin model [79], similar to miR-
140, whose deficiency increased activation of TGF- 31 signal-
ing, inflammation, and myofibroblast differentiation in
fibrotic lung tissue after radiation treatment [80, 81]. Among
functionally validated miRNAs that regulate NRF2, miR-144
recently emerged as having a central role in the modulation
of cellular stress response in blood malignancies and solid
tumors. In K562 cell line and primary erythroid progenitor
cells, it was seen that increased levels of miR-144 were asso-
ciated with reduced NRF2 levels in HbSS reticulocytes. By
contrast, inhibition of miR-144-3p in human leukemia HL-
60 cells reduced cell viability and prompted apoptosis by
interfering with NRF2 activity. In hepatocellular carcinoma
cell lines, miR-144 overexpression was reversely correlated
with an enhancement of 5-fluorouracil- (5-FU-) induced
cytotoxicity and apoptosis and with GSH biosynthesis in
neuroblastoma SH-SY5Y cells via NRF2 [82-84].

A direct effect of miR-93 on nuclear accumulation of
NRF2 was well described by Singh et al. using a rat model
of breast carcinogenesis. A significant reduction in
carcinogenesis-associated phenotypes such as mammo-
sphere development, antiapoptosis, and DNA damage was
observed [85].

In silico analysis and in vitro studies on different sets of
tumor cell lines recently provided more additional insights
into the role of KEAP1/NRF2 axis modulation by miRNAs.
In SH-SY5Y neuroblastoma cells, the 3'-UTR of NFE2L2 is
targeted by miR-153, miR27a, and miR-142-5p, with a conse-
quent decrease in Gclc glutamate-cysteine ligase (GCLC) and
glutathione-disulfide reductase (GSR) expression levels [86].
The functional impact of miR-153-3p/NRF2 interaction was
firstly reported in breast cancer cell lines and recently
highlighted by microarray studies in oral squamous cell
carcinoma cell lines and tissues. Low expression levels of
miR-153-3p significantly correlate with tumor cell migra-
tion and invasion [87, 88]. In the same histological pattern
of esophageal cell carcinoma, miR-340 was shown to
directly modulate the NRF2 expression levels, thus inter-
fering with the chemoresistance phenotype under cisplatin
treatment [89]. Finally, miR-507, miR-634, miR-450a, and
miR-129-5p appeared to negatively modulate the NRF2
activity by targeting both the NFE2L2 and MEI tran-
scripts, a well-known target of NRF2 [90]. In NSCLC
A549 cells, this group of miRNAs exerts a synergic effect in
increasing sensitivity of cell growth suppression under cis-
platin treatment [91].



Oxidative Medicine and Cellular Longevity

14

[09] CIIN | TdVay T 00z-yrur-esy |
Kesse fy1anisuss Snip
fesse sisojdode ‘Aesse Liqera [[90 ‘GM UDJ-.14P . DUEISISA N6 |
(6] ‘Aesse 19110do1 9SBIJION] ‘UOI}OJSURI]) JOJIqIYUT pUE ruroUIdIL) IR[N[20jedoy uucmu&wuwcwﬁ%_u ! IdVaX
OTWIW AR ‘SISA[eue ARIIBOIIW Y NJOIIN ‘S[[92 T190URD UBLIBAQ stsondo M T TpI-gru-esy |
' ‘I-OH
£ dode ¢ -1yb «4 d
26l NMMMMMES Mu a> aM wom 1gb ‘Aesse 1ay10dax CIN L Tavay 1
JIoN] ‘SISA[eUe SABLIROIOTUT Y NYOIOTIA
6CI-yruu-es
sesse £j1anisuas Snip dpuesysax ueldsp T omv-m:d-mmm %
[16 06] . o c s[[eo 1ooued eadeydosy mos [0 | :
VNYIS ‘M IDd-LYb ‘SOY jo Juotamsesjy TN 1 2N T pe9-gru-esy |
£0S-grur-esy |
dM UDJ-1gb Aesse £yanisuss Snip Aesse 10y10dox doueystsax unerdsmo T R
[68] 9seIaJION] ‘SIsA[eue AeIIBOIDTWI Y NYJOIOIA S[192 J0uea eafeydosy ZDIN T OpE-yru-esy |
Ayranoe orpewifzua pue ‘§OY JO JUSUIAINSLIW ASOH T
o ‘ S[[9 BWOISL[qOINd Tur-es ~rw-es
(98] Od-1:4b ‘gM ‘vondaysuen Juatsuel], 1 1EIAOTEN 0100 1 ¢LIN T i 11 1l
sAesse uolseaur pue ‘uoneidrur
[88] 199 “dM IDd-1.gb ‘Aesse 10310dax
9SEIJION ‘SISATeue AeIIR0IOTW YNYOIOIA uorseAut [0 T
AM YDd-Lyb “manoe BUWIOUDIED [[20 snowrenbs [e10 cuonyesdrw oo T eoT-yru-esy |
onewdzus pue SO JO JUSWINSLIW ‘S[[92 190UBD ]$BAI( S[[30 BWOISB[qOININ 4SO 1 ’
(28] ‘stsA[eue 324> 9o ‘sis[eue uoneidiw 2o 0105 T TN T
‘sfesse uruioj Luojoo pue Lesse uoryerapjoxd
1[92 “UOT}O9JSULI} JOJIQIYUT PUL OTWIW AT
CDIN
skesse srsoydode [[o0 pue ‘uonjerSIw [[20 ‘Aesse UOIjRULIO) omMHMﬂNMMD l
(s8] aroydsoururewr ‘fesse [eAIAINS [[2 OTUIZOUOD ‘G S[[92 12oUed JSBAIq 1By woewLIO; wwo %OHSSNE | c6-yru-esy T
“4Dd-1gb ‘uondsgsuen (VN SuLojIaiul [ews) VYIS ’ ] o
TN |
(58] aM YOd-Lyb
fesse Ly1anisuas Snap ‘Aesse 10110dox aserayony 2ouerISISar (-G T
o vb S[[99 BUIO)SB[qOINAU S[[3D J2OULD tsordode
(€8] VSITA dM ¥Od LY Ienoojeday uewny 1503 ! PrI-rw-esy |
Kesse 19110do1 oserayoON ‘sis[eue ABITBOIITW Y NJOIITA “Aymiqera o T :
: : : ‘ ‘S[[00 BIUUANNST A
M Dd-1gb ‘syuowainseawr £j1anyoe oryewdzud HSO 1 CDIN T
(e8] pue SOY ‘Aesse A1[iqera [[20 ‘Aesse 10310dax aseroqrong
sfesse uoneurioy Luojod pue 20UR)SISIT AJTUISIE |
[s2] ‘voneISIW 120 940 [[0 “A3IAnoR dnRWAZUS pue S A —— A — ‘uonjewIoy AUo[od | colyru-vsy T
SOY JO SJusRIMSEA G M “YDd-LHb 1192 TerPtpie APorpHoiq ‘a0s | ‘ON | ‘H$D | e
‘aondsuEL) I0JIqIYUT YNYIW pue JIWIA ‘T-OH | TIIN |
uonedpasdountuuros pue S[[92 190UeD JsBIIq UBWN —rw-es
(9] T oY iy e ——— 1 Isea1q H ZIIN T gT-grwi-esy |
NIENT SPOYIOA [opowr 190ue)) 1099 WEATSUMOJ a1 VT 8L

SUOIJePI[eA [eUOT)OUN,]

*ST[9D J90UED UT PIATISQO S)OAd WEIIISUMOP PUL Z YN PUB [JVAY YNIM Suroerojur syNYIW Urejy  a14v],



15

Oxidative Medicine and Cellular Longevity

~Dd 2um-ear aanenuenb O J- b Aesse (aprworq wmrjozen?) [Ausydip-gz-(JA-z-[ozenAyowWIp-sF)-¢) L LLIA Anowonoads ssewr wapue)
Aydexdoyewroryd pmbiy :SIN/SIA-DT Anstiraypoisrgountuw :HHJ ‘ANWoILd MOJ D 90[q UIASIM ‘GM [IOBINOION[J-G i) -G @Senuwsip aprxoradns ((7OS ‘7 10198] Paje[aI-7 PIOIYIAID 10]0B] Tea[dNU Z.IN
LOPIXO JINIU QN T dWAzud dIfews Ty <] urdjoxd pajerdosse-HDT MI-YRY :IdVAY <1-oseuadAxo away :7-Of @sejonpar auoryien(s :ygo euornyein(s o Jrungns oni[eyed asediy surd)sko-ajewrein(s :H7H0H

dIyD “Aesse Ayqers vAIW ‘G M

9DOUR)ISISATOWAYD |

[86] 9ADJ-1.gb Aesse 10110dar aserayony s[[eo 1ooued eadeydosy ) . Tep-ru-esy |

‘SYNYIS ‘Aesse [eAIAINS [[90 “W)sAs 658D/ IdSTID TN L 1dvax 1

SJUSWAINSLIW AJIAT)OR DTJeWAZUD HSO |
S[[90 BWOISL[qOIN —yruw-es
[o6] ‘AM 9Od-Lab ‘SIW/SIN-OT “Aesse Lipiqeia 120 f 190N ‘TIIN | “1dvax T S
[s6] dIUD 9Dd-14b ‘Aesse 10310dax uonooysuely,
DHI ‘Aesse yymoid [[oo s[[22 12oued [eadeydoss
juopuadopur-ageroyoue ‘qyD ‘gM ‘Aesse A1iqels ‘S[[92 TodoUeD Jsearqg
VNJW gDJ- 1 b ‘Aesse 19110dox aseroyony

SEN| SPOIOIN [Ppowr 10ue)) 1090 WEIISUMO(] R joSie]

SUOLepI[eA [eUOT)OUN,]

‘ponunuoy) i 414V ]J,



16

KEAP1 miRNA

h h
-

mRNA NRF2

T ,00050

Competitive
activation

m

Cell

Radioresistance i
survival

Chemoresistance

Oxidative Medicine and Cellular Longevity

NRF2 miRNA

Sustained Cell
tumorigenesis proliferation

F1GURE 3: Left and right panels show how miRNA modifications may contribute to down and upregulate the KEAP1/NRF2 signaling in cancer.
Representative scheme on the left side summarizes a group of miRNAs that directly target KEAPI mRNA and indirectly impact on the
transcriptional activity of the NRF2 into the nucleus. Other miRNAs modulate BACH1, a transcription factor that competes with NRF2
leading to the link at the antioxidant response element (ARE) of detoxifying genes. The schematic model on the right side depicts those
miRNAs that directly target NFE2L2 and impact on the general mRNA and protein levels of NRF2 and, by consequence, on the activation
of detoxification NRF2 target genes with a great impact on chemo- and radioresistance, survival, growth, and proliferation of tumor cells.

By looking at the KEAP1 regulation side, miR-141 was
the first reported miRNA to target KEAPI by binding to
its 3'-UTR sequence site in ovarian carcinoma cell lines
[92]. The upregulation of miR-141 expression decreases
the 5-FU-mediated effects and apoptosis in hepatocellular
carcinoma cell lines by inducing nuclear translocation of
NRF2 and activation of HO-I gene transcription [93]. A
direct inhibition effect of miR-200a on KEAPI was eluci-
dated in human MDA-MB-231 and Hs578T breast and
esophageal squamous cell carcinoma cells under methylse-
leninic acid (MSA) treatment. MSA acts as a chemopre-
ventive agent that is able to induce miR-200a expression
and inhibits KEAPI through the Kriipple-like factor 4
(KLF4) [60, 94, 95]. Interesting results came from the
investigation by Hartikainen et al. In their work, SNP
rs1048290 has been found in LD with SNP rs9676881,
which is located in a putative enhancer region, few bases
downstream of the 3'-untranslated region (3'-UTR) of
the KEAPI gene, the specific target region of miR-200a
[56]. More recently, a direct action of miR-7 on KEAPI
expression was described in the human neuroblastoma

cells. By targeting the 3'-UTR of KEAPI mRNA, miR-7
enhances the nuclear localization of NRF2 and induces
an increased expression of HO-1 and glutamate-cysteine
ligase modifier subunit (GCLM). The control of cell
survival under stress by miR-7 was amplified by the
observed variation of intracellular hydroperoxide levels
and increases in the reduced form of glutathione levels
[83, 96]. A similar effect was described for miR-196 in
human hepatoma cells against hepatitis C virus infection
[97]. The CRISPR/Cas9 system was used to prove the
direct binding to the coding region of KEAPI by miR-
432-3p in the esophageal squamous cell carcinoma
(ESCQC). In this tumor, miR-432-3p overexpression corre-
lates with a downregulation of the KEAP1 expression, thus
inducing a decrease in the sensitivity of tumor cells to
cisplatin and other chemotherapy drugs [98].

A lot of miRNAs were also reported to regulate the
KEAP1/NRF2 pathway independently from the KEAPI or
NRE2 activity. The let-7 family modulates the DICER expres-
sion and represents the first example of cancer regulation
by miRNA in humans [99]. Not less importantly, let-7
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showed to inhibit the expression of several oncogenes
involved in cellular proliferation, such as RAS (rat sarcoma),
MYC (avian myelocytomatosis viral oncogene homolog), and
HMGA?2 (high-mobility group AT-hook 2) [100, 101]. The
miRNAs let-7b and let-7c were firstly demonstrated to
negatively modulate the expression of BACHI in the liver,
a transcription factor that works in association with the
small MAF proteins in a dominant condition in respect
of NRF2 [102, 103]. By consequence, the repression of
BACHI induces an upregulation of HO-1 expression via
NREF2 transcription [104].

5. Long Noncoding RNAs Linked to the Keapl/
Nrf2 Pathway

Long noncoding RNAs (IncRNAs) are non-protein-coding
transcripts longer than 200 nucleotides which are expressed
in a sense, antisense, or bidirectional manner. Different to
protein-coding genes, they show a high density of DNA
methylation around their transcription start sites, indepen-
dent of their expression status [105]. A growing number of
evidences elucidated the role of IncRNAs in the initiation,
progression, and stem cell pluripotency of cancer cells
[106]. Little is known about the role of IncRNAs in the mod-
ulation of the detoxification processes of cells.

The most recent findings are those related to smoke and
cancer-associated IncRNA 1 (SCALI) and IncRNA regulator
of reprogramming (ROR). The SCALL is the first character-
ized long noncoding RNA activated by NRF2 and is consid-
ered one of the downstream mediators of NRF2-induced
oxidative stress protection in airway epithelial cells. Under
stress induced by cigarette smoke, the SCALI expression
increases in lung cancer cell lines and appears to be directly
correlated with NFE2L2 mutations [107]. In human bron-
chial epithelial cells, a knockdown gene approach revealed
that NRF2 can regulate the expression level of SCALI by
binding to the nuclear factor erythroid-derived 2 (NF-E2)
motif located in the promoter region of its gene [108].
Conversely to SCAL1, Zhang and colleagues proved that
in breast cells, NRF2 controls the ROR IncRNA expression
by binding two different NRF2 response elements flanking
the ROR promoter region. NFE2L2 knockdown leads to
the overexpression of IncRNA ROR in mammary embry-
onic stem cells [109].

6. Concluding Remarks

Significant advances have been made in these last years to
understand the regulation mechanisms of the KEAP1/
NREF2 system. However, although KEAP1/NRF2 dysfunction
is now well known to confer resistance to chemo- and radio-
therapy, the KEAPI-NFE2L2 mutational status assessment is
not used to make treatment decisions in lung cancer yet.
Moreover, molecular profiling of these two proteins in pre-
treated and resistant tumor samples will help to elucidate if
the loss of KEAPI or the gain of NFE2L2 may be clinically
relevant mechanisms of acquired and intrinsic resistance to
therapies in lung cancer and other solid tumors or not. A
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general limitation to clarify these issues remains and consists
of a lack of available rebiopsy tissue specimens.

From an epigenetic point of view, the effects produced
by KEAPI hypermethylation on the KEAP1/NRF2 signal-
ing in cancer remain partially understood. Firstly, it is nat-
ural to wonder what the real role of P1 CpG island
methylation is and if the methylation status of KEAPI
exclusively affects its expression or could additionally
interfere with the ability to bind to NRF2 in promoting
tumor progression and resistance to therapies. According
to these observations, it would be of great interest to
determine if in tumors with different origins there are
similar or different methylation CpG density patterns at
the P1 region and if demethylation of the KEAPI pro-
moter in neoplastic tissues could really suppress tumor
progression and enhance resistance to therapies.

Given that posttranscriptional modifications play impor-
tant roles in regulating the stability and translation of
mRNAs, more studies on the regulation of the KEAP1/
NRF2 pathway by miRNAs will corroborate their key roles
in clinical practice. However, this approach will require a
greater knowledge of how drug treatment influences miRNA
expression and how miRNA expression could influence the
multifaced KEAP1/NRF2 network.
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