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Review

Serotonergic Modulation of Olfaction in 
Rodents and Insects
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Recent advances in genetic tools and optical imaging technology have allowed rodent and Drosophila 
researchers to explore the relationship between serotonergic modulation and olfactory processing at a 
mechanistic level previously unfeasible. Here, I review the basic organization of olfactory and serotonergic 
systems in both rodents and Drosophila and draw comparisons where similarities exist. I discuss circuit 
level models that explain many of serotonin’s effects on olfactory responses in the olfactory system’s 
inputs and outputs. Finally, I discuss models of integration within wide-field centrifugal neurons to 
emphasize the importance of studying serotonergic neurons directly to build more realistic models of 
olfactory and modulatory interactions.
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INTRODUCTION

In this review, I will describe the interactions of the 
olfactory and serotonergic systems in both rodents and 
insects, with an emphasis on recent work in mice and 
Drosophila. Each species has its own unique advantages, 
and rodent and insect models both have a rich history in 
sensory neurobiology. The rodent anatomy closely re-
sembles that of our own with homologous olfactory and 
serotonergic structures. Insects have both a reduction in 
neuronal number and uniquely identified neurons that can 
be targeted across individuals. The precise function of 
serotonin (5-HT) in olfaction remains elusive, though the 
modulator has been implicated in olfactory learning [1,2], 
promoting adult neurogenesis [3], and modifying ongo-
ing sensory coding [4,5]. In this review, I will focus on 
the latter and discuss the effects of serotonin on different 
cell types within early olfactory processing. Additionally, 

I will discuss the need and challenge to better correlate 
serotonin release with olfactory signaling to understand 
the contexts under which such modulation might occur. 
The hope is to highlight similarities between rodents and 
insects in order to find common principles that likely 
generalize more broadly across taxa. Recent advances in 
imaging technology and genetic tools have provided new 
insight into the modulation of chemosensation that was 
not feasible only a few decades ago.

THE OLFACTORY SYSTEM AND ITS 
SEROTONERGIC INNERVATION

Olfaction begins with an odor molecule binding to 
an olfactory receptor (OR†) expressed by an olfactory 
sensory neuron (OSN). Each OSN expresses a single 
OR type [6]. In mammals, OSN axons project across the 
cribriform plate and terminate in specialized neuropil 
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called glomeruli within the olfactory bulb (OB). Each 
OSN expressing the same OR type converges onto the 
same glomerulus where they make synapses onto a vari-
ety of postsynaptic partners including principal neurons 
and local interneurons [6-10] (Figure 1A). The principal 
neurons of the rodent olfactory bulb are the mitral cells 
(MCs), which project to piriform cortex [11] and the 
amygdala [12] to drive learned and innate olfactory be-

haviors, respectively. In addition to principal neurons, the 
OB also possesses numerous types of local interneurons 
that mediate lateral excitation, pre- and postsynaptic 
inhibition, and intraglomerular inhibition [8,13-15]. Like 
most regions of the brain, the OB is subject to modulation 
by serotonin (5-HT). As there are no intrinsic seroto-
nergic neurons in the OB, serotonin is instead supplied 
via centrifugal innervation from the raphe nuclei in the 

Figure 1. The organization of the olfactory and serotonergic systems in mice and flies. (A). A schematic of the layers 
and major cell types in the mouse olfactory bulb (OB). Olfactory input comes from OSN axons in the olfactory nerve 
layer (ONL). OSNs synapse onto mitral cell (MC, pink) dendrites in glomeruli in the glomerular layer (GL). The mitral 
cells project out of the OB and to third order olfactory regions such as the piriform cortex (pir) and the amygdala 
(am). Juxtaglomerular neurons such as short axon cells (SAC, blue), periglomerular cells (PG, yellow), and external 
tufted cells (Te, green) modify olfactory processing in the glomerular layer. SACs and PG are inhibitory and Te cells 
are excitatory. Granule cells (GC, gray) in the granule cell layer (GCL) send dendrites to the external plexiform layer 
(EPL) where they make dendrodendritic synapses with MC. Serotonin receptors that have been attributed to each 
cell type are listed next to that cell. Serotonin receptor classes that have only been localized to layers of the bulb are 
listed next to that layer on the right. The median raphe nucleus (MRN) provides serotonergic innervation for the GL 
(light red shaded layer), and the dorsal raphe nucleus (DRN) provides innervation for the mitral cell layer (MCL) and 
granule cell layer (GCL) (light shaded blue). The most densely innervated layer is the GL. (B). The DRN projects from 
the brainstem to three major olfactory areas, the OB, the piriform (pir), and the amygdala (Am). MRN projections to the 
OB also arise from the brainstem. PFC = prefrontal cortex, Cx = cortex, HPC = hippocampus, thal = thalamus. Adapted 
from Muzerelle et al. 2016 with permission. (C). A schematic of the Drosophila antennal lobe (AL). OSNs residing on the 
antennae each project to a single glomerulus in the AL. Each OSN expressing the same receptor (denoted as the same 
shade of gray) project to the same glomerulus where they make synapses onto projection neurons (PN, pink). PNs 
send axons out of the AL to the lateral horn (LH) and mushroom body (MB) where third order olfactory processing takes 
place. Inhibitory (blue) and excitatory (green) local interneurons also influence glomerular processing in flies. Only two 
cells (one from each hemisphere) provide serotonergic innervation for the AL. These are the CSDns. (D). A schematic 
of the Drosophila brain showing the location and projections of the major cell classes discussed in this review.
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brainstem [16,17] (Figure 1B). Serotonergic fibers are 
densest in the glomerular layer, which is innervated by 
the median raphe nucleus (MRN) [16,18]. Fibers from 
the dorsal raphe (DRN) target the mitral and granule cell 
layers of the OB, as well as the piriform cortex and the 
amygdala [18].

The early olfactory system in insects is organized in 
a manner highly analogous to the rodent OB, implying 
that lessons and principles learned in one species may 
generalize to others [19-23] (Figure 1C). As in mammals, 
most insect OSNs also express a single OR and project 
to a dedicated glomerulus in the antennal lobe (AL) 
[7,24,25]. Projection neurons (PNs) in the AL serve a 

similar role to the mammalian mitral cells and relay 
olfactory information to higher brain regions [26-28]. 
These regions include the mushroom bodies for process-
ing learned olfactory behaviors and the lateral horn for 
mediating innate olfactory behaviors [29]. Additionally, 
the AL possesses a variety of excitatory and inhibitory 
interneurons that shape PN responses through intra- and 
interglomerular interactions [27,28,30-35]. In nearly 
all insects that undergo metamorphosis, including flies, 
only one pair of serotonergic neurons innervates the AL 
[36,37]. These cells, termed contralaterally-project-
ing, serotonin-immunoreactive deutocerebral neurons 
(CSDns) also provide all of the serotonergic innervation 

Figure 2. Cellular mechanisms for 5-HT modulation in the OB and AL (A). Strong raphe stimulation results in long-term 
suppression of OSN output. Adapted from Petzold et al. 2009 with permission. (B). 5-HT acts on several cells in the 
OB. It directly excites ETC which in turn excite SACs. SACs are also directly excited by 5-HT. These two mechanisms 
serve to indirectly inhibit OSN axons and thus mitral cell activity. However, 5-HT can also excite MC directly or indirectly 
through ETC. Thus, the net effect of 5-HT on mitral cells can be either excitatory or inhibitory in a glomerulus specific 
fashion. (C). Exogenous application of 5-HT boosts mitral cell responses to olfactory nerve shock and suggests a 
net excitatory role for 5-HT in the OB. Note that the boosting is only seen in absolute terms and that the change from 
baseline is similar in saline and 5-HT. Adapted from Brill et al. 2016 with permission. (D). However, blocking 5-HT 
signaling from the raphe with methysergide (methy, 50 μm) boosts other mitral cell responses to current injection 
showing that 5-HT can have a net inhibitory effect on OB output as well. Compare number of gray and red responses 
below the unity line. Adapted from Kapoor et al. 2016 with permission. (E). In flies, 5-HT modulates PN output in a 
non-monotonic fashion where low 5-HT levels suppress output and high 5-HT levels boost PN output. Adapted from 
Zhang et al. 2016 with permission. (F). A schematic of the AL circuitry that can explain the non-monotonic nature of 
5-HT modulation in insects. Inhibitory LNs (blue) possess both excitatory and inhibitory 5-HT receptors. GABAergic 
LNs typically inhibit OSN output but can also target post-synaptic PNs. (G). Excitatory 5-HT7 and 5-HT1 receptors have 
greater sensitivity to serotonin than the inhibitory receptors in Drosophila. Thus, low levels of 5-HT may preferentially 
boost LNs to suppress PN output, while high 5-HT levels may inhibit LN activity and boost PN output. Methysergide 
would remove excitation to LNs from resting 5-HT levels, thus dis-inhibiting OSN-PN odor responses. Adapted from 
Gasque et al. 2013 with permission. (H). Optogenetic stimulation of the Trh-Gal line (which does not label the CSDn) 
inhibits DA1-PN odor responses. Suppression of DA1-PN output requires sustained Trh-Gal4 activation. Adapted from 
Zhang et al. 2016 with permission.
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limited set of odors while blocking out interference from 
other odors. Alternatively, the modulation might serve to 
increase the discriminability between odors by increasing 
the difference in firing rates between MCs. As described 
above, the MC layer receives serotonergic innervation 
predominantly from the DRN, while the glomerular layer 
is densely innervated by the MRN. Thus, global gain 
control of olfactory input could occur independently of 
direct MC modulation. It is unclear under what condi-
tions differential release of 5-HT into the mitral cell layer 
versus the glomerular layer might occur. While the DRN 
and MRN have extensive overlap in the regions from 
which they receive their inputs, some distinctions do exist 
[50,51]. For example, the DRN receives a greater per-
centage of its inputs from higher olfactory regions [50].

Many similarities exist between serotonergic modu-
lation in the OB and the insect AL. Serotonin also inhibits 
insect OSN output in an indirect, GABA-dependent man-
ner [5], and 5-HT differentially modulates PN activity 
[5,52]. Additionally, as in mice, both exogenous 5-HT 
and methysergide can boost Drosophila PN responses 
[5,53]. This makes sense in insects as PN odor responses 
are modulated in a non-monotonic fashion. High con-
centrations of serotonin boosts PN responses in flies and 
moths and low concentrations suppress odor responses 
[5,53,54]. Drugs like fluoxetine and methysergide both 
manipulate serotonin in the low concentration range and 
reveal its suppressive nature, whereas exogenous appli-
cation of 5-HT demonstrates an excitatory function at 
higher concentrations (Figure 2E). This phenomenon is 
best explained by the expression of both excitatory and 
inhibitory 5-HT receptors within the GABAergic LN 
population [55] (Figure 2F). Because the excitatory 5-HT 
receptors are activated at lower serotonin concentrations 
[56] (Figure 2G), it is possible that LNs are first activated 
to suppress olfactory output, and subsequently inhibited 
through the activation of inhibitory 5-HT receptors at 
increasing concentrations. Indeed, strong activation of 
the CSDn does inhibit most AL neurons via 5-HT, includ-
ing GABAergic interneurons [53]. The function of this 
non-monotonic modulation is not known, but it does add 
an extra layer of complexity in understanding the interac-
tion between serotonin and olfaction.

As described above, reasonable receptor-based 
models exist to explain the net effects of 5-HT on rodent 
and insect early olfactory neurons. However, in both 
phylogenetic groups, these models are based on a small 
subset of the 5-HT receptors present in the OB and AL. In 
the OB, at least 9 types of 5-HTRs have been identified 
throughout the various layers [57-62] (Figure 1A). The 
function of the majority of these receptors in olfaction 
is unknown and virtually unexplored. Likewise, the Dro-
sophila genome encodes 5 serotonin receptors [56,63-65] 
and all 5 receptor classes are broadly distributed through-

for the lateral horn [38]. The mushroom bodies of the 
fly, however, are innervated by multiple 5-HT cell types 
[36,39,40].

SEROTONIN AND OLFACTORY CODING

The major effects of serotonin in the OB are to sup-
press OSN output [4] (Figure 2A) and to modulate mitral 
cell activity [41-44]. The suppression of OSN terminals 
is indirect and mediated by the activation of excitatory 
5-HT2C receptors on GABAergic short-axon cells (SACs) 
[4,42,43] (Figure 2B). Notably, no serotonin receptors are 
expressed by OSNs in the OB and raphe axons do not 
target their terminals for direct modulation [45]. As SACs 
presynaptically inhibit OSN terminals in the OB, eleva-
tion of their activity via 5-HT reduces OSN transmission 
[4]. External tufted cells (ETCs) are a major source of 
excitation for SACs, and ETC activity is also potentiated 
by 5-HT via 5-HT2A receptors [42,46]. Thus, serotonergic 
inhibition of OSNs is indirect and mediated by both the 
direct and indirect recruitment of SACs. OSN inhibition 
may serve as a form of global gain control to decrease ol-
factory sensitivity [4,47]. Interestingly, OSN suppression 
is not glomerulus or odor specific [4]. If intense olfactory 
stimulation were to drive raphe activity in the OB, then 
this mechanism could prevent the saturation of mitral cell 
responses. Alternatively, suppression of OSN responses 
may be an important mechanism by which the brain could 
use serotonin to gate out sensory information that might 
otherwise compete for attention or other cognitive re-
sources. Serotonin in the leech nerve cord serves a similar 
function by gating out tactile signals that compete with 
feeding behavior [48].

The effect of 5-HT on mitral cell output is far more 
complicated. Mitral cells as a population express both ex-
citatory 5-HT2A [49] and inhibitory 5-HT1 [41] receptors. 
Thus unsurprisingly, MCs can either be excited (Figure 
2C) [42,44] or inhibited [41] by 5-HT. Application of the 
broad serotonin antagonist methysergide increases mitral 
cell excitability in response to the stimulation of raphe 
axons, thus suggesting an inhibitory role for 5-HT from 
endogenous sources [41] (Figure 2D). Additionally, some 
MCs are inhibited by 5-HT in an indirect, GABA-sen-
sitive manner [44]. This suggests that the overall effect 
of 5-HT on MCs is bidirectional and likely dependent 
on both the direct actions on the MC as well network 
interactions.

What function might the bidirectional modulation 
of MC activity serve? One possibility is to preferentially 
allow some glomeruli to respond to odors despite the 
indirect inhibition of their cognate OSNs in the presence 
of 5-HT. This scenario could allow 5-HT-boosted MCs 
to maintain their dynamic range in spite of reduced sen-
sory drive, and may also allow the animal to perceive a 
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ACTIVATION OF SEROTONERGIC 
NEURONS AND THE RELEASE OF 5-HT

Developing realistic and ethologically relevant mod-
els of 5-HT function in the OB and AL will ultimately 
require knowing under what conditions 5-HT is released 
into these structures. For example, if the function of 5-HT 
is for gain control to prevent MC saturation, we might 
expect activation of the raphe nucleus to correlate with 
activation of olfactory areas. Alternatively, a model where 
5-HT blocks out competing olfactory input might require 
the raphe nucleus to be activated by brain regions unrelat-
ed to olfaction. Unfortunately, determining the conditions 
that specifically activate OB- or AL-projecting 5-HT 
neurons has proven difficult. Several studies in rodents 
have recorded from raphe neurons during olfactory tasks 
and have found their odor responses to be highly variable 
across cells [70,71]. Importantly however, it cannot be 
determined which of these neurons project to the OB.

While physiological evidence for the activation of 
OB-projecting raphe neurons is ideal, insight regarding 
5-HT release into the OB can be gleaned from the an-
atomical inputs that innervate the raphe [50,51]. Both 
the DRN and MRN receive substantial input from the 
hypothalamus and 5-HT levels in the OB fluctuate with 
circadian rhythms [72]. Other prominent inputs to the 
raphe nuclei include midbrain structures, such as the stri-
atum, and ventral pallidum. The raphe also receives more 
minor inputs from the amygdala and cortical regions in-
cluding piriform cortex. However, similar to the electro-
physiological experiments described above, such current 
anatomical studies have focused on the raphe nuclei as a 
whole and do not necessarily reveal the predominant in-
puts specifically to OB-projecting neurons. It is of course 
possible that the population average inputs to the raphe 
may not accurately reflect the relative presynaptic inputs 
to those raphe neurons that project to the OB.

The CSDns present a unique opportunity to ask spe-
cifically how serotonergic neurons that project to olfac-
tory areas respond during olfactory stimulation. This is 
because they are the only serotonergic fibers to innervate 
the AL, and they can be targeted genetically [73,74] for 
whole-cell physiology [53]. Surprisingly, the CSDns in 
Drosophila are broadly inhibited by virtually all odors, 
and this inhibition arises from local interactions within 
the AL [53]. The inhibition scales with odor intensity. 
Major presynaptic partners of the CSDn in the AL are the 
GABAergic LNs, which are also recruited proportionally 
with increasing odor strength [75]. This robust integration 
of the CSDn into the AL is supported by physiology [53], 
GRASP (GFP Reconstitution Across Synaptic Partners) 
[38], and EM microscopy in moths [76]. Perhaps even 
more surprising is that the CSDn expresses pre- and 
postsynaptic markers in both the AL and the LH [53] 

out multiple cell types in the AL [55]. The mechanisms 
by which different classes of 5-HT receptors are recruited 
and how they each influence signal processing will be an 
important part of understanding serotonin's function in 
olfaction.

ENDOGENOUS MODULATION AND 
MULTIPLE TRANSMITTERS

It is important to distinguish the effects of seroto-
nergic modulation versus modulation by serotonergic 
neurons. Because raphe neurons and the CSDns both 
possess a fast neurotransmitter in addition to 5-HT 
[41,53,66-68], stimulating these neurons can modify neu-
ronal activity in unpredictable manners. Rather than the 
effects of 5-HT alone, what may be most important is the 
balance of excitation and inhibition that results from the 
release of both transmitters when serotonergic neurons 
are excited. In mice, stimulation of raphe axons results in 
some MC odor responses being potentiated while others 
are suppressed [41,43]. The bidirectional modulation 
of MC odor responses to brief raphe stimulation does 
indeed increase the discriminability of odors across the 
OB in vivo [41]. Though it remains unclear precisely 
how much of the improvement in odor separation is 
attributable specifically to glutamate, serotonin, or their 
combined actions. One possibility is that discriminability 
improves with brief raphe stimulation predominantly via 
glutamate, while serotonergic modulation only occurs 
at higher activity levels. At those higher activity levels, 
raphe function could switch to regulating global gain 
control or the enhancement of select olfactory channels. 
In this model, the effects of glutamate and serotonin are 
inherently separable based on the activity level of the ra-
phe nucleus. Indeed, long-term serotonergic modulation 
of OSN responses in mice requires fairly sustained raphe 
activation while glutamate release is seen even with brief 
stimulation [4,41].

Drosophila CSDns also release an excitatory 
co-transmitter along with 5-HT [53]. In flies this trans-
mitter is acetylcholine (Ach), which signals predominant-
ly through nicotinic receptors in the AL [69]. Optogenetic 
activation of the CSDns reliably elicits 5-HT mediated 
inhibitory currents and Ach-mediated excitatory cur-
rents in PNs and LNs [53]. As with mice, serotonergic 
modulation in flies also requires prolonged activity in 
serotonergic neurons [53] (Figure 2H), suggesting Ach 
and 5-HT effects might be dissociable. No studies to date 
have looked at the effects of direct CSDn stimulation 
on population coding in PNs, so it is unknown if CSDn 
activity might also ameliorate odor discrimination in the 
AL.
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arise from ectopic volume transmission to have escaped 
detection with traditional EM.

THE ROLE OF PARACRINE SIGNALING OF 
5-HT IN OLFACTION

While raphe axons and the CSDns make classical 
synapses in the OB and AL respectively, it is known that 
neuromodulators can also signal great distances using 
bulk or volume transmission [78-81]. Serotonin is found 
in most tissue including, the blood and CSF [82] of mam-
mals and in the haemolymph of insects [83,84]. The DA1 
pheromone-sensitive glomerulus in flies demonstrates 
the potential importance for such extrasynaptic 5-HT. 
First, PNs innervating the DA1 glomerulus (DA1-PNs) 
are highly sensitive to serotonergic pharmacology [5,53], 
yet the glomerulus receives little to no direct serotonergic 
innervation [38,53,73]. Killing the CSDns via expression 
of diphtheria toxin does not eliminate sensitivity to se-
rotonergic pharmacology [53]. Finally, while stimulating 
the CSDn does not modulate DA1-PN odor responses, 
stimulating all serotonergic neurons in the fly together 
(except for the CSDns) does produce a long lasting 

(Figure 3C and 3D). Thus, the arbors of the CSDn may 
integrate locally in all of the regions to which it projects 
and the extent of electrotonic coupling between arbors 
and proximity to the spike initiation site (SIZ) may be 
what determines the ability of one region to affect another 
through modulation. CSDn processes in the AL are large 
diameter and may propagate well into other processes of 
the neuron. Its dendrites in the LH on the other hand are 
thin and fine and my not propagate well back into the AL 
or reach the SIZ.

As so many similarities exist between serotonergic 
modulation in the OB and AL, it is intriguing to ask 
whether OB-projecting raphe cells could also be inhib-
ited during olfaction. Indeed, some raphe neurons are 
inhibited by odors [70], but it remains to be determined 
if such units actually project to the OB. Regardless, the 
mechanism for suppression or activation of OB-project-
ing raphe neurons would likely be different in rodents as 
raphe axons make only asymmetric synapses in the OB 
[45,77]. Inhibition of these neurons would instead need 
to be indirect via higher cortical regions, for example via 
piriform cortex interactions with the raphe. Any presyn-
aptic regulation of raphe output in the OB would need to 

Figure 3. Integration of inputs in the serotonergic system. (A). A schematic showing the different brain regions that 
provide inputs to the raphe nuclei in mice. Most of the raphe inputs derive from non-olfactory areas, such as the 
hypothalamus (see text for more details). Higher-order olfactory areas such as the piriform cortex do provide input to 
the raphe. There are no direct inputs from the OB to the raphe and olfactory information only reaches raphe neurons 
indirectly through brain regions downstream of the OB. (B). In insects, the CSDns are locally integrated into each 
olfactory region and make reciprocal connections in each of its target structures. This allows the AL to partially regulate 
the release of 5-HT into the region. (C). A representation of the Drosophila brain showing a CSDn’s (green) innervation 
of the three primary olfactory regions in flies, the AL, the MB, and the LH. The MB receives little CSDn innervate, but 
both the AL and LH receive serotonergic innervation exclusively from the CSDn. (D). Pre- and postsynaptic markers 
are tagged with GFP and mCherry respectively and expressed in the CSDn. The CSDn displays pre- and postsynaptic 
markers in both the AL and the LH suggesting it integrates information locally in each olfactory region that it innervates.
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leads to a model proposing a single function for 5-HT, 
which is often served by a single or few receptor classes. 
However, a wide variety of 5-HT receptor classes are 
present in the AL and OB. It is likely that this diversity in 
receptors imparts a diversity of function in the interaction 
between these two systems. At a time when techniques 
are creating new experimental opportunities it is exciting 
to realize that the advances made in olfaction will also 
likely be informative regarding centrifugal modulation 
across sensory systems and potentially other modulatory 
circuits.
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