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The leading edge of motile cells is propelled by polymerization of
actin filaments according to a dendritic nucleationyarray treadmill-
ing mechanism. However, little attention has been given to the
origin and maintenance of the dendritic array. Here we develop
and test a population–kinetics model that explains the organiza-
tion of actin filaments in terms of the reproduction of dendritic
units. The life cycle of an actin filament consists of dendritic
nucleation on another filament (birth), elongation by addition of
actin subunits and, finally, termination of filament growth by
capping protein (death). The regularity of branch angle between
daughter and mother filaments endows filaments with heredity of
their orientation. Fluctuations of branch angle that become fixed
in the actin network create errors of orientation (mutations) that
may be inherited. In our model, birth and death rates depend on
filament orientation, which then becomes a selectable trait. Dif-
ferential reproduction and elimination of filaments, or natural
selection, leads to the evolution of a filament pattern with a
characteristic distribution of filament orientations. We develop a
procedure based on the Radon transform for quantitatively ana-
lyzing actin networks in situ and show that the experimental
results are in agreement with the distribution of filament orien-
tations predicted by our model. We conclude that the propulsive
actin network can be understood as a self-organizing supramo-
lecular ensemble shaped by the evolution of dendritic lineages
through natural selection of their orientation.

A fundamental issue beyond genomics and proteomics is the
origin of large-scale order in biomolecular ensembles. An

important example of such an ensemble is the network of actin
filaments responsible for the protrusive activity of motile cells.
Actin filaments are intrinsically polar, with one end (the barbed
end) favored for growth and the other end (the pointed end)
favored for shortening (1). Actin polymerized in vitro forms
populations of randomly organized filaments. In contrast, actin
filaments at the leading edge of cells form branched arrays in a
characteristic criss-cross pattern with filament barbed ends
uniformly facing forward (2). How does this dendritic pattern
arise? Why do the barbed ends face forward? Why are rearward-
facing branches not seen? These questions prompted an inquiry
into the organizing principles of the network.

The most general organizing principle in biology is natural
selection. Higher-level biological systems will be shaped by
natural selection whenever Darwin’s conditions of variation and
heritability of fitness are satisfied, regardless of the nature of the
entities being selected (3). Not only speciation (4), but also
development of immune and neural networks (5) and commu-
nication (6, 7), has been studied in an evolutionary framework.
The question we consider here is whether self-organization by
means of natural selection is a central mechanism for shaping the
intracellular architecture of the motility machinery.

Model and Results
In lamellipodia of a moving cell, actin filaments are born as
branches on existing filaments through nucleation by the Arp2y3
complex (1, 8–10). We term this process reproduction of fila-
ments. The angle between a filament and its branch (Fig. 1) is
quite regular and has a mean value, c, of 67° in Xenopus

keratocytes (9) with similar values for branches formed in vitro
(8, 11). The orientation of a new filament therefore depends on
the orientation of the filament on which it was nucleated. We
term this phenomenon inheritance of orientation. The angle
between mother and daughter filaments varies about its mean,
c, with standard deviation, s, which equals 12° in Xenopus
keratocytes (9). As revealed by high-speed imaging in vitro, a
similar deviation results from thermal bending of the junction
(11). In the dense actin network in vivo, we assume that a branch
cannot fluctuate as freely as in dilute solution and that it can
become trapped by the surrounding network in a deviated
orientation. We term the variation of angle between a filament
and its branch mutation of orientation. Reproduction, inheri-
tance, and mutation set the stage for evolution by natural
selection. What remains to be identified is the trait on which
selection operates.

Consider a filament nucleated at an angle f with respect to the
normal to the leading edge (Fig. 1). The membrane advances at
a rate v, and the filament elongates by addition of actin mono-
mers to its barbed end at a rate, s. If the filament is propelling
the protrusion, it has to maintain contact with the advancing
plasma membrane, and therefore its rate of elongation, s, is
related geometrically to the rate of protrusion by scos f 5 v.
Neglecting the small rate of monomer dissociation at the grow-
ing tip, the rate of filament elongation is s 5 dkaMap, where d is
the elongation contributed by addition of a monomer actin
molecule, ka is the polymerization rate constant, Ma is the
concentration of monomer, and p is the probability that the
filament tip is not obstructed by the membrane but open because
of thermal fluctuations (12). For a filament propelling the
leading edge, p 5 p0ycosf, where p0 5 vydkaMa is the probability
that a tip orthogonal to the leading edge is open. p0 is equivalent
to the ratio of the rate of protrusion to the rate of elongation of
a filament not in contact with the surface. p depends on filament
orientation and reaches unity when ufu increases to a critical
angle, u 5 arccos p0. For ufu greater than the critical angle,
polymerization does not keep up with protrusion, and the
filament tip loses contact with the advancing membrane. Be-
cause nucleation of a filament depends on the Arp2y3 complex
being activated by a WASP (Wiscott–Aldrich Syndrome Protein)
(13–15) family member, which is localized at the leading edge,
filaments oriented with ufu . u do not generate branches and are
excluded from reproduction. Termination of filament growth
also depends on orientation. For ufu . u, filament tips are not
obstructed by the surface and are terminated by association of
capping protein at a rate c, the rate of capping a free filament
barbed end. For ufu , u, termination is possible only when the
tip is open and occurs at a rate cp 5 cp0ycosf. Hence, the smaller
ufu, the longer the filament tip is not capped, and the longer it
stays at the leading edge and branches. Thus, the reproductive
potential of a filament depends on its orientation, which makes
orientation a selectable trait.
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In the life cycle of filaments, dendritic nucleation leads to
patterns of reproduction that depend on the magnitudes of c and
u. In general, filaments with orientation f can be nucleated on
filaments with orientation f 6 c. Although the following
analysis can be generalized, it is written here for the biologically
relevant values of c; namely, within the range 60–90° (8, 9, 11).
Consider branching of filaments in the plane of the flat lamel-
lipodium (Fig. 2). If u , cy2, it means that the branch angle is
greater than the acceptable range of angles (2u) for filaments to
maintain contact with the pushing surface. Consequently, a
branch of any existing filament would be oriented beyond the
critical angle, would not keep up with the catalytic surface and,
therefore, reproduction could not be sustained. If cy2 , u , c,
filament branches can remain within the critical angle, and
therefore reproduction can occur. However, not all filament
orientations result in successful progeny. Filaments in the range
u 2 c to c 2 u will generate branches beyond the critical angle
and thus not be sustained. Filaments in the range 2u # f # u 2
c may generate branches of f 2 c or f 1 c, but only branches
to one side, f 1 c, give rise to filaments that are in the acceptable
range c 2 u # f # u. Similarly, filaments in the range c 2 u #
f # u give rise to fecund branches in the range 2u # f # u 2
c. Thus, within the regime, cy2 , u , c, filaments reproduce in
two-generation cycles of orientations. If u . c, some filaments
can nucleate a successful branch to either side, so sequences of
three orientations in successive generations also become possi-
ble, for example (f 2 c, f, f 1 c), ufu , u 2 c. Sequences of
four or more orientations cannot exist for c larger than 60°,
because this would require at least one branch to be oriented at
.90° with respect to the normal to the surface. Thus, reproduc-
tive patterns for biologically relevant values of c occur as pairs
or triplets of filaments. We term a given pair or triplet of
orientations, which arise in the course of reproduction of
filaments, a ‘‘type.’’ Because filaments can reproduce only within
a type, reproductive potential is a property of a type, not of an
individual filament.

Let us evaluate the reproductive potential of a two-orientation
type first. The abundance of filaments that belong to such a type
is given by the number n1 of filaments whose orientation is f and
the number n2 of filaments whose orientation f 1 c is comple-
mentary to f. The rate at which the filaments proliferate
depends on b, the rate of branching per filament and c, the rate
of capping. When these numbers n are large, they can be treated
as continuous functions of time t, so that the change of the
abundance of the type with time can be represented by a system
of differential equations:

dn1

dt
5

b
2

n2 2
cp0

cosf
n1,

[1]
dn2

dt
5

b
2

n1 2
cp0

cos~f 1 c!
n2.

The coefficients reflect that first, filaments are born on one side
(i.e., at the rate by2) on filaments of the complementary
orientation and, second, that filaments of orientation f are
capped at the rate cp0ycosf. The solution to this system of
equations is

n1~t! 5 C1 exp~l1t! 1 C2 exp~l2t!,
[2]

n2~t! 5 C3 exp~l1t! 1 C4 exp~l2t!,

where C1 . . . C4 are constants that depend on initial conditions,
and l1, l2 are functions of the kinetic coefficients in Eq. 1. Of
the two exponential terms, the one with the larger l will describe
the proliferation in the long run, dominating over the other term.
So, provided that branching prevails over capping, Eq. 2 reflects
an asymptotically exponential increase in the abundance of the
type. The rate of this asymptotic increase, that is the largest l,
is a function of orientation f that enters the kinetic coefficients
in Eq. 1:

Fig. 1. Organizational unit of actin network at the leading edge. Near the
leading edge (heavy line), filaments (solid lines) are nucleated on existing ones
by the Arp2y3 complex (triangle). The angle between the mother (1) and
daughter (2) filaments is c on average, with root-mean-square deviation s.
Filaments elongate and propel the plasma membrane and are stochastically
terminated by capping protein (solid circle). Orientation of a filament is
characterized by its incidence angle with the leading edge, f (f as shown is
positive). Velocity of membrane advance is denoted by v; rate of filament
elongation is denoted by s, which depends on f.

Fig. 2. Diagrams showing reproductive patterns of actin filaments at the
leading edge. Heavy lines represent the leading edge. Angles noted are the
incidence angles of lines and boundaries with respect to the leading edge.
Hatched and crosshatched areas represent the range of the incidence angle f,
within which a filament is reproductively successful. The branching angle, c,
is shown equal to 67°. (A) When the critical angle u is larger than cy2 but
smaller than c, two orientations alternate in successive generations. Dashed
lines show an example of a pair of such orientations (f9, f9 1 c). Filaments with
these orientations form a particular two-orientation type. (B) When the
critical angle u is larger than c, in successive generations there can be three
orientations (in the crosshatched area) as well as two (in the hatched area).
Dashed lines show an example of a triplet of orientations (f9 2 c, f9, f9 1 c).
Filaments that have these orientations form a particular three-orientation
type.
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l 5 f~f! 5
1
2

cp0HÎFcosf 2 cos~f 1 c!

cosfcos~f 1 c!
G2

1 S b
cp0

D2

2
cosf 1 cos~f 1 c!

cosfcos~f 1 c!
J. [3]

f(f) is the required measure of the reproductive potential of
filaments whose orientation is f. Obviously, the filaments of the
complementary orientation f 1 c have the same reproductive
potential. Being the rate of the exponential increase, f(f) is by
definition the Malthusian parameter of the type (3, 16, 17). As
introduced by R. A. Fisher, it ‘‘measures fitness to survive by the
objective fact of representation in future generations’’ (16) and
can also be called the Fisherian fitness (3) of the type.

It must be emphasized that Eq. 3 is derived for the conditions
for which Eq. 1 was written. A universal definition of the fitness
function f(f), which is valid for f representing any orientation
of any type, three as well as two orientation, is more complex and
is given in Appendix 1. In general, fitness is not defined for ufu $
u, nor for any f when p0 . cos(cy2), because filament repro-
duction cannot be sustained, and therefore types do not exist
under these conditions. Differentiation of the function f(f)
shows that for cosc , p0 , cos(cy2), it reaches maxima at f 5
6cy2. Therefore, the fittest under this condition is the two-
generation type with symmetrically alternating orientations.
Analogously, for p0 , cosc, the type consisting of three orien-
tations (0, 6c) has the greatest fitness. Thus, optimal orienta-
tions exist at which reproductive potential is maximized.

Mutations are necessary to provide the variation of orienta-
tion on which natural selection can operate. Let the variation be
Gaussian with root-mean-square deviation s from the mean
angle c between the two filaments (11, 18). Then the number
density n(f, t) of filaments at the leading edge as a function of
their orientation and time evolves according to the following
equation:

dn~f, t!
dt

5 b
1

Î8ps
E

2u

u Se2
~v 1 c 2 f!2

2s2 1 e2
~v 2 c 2 f!2

2s2 D
n~v, t!dv 2 c

p0

cosf
n~f, t!. [4]

The kernel under the integral sign reflects the probability density
that a filament at angle f is nucleated on a filament at angle v.
In this dynamic equation, the pseudofirst-order rate constants of
branching and capping, b and c, should be regarded as unknown
functions of N, the total number of filaments in contact with the
leading edge. This requirement is to reflect that the actin
cytoskeleton of a steadily moving cell has to be in a steady state
(9), but the mechanism of the establishment and maintenance of
the steady state is not known. In general, the density function
q(f, t) of the distribution of angle f is defined by n(f, t) 5 q(f,
t)N(t). In the present work, we study the steady state as given,
assuming that neither N nor q(f) changes with time. Then it
follows from Eq. 4 that the density function qss(f), which is
realized in a steady-state population of filaments, is the eigen-
function, and the steady-state ratio of capping and branching
rates cssybss is the eigenvalue of what we call the branching–
capping operator as expressed in the following eigenproblem:

cosf

p0Î8ps
E

2u

u Se2
~v1c2f!2

2s2 1 e2
~v2c2f!2

2s2 Dqss~v!dv

5
css

bss
qss~f!, 2u # f # u. [5]

The quadrature method (19) yields for every p0 a unique solution
with cssybss of the order of unity and qss(f) depending on p0, as
shown in Fig. 3. Maxima of qss(f) correspond well to the maxima
of f(f). Thus, the fittest, as defined by the most rapidly prolif-
erating, dominate in the population. According to the bifurca-
tion diagram (Fig. 3A), the predominant orientations will be
close to 0 when p0 is small, abruptly change to 635° for
intermediate values of p0, and gradually again become small
when p0 is close to 1.

The relationship between the fitness and steady-state density
functions is crucial for the evolutionary explanation of the
self-organization of the filaments. The filament types differ in
their capacity to proliferate as expressed by Eq. 1 and f(f) in
terms of the underlying kinetics and geometry. The types
transmute because of mutations of filament orientation, and the
number of filaments is maintained constant, as expressed in Eq.
5, whose solution is qss(f). So, the correspondence of maxima of
the fitness function f(f) to those of the steady-state density
function qss(f) has a dual meaning. First, it constitutes a
theoretical demonstration of natural selection of actin filaments
at the leading edge. Additionally, it provides a mechanistic
explanation for the shape of qss(f), which is the main prediction
of the theory.

Fig. 3. Steady-state density (relative frequency) qss(f) of filaments with the
incidence angle f at the leading edge. (A) Locations of the maxima of qss(f)
(solid lines) are incidence angles of the most abundant filaments under
different p0, the probability that the filament with f 5 0 is not obstructed by
the plasma membrane. Beyond the dashed line, qss(f) is not defined, that is,
existence of such angles is not predicted. (B) qss(f) for p0 5 0.2 (dashed curve,
left axis), p0 5 0.5 (solid curve, left axis), and p0 5 0.9 (dotted curve, right axis).
c 5 67°, s 5 12°.
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Comparing qss(f) and f(f) in more detail, it is necessary to
take into account that in the three-orientation type, the middle
orientation is twice as abundant as each of the two others, so for
p0 , cosc, there is only one maximum in qss(f), as compared
with three in f(f). In addition, although under the condition p0
. cos(cy2), types do not reproduce themselves [ f(f) not de-
fined], the assembly of the network can nevertheless persist
[qss(f) Þ 0, Fig. 3], relying entirely on errors in the orientation
inheritance. By the same reason, under the condition cosc , p0
, cos(cy2), all angles 2u , f , u are represented, despite the
fact that some types do not reproduce. Slight displacements of
the maxima and bifurcation points of qss(f) from their locations
analytically determined for f(f) can also be regarded as effects
of orientation mutations.

A specific prediction on the distribution of the filament
orientation that is realized in the cell can be made by considering
the kinetic efficiency of the several protrusion regimes. Lower
values of p0 imply lower velocity of protrusion under the same
possible rate of polymerization. In contrast, for high p0, branch-
ing produces on average filaments that do not push because they
do not keep up with the leading edge. Consequently, the regime
of intermediate p0, which produces a bimodal distribution with
maxima at f 5 6cy2, appears most physiological.

Our model predicts that the most probable filament orienta-
tions are given as 6half the branching angle. Thus, a branching
angle c of '70° (8, 9) specifies that filament orientations of 635°
will be most frequent. Earlier qualitative observations estimated
the most frequent orientation of filaments in lamellipodia as
645° (2, 20), and a subsequent analysis (21) gave orientations of
filaments at the margin of 625°. Although these estimates
bracket the predicted value of 35°, it seemed desirable to
quantitatively test the prediction of our theory by measuring the
distribution of angles f formed by actin filaments and the normal
to the leading edge of the lamellipodium. We carried out
measurements on electron micrographs of lamellipodia from
several kinds of motile cells including Xenopus keratocytes (Fig.
4A), fish (Hymnocorhymbus ternezii) keratocytes, and Xenopus
fibroblasts (not shown) (see Appendix 2 for methods). Because
filament orientation is expected to occur over a range of angles,
it was important to use a measurement procedure that avoided
subjectivity and that included a sufficiently large population to
average natural variations. For this purpose, we initially used the
Fourier transform to objectively analyze the digitized electron
micrographs. However, in the course of the work, we found that
the Radon transform (22, 23) used in computer vision algorithms
and tomography provided a better approach. The Radon trans-
form computes projections of an image matrix along specified
directions. Thus, it is particularly useful in detecting lines or
linear objects in an image. Before applying the Radon transform,
filaments were enhanced by an edge-detection procedure based
on the Canny algorithm (24). The Canny method is a particularly
powerful edge-detection method, which uses two thresholds and
is less likely to be confused by noise. Edges oriented at an angle
to the direction of the projection give only weak signals that are
filtered out, so that the integrated intensity of signal that remains
in the projection becomes a function of the number of filaments
in the direction of the projection. The resulting distribution, or
empiric density function r(f), of filament incidence angle in the
Xenopus keratocyte is shown in Fig. 4B. It has two maxima at
approximately 635°, in agreement with the theory when cosc ,
p0 , cos(cy2) and c 5 70° (8, 9). The same angle values
correspond to peaks in histograms obtained from the Hymno-
corhymbus keratocyte and the Xenopus fibroblast (not shown).
Similar distributions were obtained from deeper regions of the
lamellipodium but showed greater fluctuations as filament den-
sity decreased. At the lamellipodialycell body transition zone,
filaments become oriented parallel to the leading edge. Accord-

ingly, in this region, analysis yielded a narrow monomodal
distribution of angles peaking at '90° to the normal.

The theoretical density function of f inside the lamellipodium
is proportional to the flux of filaments off the leading edge, that
is, to qss(f)ycos(f), and therefore has the same maxima and
domain as qss(f). If the so-far-unaccounted factors that influ-
ence the distribution of angles are numerous but each of them
has only a small impact, that is, if the theory captures all essential
features of the process, r(f) has to be the convolution of the
theoretical density function with a Gaussian. Least-squares
optimization yields p0 5 0.57 (so that cssybss 5 0.62) and the
standard deviation of the Gaussian 12.5° for the best approxi-
mation (Fig. 4B). The obtained cssybss is within the range of
50kcMcyknMa 5 0.4–4, where kc 5 3.0 mM21 z s21 is the rate
constant for capping (25), Mc 5 0.2–2 mM is the concentration
of the capping protein (25), kn 5 6.4 mM21 z s21 is the rate
constant of nucleation of actin filaments from monomer by the
Arp2y3 complex (8), Ma 5 12 mM is the concentration of
monomer (26), and the numerical factor is the average number
of unproductive decays of a nucleation complex before a suc-
cessful elongation (8). The obtained value of p0 implies that if ka

Fig. 4. Orientation of actin filaments at the leading edge. (A) Platinum
replica electron micrograph of the dendritic brush of actin filaments at the
leading edge of a moving Xenopus keratocyte. The cell margin is at the top of
the image. (Bar 5 0.2 mm.) (B) Histogram of angles between filaments and the
normal to the leading edge in the actin cytoskeleton of a Xenopus keratocyte
lamellipodium (bars) and its theoretical approximation (curve). Negative and
positive angles mean deviation to one and the other side from the normal. The
region shown in A corresponds to approximately one-half the lamellipodial
area from which the histogram was generated. The histogram is representa-
tive of histograms obtained from other regions of lamellipodia and other cells.
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5 11.6 mM21 z s21 (27) and d 5 2.7 nm (28), the rate of protrusion
is 0.21 mm s21, which is within the range measured in keratocytes,
0.05–0.5 mm s21 (29). Thus, the value of p0 computed from the
experimentally determined distribution of filament angles is
consistent with the literature data on the kinetics of actin
polymerization and protrusion.

Discussion
Branching actin filaments at the leading edge of crawling cells
satisfy Darwin’s conditions of variation and heritability of fitness
(3). Therefore, they must be subject to competition and natural
selection. It is important to note that invoking natural selection
as a directive force is more than a mere metaphor. Our purpose
is to emphasize the point that the concept of natural selection
applies more generally than to the origin of species, and that its
application to supramolecular assemblies provides explanatory
power for understanding their dynamic self-organization. Build-
ing on this idea, we have developed a quantitative population–
kinetic theory of natural selection of actin filaments propelling
the leading edge of a motile cell. The theory explains the
structure of the propulsive array in agreement with measure-
ments of the actin network in situ. It permits estimation of a
single parameter, p0, which allows determination of the relative
rates of elongation of free filaments and advance of the leading
edge. It allows estimation of the relative rates of filament capping
and branching in the steady state. Finally, it explains self-
organization of the actin network as an evolutionary process on
the basis of natural selection of filament orientation.

The model as developed uses only a two-dimensional treat-
ment. This is a simplifying limitation, because actin filaments can
presumably branch in three dimensions. The limitation, however,
may be of minor consequence because of the thinness of the
lamellipodium ('200 nm) and the restriction of branch nucle-
ation to the leading edge. Although the mechanism responsible
for determining the depth of the lamellipodium has not been
established, filaments branching into the third dimension would
rapidly arrive at the limiting membrane and encounter an
impediment to growth. Because such filaments would also fall
behind the leading edge, they would be selected against both
through failure to generate progeny and through termination by
capping protein. Consequently, we believe our two-dimensional
model captures the essential biological properties of actin fila-
ment self-organization.

Our population–kinetic model is consistent with the ‘‘elastic
Brownian ratchet’’ model put forward by Mogilner and Oster
(12) to explain quantitatively the protrusive mechanics of la-
mellipodia. The control parameter p0 used kinematically in our
model may be interpreted as a Boltzmann factor, the exponential
of the work in units of thermal energy that is done by a filament
to advance the membrane by the length of a monomer unit.
According to this interpretation of p0, its value will depend on
load, approaching 0 at high load and approaching 1 as the
resistance to protrusion vanishes. The Mogilner–Oster model
focused on how the thermal motions of polymerizing filaments
can produce a directed force. They developed a force–velocity
relationship and showed that filament growth velocity was
maximal at a particular orientation angle, which they estimated
from assumptions of relevant parameters to be 48°. They sug-
gested that, because filaments grow fastest in this direction, they
would come to predominate in the population. Our model also
concludes that a particular orientation will predominate, but we
determine it to be half the branching angle, namely 35°. We do
not feel much significance need be attached to this difference for
several reasons. First, the Mogilner–Oster model was proposed
before the dendritic organization of actin filaments with branch-
ing angle of 70° was known. Incorporation of the constraint of
branching would likely alter their calculations. Second, their
treatment asked only in which direction filaments would grow

the fastest. They did not explicitly deal with population kinetics.
Finally, calculation of the optimal angle is sensitive to assump-
tions of the load force, filament-bending stiffness, and free
filament end length, and with different parameters, a different
angle would be calculated.

An evolutionary self-organization process of supramolecular
ensembles carries genetic and behavioral implications. Such a
process is economical in terms of the information required to
specify the final structure. Thus, one physiological role of natural
selection of actin filaments may be to minimize the genomic costs
of construction of the protruding network, which contributes to
the fitness of the higher-level evolving entity, the cell, and
ultimately the organism. An evolutionary self-organization pro-
cess is also intrinsically adaptive. Cells can respond to chemo-
tactic stimuli and to substratum cues by altering their direction
of movement. In terms of the dendritic nucleationyarray tread-
milling model, a turning response means preferential assembly of
the actin network in one direction. Our evolutionary model
provides a conceptual framework for understanding how this
might occur. The constitutive existence of a spectrum of filament
orientations combined with variation of orientation provides the
raw materials from which favored orientations will be naturally
selected. Our study demonstrates that the natural selection of
supramolecular complexes is among the mechanisms that,
working on results of expression of genetic information and
self-assembly, facilitate the self-organization of the motility
machinery.

Appendix 1
In general, the abundance of a type is given by the numbers ni
of filaments of the orientations fi, i 5 1, 2, or 3, that belong to
the type. Let us arrange these numbers ni in the order of increase
of fi to form a vector n and introduce x, which will be the largest
of fi. Then for large ni and f $ 0,

ṅ 5 An,

A 5

F2cp0ycos~x 2 c!
by2

by2
2cp0ycosxG, if uc 2 uu # x , 2c 2 u

F2cp0ycos~x 2 2c!
by2

0

by2
2cp0ycos~x 2 c!

by2

0
by2

2cp0ycosx
G,

if x $ 2c 2 u

,

x 5 Hf 1 c, if f # u 2 c

f, if u 2 c , f # u
,

and the fitness f(f) of the type to which filaments with orien-
tation f belong is given by the largest eigenvalue of A. For f ,
0, f(f) 5 f(2f).

Appendix 2
Electron micrographs of the actin network were provided by
T. M. Svitkina, University of Northwestern Medical School. The
methods used in preparation of cells and microscopy were as
described previously (9). In brief, keratocytes and fibroblasts
were obtained by trypsin digestion of tissue fragments from
anesthetized Xenopus tadpoles or black tetras. The cells were
plated onto coverslips and incubated at 27°C in L-15 medium
(Sigma) diluted to 70% and supplemented with 20% fetal bovine
serum (HyClone) for 1 h. The cells were extracted for 3 min at
room temperature with 1% Triton X-100 in 100 mM Pipes, pH
6.9y1 mM MgCl2y1 mM EGTA containing 2 mM phalloidin
(Sigma). Extracted cells were fixed with 2% glutaraldehyde, and
platinum–carbon replicas of the cytoskeleton were prepared for
electron microscopy.
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Analysis of images of the actin network was performed in
MATLAB software (MathWorks, Natick, MA). Electron micro-
graphs were digitized so that 1 pixel in the digital file corre-
sponded to 1 nm in the original image. Circular regions 0.6 mm
in diameter, adjacent to the margin of the lamellipodium, were
selected in the electron microscopic images. Edges of the
filaments in each area were detected by use of the Canny
algorithm (26), and the images were binarized and then sub-
jected to the Radon transform (27, 28). Noise in the Radon
transform was removed by leaving only the signal above the
mean plus two standard deviations. Such filtered Radon trans-
forms were integrated over the linear coordinate to obtain the
density function g(a) of the angle a between filaments and the
coordinate axis X of the image. If the margin of the lamellipo-
dium formed an angle v with the coordinate axis X of the image,
the distribution of the angle f between the filaments and the
normal to the margin is r(f) 5 g(f 1 v). To suppress noise, r(f)
was averaged for 20 overlapping regions within each lamellipo-
dium that together covered a continuous area of 2 mm2. A total

of 12 lamellipodia were analyzed. This method measures, in
effect, total length rather than number of filaments in a given
orientation. In the model, however, the mean length of filaments
after capping, that is, of filaments inside lamellipodia, is inde-
pendent of their orientation, because it is determined by com-
petition of elongation and capping that takes place when the tip
of a filament is open. Therefore, the prediction of the model for
the distribution of the total length in a given direction is the same
as its prediction for the distribution of the number of filaments,
or simply distribution of angle in the population of filaments. The
imaging method is therefore suited to test the model. In tests, the
method identified angles of individual lines in artificial images
containing many lines.
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